Skip to main content
Top
Published in: BMC Ophthalmology 1/2020

Open Access 01-12-2020 | Research article

Establishing a normative database for quantitative pupillometry in the pediatric population

Authors: Sanket S. Shah, Hantamalala Ralay Ranaivo, Rebecca B. Mets-Halgrimson, Karen Rychlik, Sudhi P. Kurup

Published in: BMC Ophthalmology | Issue 1/2020

Login to get access

Abstract

Background

Pupillary evaluation is a crucial element of physical exams. Noting size, reactivity, and consensual response is critical in assessing for optic nerve dysfunction. We aim to establish normative data for scotopic pupillary size and function in the pediatric population in a clinical setting.

Methods

Pupillometry was obtained prospectively for consecutive, normal patients < 18 years old being evaluated by Lurie Children’s Ophthalmology. Quantitative data included maximum (MAX) and minimum (MIN) diameters, constriction percentage (CON), latency (LAT), average (ACV) and maximum (MCV) constriction velocities, average dilation velocity (ADV), and 75% recovery time (T75). Iris color was noted as light, intermediate, or dark.

Results

196 eyes of 101 participants (42.6% male, ages 1–17 years, average age 10.3 years) were analyzed. Mean MAX was 6.6 mm (5.1–8.1 mm 95% CI); MIN was 4.7 mm (3.1–6.1 mm 95% CI); CON was 30% (17–42 95% CI); LAT was 230 milliseconds (160–300 ms 95% CI); ACV was 3.70 mm/sec (2.21–5.18 mm/sec 95% CI); and ADV was 0.88 mm/sec (0.38–1.38 mm/sec 95% CI). Age had a positive correlation with MAX, MIN, and CON. 84.2 and 95.8% of participants showed resting pupil asymmetry of ≤0.5 mm and ≤ 1.0 mm, respectively.

Conclusions

Quantitative pupillometry can be a useful tool for screening pediatric patients. We sought to establish normative data in this group. We found males to have significantly greater MCV and CON than females (p < 0.05). Also, age had a positive correlation with MAX, MIN, and CON.
Literature
1.
go back to reference Karavanaki K, Davies AG, Hunt LP, Morgan MH, Baum JD. Pupil size in diabetes. Arch Dis Child. 1994;71(6):511–5.CrossRef Karavanaki K, Davies AG, Hunt LP, Morgan MH, Baum JD. Pupil size in diabetes. Arch Dis Child. 1994;71(6):511–5.CrossRef
2.
go back to reference Pena MM, Donaghue KC, Fung AT, Bonney M, Schwingshandl J, Howard NJ, et al. The prospective assessment of autonomic nerve function by pupillometry in adolescents with type 1 diabetes mellitus. Diabet Med. 1995;12(10):868–73.CrossRef Pena MM, Donaghue KC, Fung AT, Bonney M, Schwingshandl J, Howard NJ, et al. The prospective assessment of autonomic nerve function by pupillometry in adolescents with type 1 diabetes mellitus. Diabet Med. 1995;12(10):868–73.CrossRef
3.
go back to reference Schwingshandl J, Simpson JM, Donaghue K, Bonney MA, Howard NJ, Silink M. Pupillary abnormalities in type I diabetes occurring during adolescence. Comparisons with cardiovascular reflexes. Diabetes Care. 1993;16(4):630–3.CrossRef Schwingshandl J, Simpson JM, Donaghue K, Bonney MA, Howard NJ, Silink M. Pupillary abnormalities in type I diabetes occurring during adolescence. Comparisons with cardiovascular reflexes. Diabetes Care. 1993;16(4):630–3.CrossRef
4.
go back to reference Boev AN, Fountas KN, Karampelas I, Boev C, Machinis TG, Feltes C, et al. Quantitative pupillometry: normative data in healthy pediatric volunteers. J Neurosurg. 2005;103(6 Suppl):496–500.PubMed Boev AN, Fountas KN, Karampelas I, Boev C, Machinis TG, Feltes C, et al. Quantitative pupillometry: normative data in healthy pediatric volunteers. J Neurosurg. 2005;103(6 Suppl):496–500.PubMed
5.
go back to reference Taylor WR, Chen JW, Meltzer H, Gennarelli TA, Kelbch C, Knowlton S, et al. Quantitative pupillometry, a new technology: normative data and preliminary observations in patients with acute head injury. Technical note. J Neurosurg. 2003;98(1):205–13.CrossRef Taylor WR, Chen JW, Meltzer H, Gennarelli TA, Kelbch C, Knowlton S, et al. Quantitative pupillometry, a new technology: normative data and preliminary observations in patients with acute head injury. Technical note. J Neurosurg. 2003;98(1):205–13.CrossRef
6.
go back to reference Adhikari P, Zele AJ, Thomas R, Feigl B. Quadrant field Pupillometry detects Melanopsin dysfunction in Glaucoma suspects and early Glaucoma. Sci Rep. 2016;6:33373.CrossRef Adhikari P, Zele AJ, Thomas R, Feigl B. Quadrant field Pupillometry detects Melanopsin dysfunction in Glaucoma suspects and early Glaucoma. Sci Rep. 2016;6:33373.CrossRef
7.
go back to reference Feigl B, Zele AJ, Fader SM, Howes AN, Hughes CE, Jones KA, et al. The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmol. 2012;90(3):e230–4.CrossRef Feigl B, Zele AJ, Fader SM, Howes AN, Hughes CE, Jones KA, et al. The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmol. 2012;90(3):e230–4.CrossRef
8.
go back to reference Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A. Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology. 2011;118(2):376–81.CrossRef Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A. Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology. 2011;118(2):376–81.CrossRef
9.
go back to reference Meeker M, Du R, Bacchetti P, Privitera CM, Larson MD, Holland MC, et al. Pupil examination: validity and clinical utility of an automated pupillometer. J Neurosci Nurs. 2005;37(1):34–40.CrossRef Meeker M, Du R, Bacchetti P, Privitera CM, Larson MD, Holland MC, et al. Pupil examination: validity and clinical utility of an automated pupillometer. J Neurosci Nurs. 2005;37(1):34–40.CrossRef
10.
go back to reference Couret D, Boumaza D, Grisotto C, Triglia T, Pellegrini L, Ocquidant P, et al. Reliability of standard pupillometry practice in neurocritical care: an observational, double-blinded study. Crit Care. 2016;20:99.CrossRef Couret D, Boumaza D, Grisotto C, Triglia T, Pellegrini L, Ocquidant P, et al. Reliability of standard pupillometry practice in neurocritical care: an observational, double-blinded study. Crit Care. 2016;20:99.CrossRef
11.
go back to reference Brown JT, Connelly M, Nickols C, Neville KA. Developmental changes of Normal pupil size and reactivity in children. J Pediatr Ophthalmol Strabismus. 2015;52(3):147–51.CrossRef Brown JT, Connelly M, Nickols C, Neville KA. Developmental changes of Normal pupil size and reactivity in children. J Pediatr Ophthalmol Strabismus. 2015;52(3):147–51.CrossRef
12.
go back to reference Kohnen EM, Zubcov AA, Kohnen T. Scotopic pupil size in a normal pediatric population using infrared pupillometry. Graefes Arch Clin Exp Ophthalmol. 2004;242(1):18–23.CrossRef Kohnen EM, Zubcov AA, Kohnen T. Scotopic pupil size in a normal pediatric population using infrared pupillometry. Graefes Arch Clin Exp Ophthalmol. 2004;242(1):18–23.CrossRef
13.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.CrossRef Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.CrossRef
14.
go back to reference Fan X, Hearne L, Lei B, Miles JH, Takahashi N, Yao G. Weak gender effects on transient pupillary light reflex. Auton Neurosci. 2009;147(1–2):9–13.CrossRef Fan X, Hearne L, Lei B, Miles JH, Takahashi N, Yao G. Weak gender effects on transient pupillary light reflex. Auton Neurosci. 2009;147(1–2):9–13.CrossRef
15.
go back to reference Tekin K, Sekeroglu MA, Kiziltoprak H, Doguizi S, Inanc M, Yilmazbas P. Static and dynamic pupillometry data of healthy individuals. Clin Exp Optom. 2018;101(5):659–65.CrossRef Tekin K, Sekeroglu MA, Kiziltoprak H, Doguizi S, Inanc M, Yilmazbas P. Static and dynamic pupillometry data of healthy individuals. Clin Exp Optom. 2018;101(5):659–65.CrossRef
16.
go back to reference Winn B, Whitaker D, Elliott DB, Phillips NJ. Factors affecting light-adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci. 1994;35(3):1132–7.PubMed Winn B, Whitaker D, Elliott DB, Phillips NJ. Factors affecting light-adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci. 1994;35(3):1132–7.PubMed
17.
go back to reference Adhikari P, Zele AJ, Feigl B. The post-illumination pupil response (PIPR). Invest Ophthalmol Vis Sci. 2015;56(6):3838–49.CrossRef Adhikari P, Zele AJ, Feigl B. The post-illumination pupil response (PIPR). Invest Ophthalmol Vis Sci. 2015;56(6):3838–49.CrossRef
18.
go back to reference Kelbsch C, Strasser T, Chen Y, Feigl B, Gamlin PD, Kardon R, et al. Standards in Pupillography. Front Neurol. 2019;10:129.CrossRef Kelbsch C, Strasser T, Chen Y, Feigl B, Gamlin PD, Kardon R, et al. Standards in Pupillography. Front Neurol. 2019;10:129.CrossRef
19.
go back to reference Zele AJ, Feigl B, Smith SS, Markwell EL. The circadian response of intrinsically photosensitive retinal ganglion cells. PLoS One. 2011;6(3):e17860.CrossRef Zele AJ, Feigl B, Smith SS, Markwell EL. The circadian response of intrinsically photosensitive retinal ganglion cells. PLoS One. 2011;6(3):e17860.CrossRef
Metadata
Title
Establishing a normative database for quantitative pupillometry in the pediatric population
Authors
Sanket S. Shah
Hantamalala Ralay Ranaivo
Rebecca B. Mets-Halgrimson
Karen Rychlik
Sudhi P. Kurup
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2020
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01389-x

Other articles of this Issue 1/2020

BMC Ophthalmology 1/2020 Go to the issue