Skip to main content
Top
Published in: BMC Gastroenterology 1/2020

Open Access 01-12-2020 | Esophagus Resection | Research article

Severe weight loss after minimally invasive oesophagectomy is associated with poor survival in patients with oesophageal cancer at 5 years

Authors: Yasufumi Koterazawa, Taro Oshikiri, Gosuke Takiguchi, Naoki Urakawa, Hiroshi Hasegawa, Masashi Yamamoto, Shingo Kanaji, Kimihiro Yamashita, Takeru Matsuda, Tetsu Nakamura, Satoshi Suzuki, Yoshihiro Kakeji

Published in: BMC Gastroenterology | Issue 1/2020

Login to get access

Abstract

Background

Patients often experience severe weight loss after oesophagectomy. Enteral nutrition via a feeding jejunostomy tube (FT) is commonly practised. This study aimed to assess the effect of severe weight loss postoperatively and enteral nutrition via an FT on long-term prognosis after oesophagectomy.

Methods

This study analysed 317 patients who underwent minimally invasive oesophagectomy at Kobe University Hospital and Hyogo Cancer Center from 2010 to 2015. The patients’ body weight was evaluated at 3 months postoperatively. They were organised into the severe weight loss (n = 65) and moderate weight loss (n = 252) groups. Furthermore, they were categorised into the FT group (184 patients who had an FT placed during oesophagectomy) and no-FT group (133 patients without FT). Patients (119 per group) matched for the FT and no-FT groups were identified via propensity score matching.

Results

The 5-year overall survival (OS) rate in the severe weight loss group was significantly lower (p = 0.024). In the multivariate analysis, tumour invasion depth (pT3-4), preoperative therapy and severe weight loss had a worse OS (hazard ratio = 1.89; 95% confidence interval = 1.12–3.17, hazard ratio = 2.11; 95% confidence interval = 1.25–3.54, hazard ratio = 1.82; 95% confidence interval = 1.02–3.524, respectively). No significant differences in the number of severe weight loss patients and OS were found between the FT and no-FT groups.

Conclusion

Severe weight loss is significantly associated with poor OS. In addition, enteral nutrition via an FT did not improve the severe weight loss and OS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major pattern in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-386.CrossRef Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major pattern in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-386.CrossRef
2.
go back to reference Morita M, Yoshida R, Ikeda K, et al. Advances in esophageal cancer surgery in Japan: an analysis of 1000 consecutive patients treated at a single institute. Surgery. 2008;143:499–508.CrossRef Morita M, Yoshida R, Ikeda K, et al. Advances in esophageal cancer surgery in Japan: an analysis of 1000 consecutive patients treated at a single institute. Surgery. 2008;143:499–508.CrossRef
3.
go back to reference Baker M, Halliday V, Williams RN, et al. A systematic review of the nutritional consequences of esophagectomy. Clin Nutr. 2016;35:987–94.CrossRef Baker M, Halliday V, Williams RN, et al. A systematic review of the nutritional consequences of esophagectomy. Clin Nutr. 2016;35:987–94.CrossRef
4.
go back to reference Okada G, Momoki C, Habu D, et al. Effect of postoperative oral intake on prognosis for esophageal cancer. Nutrients. 2019;11:1338.CrossRef Okada G, Momoki C, Habu D, et al. Effect of postoperative oral intake on prognosis for esophageal cancer. Nutrients. 2019;11:1338.CrossRef
5.
go back to reference Park SY, Yoon JK, Lee SJ, et al. Postoperative change of the psoas muscle area as a predictor of survival in surgically treated esophageal cancer patients. J Thorac Dis. 2017;9:355–61.CrossRef Park SY, Yoon JK, Lee SJ, et al. Postoperative change of the psoas muscle area as a predictor of survival in surgically treated esophageal cancer patients. J Thorac Dis. 2017;9:355–61.CrossRef
6.
go back to reference Mayanagi S, Tsubosa Y, Omae K, et al. Negative impact of skeletal muscle wasting after neoadjuvant chemotherapy followed by surgery on survival for patients with thoracic esophageal cancer. Ann Surg Oncol. 2017;24:3741–7.CrossRef Mayanagi S, Tsubosa Y, Omae K, et al. Negative impact of skeletal muscle wasting after neoadjuvant chemotherapy followed by surgery on survival for patients with thoracic esophageal cancer. Ann Surg Oncol. 2017;24:3741–7.CrossRef
7.
go back to reference Yamashita K, Watanabe M, Mine S, et al. Minimally invasive esophagectomy attenuates the postoperative inflammatory and improves survival compared with open esophagectomy in patients with esophageal cancer: a propensity score matched analysis. Surg Endosc. 2018;32:4443–50.CrossRef Yamashita K, Watanabe M, Mine S, et al. Minimally invasive esophagectomy attenuates the postoperative inflammatory and improves survival compared with open esophagectomy in patients with esophageal cancer: a propensity score matched analysis. Surg Endosc. 2018;32:4443–50.CrossRef
8.
go back to reference Scarpa M, Cavallin F, Saaddeh LM, et al. Hybrid minimally invasive esophagectomy for cancer: impact on postoperative inflammatory and nutritional status. Dis Esophagus. 2016;29:1064–70.CrossRef Scarpa M, Cavallin F, Saaddeh LM, et al. Hybrid minimally invasive esophagectomy for cancer: impact on postoperative inflammatory and nutritional status. Dis Esophagus. 2016;29:1064–70.CrossRef
9.
go back to reference Wu Z, Wu M, Wang Q, et al. Home enteral nutrition after minimally invasive esophagectomy can improve quality of life and reduce the risk of malnutrition. Asia Pac J Clin Nutr. 2018;27:129–36.PubMed Wu Z, Wu M, Wang Q, et al. Home enteral nutrition after minimally invasive esophagectomy can improve quality of life and reduce the risk of malnutrition. Asia Pac J Clin Nutr. 2018;27:129–36.PubMed
10.
go back to reference Barlow R, Price P, Reid TD, et al. Prospective multicentre randomised controlled trial of early enteral nutrition for patients undergoing major upper gastrointestinal surgical resection. Clin Nutr. 2011;30:560–6.CrossRef Barlow R, Price P, Reid TD, et al. Prospective multicentre randomised controlled trial of early enteral nutrition for patients undergoing major upper gastrointestinal surgical resection. Clin Nutr. 2011;30:560–6.CrossRef
11.
go back to reference Xiao-Bo Y, Qiang L, Xiong Q, et al. Efficacy of early postoperative enteral nutrition in supporting patients after esophagectomy. Minerva Chir. 2014;69:37–46.PubMed Xiao-Bo Y, Qiang L, Xiong Q, et al. Efficacy of early postoperative enteral nutrition in supporting patients after esophagectomy. Minerva Chir. 2014;69:37–46.PubMed
12.
go back to reference Findlay JM, Gillies RS, Millo J, et al. Enhanced recovery for esophagectomy: a systematic review and evidence-based guidelines. Ann Surg. 2014;259:413–31.CrossRef Findlay JM, Gillies RS, Millo J, et al. Enhanced recovery for esophagectomy: a systematic review and evidence-based guidelines. Ann Surg. 2014;259:413–31.CrossRef
13.
go back to reference Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumors. 7th ed. Oxford: Wiley-Blackwell; 2011. Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumors. 7th ed. Oxford: Wiley-Blackwell; 2011.
14.
go back to reference Ando N, Kato H, Igaki H, et al. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-fluorouracil versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann Surg Oncol. 2012;19:68–74.CrossRef Ando N, Kato H, Igaki H, et al. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-fluorouracil versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann Surg Oncol. 2012;19:68–74.CrossRef
15.
go back to reference Oshikiri T, Yasuda T, Harada H, et al. A new method (the “Bascule method”) for lymphadenectomy along the left recurrent laryngeal nerve during prone esophagectomy for esophageal cancer. Surg Endosc. 2015;29:2442–50.CrossRef Oshikiri T, Yasuda T, Harada H, et al. A new method (the “Bascule method”) for lymphadenectomy along the left recurrent laryngeal nerve during prone esophagectomy for esophageal cancer. Surg Endosc. 2015;29:2442–50.CrossRef
16.
go back to reference Oshikiri T, Nakamura T, Hasegawa H, et al. Standardizing procedures improve and homogenizes short-term outcomes after minimally invasive esophagectomy. Langenbecks Arch Surg. 2018;403:221–34.CrossRef Oshikiri T, Nakamura T, Hasegawa H, et al. Standardizing procedures improve and homogenizes short-term outcomes after minimally invasive esophagectomy. Langenbecks Arch Surg. 2018;403:221–34.CrossRef
17.
go back to reference Oshikiri T, Yasuda T, Kawasaki K, et al. Hand-assisted laparoscopic surgery (HALS) is associated with less-restrictive ventilatory impairment and less risk for pulmonary complication than open laparotomy in thoracoscopic esophagectomy. Surgery. 2016;159:459–66.CrossRef Oshikiri T, Yasuda T, Kawasaki K, et al. Hand-assisted laparoscopic surgery (HALS) is associated with less-restrictive ventilatory impairment and less risk for pulmonary complication than open laparotomy in thoracoscopic esophagectomy. Surgery. 2016;159:459–66.CrossRef
18.
go back to reference Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.CrossRef Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.CrossRef
19.
go back to reference He X, Li JP, Liu XH, et al. Prognostic value of C-reactive protein/albumin ratio in predicting overall survival of Chinese cervical cancer patients overall survival: comparison among various inflammation based factors. J Cancer. 2018;9:1877–84.CrossRef He X, Li JP, Liu XH, et al. Prognostic value of C-reactive protein/albumin ratio in predicting overall survival of Chinese cervical cancer patients overall survival: comparison among various inflammation based factors. J Cancer. 2018;9:1877–84.CrossRef
20.
go back to reference Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.CrossRef Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.CrossRef
21.
go back to reference Clavien PA, Barkun J, de Oliveria ML, et al. The Clavien–Dindo classification of surgical complication: five-year experience. Ann Surg. 2009;250:187–96.CrossRef Clavien PA, Barkun J, de Oliveria ML, et al. The Clavien–Dindo classification of surgical complication: five-year experience. Ann Surg. 2009;250:187–96.CrossRef
22.
go back to reference D’Journo XB, Ouattara M, Loudou A, et al. Prognostic impact of weight loss in 1-year survivors after transthoracic esophagectomy for cancer. Dis Esophagus. 2012;25:527–34.CrossRef D’Journo XB, Ouattara M, Loudou A, et al. Prognostic impact of weight loss in 1-year survivors after transthoracic esophagectomy for cancer. Dis Esophagus. 2012;25:527–34.CrossRef
23.
go back to reference Kitagawa H, Namikawa T, Munekage M, et al. Analysis of factors associated with weight loss after esophagectomy for esophageal cancer. Anticancer Res. 2016;36:5409–12.CrossRef Kitagawa H, Namikawa T, Munekage M, et al. Analysis of factors associated with weight loss after esophagectomy for esophageal cancer. Anticancer Res. 2016;36:5409–12.CrossRef
24.
go back to reference Martin L, Lagergren J, Lindblad M, et al. Malnutrition after oesophageal cancer surgery in Sweden. Br J Surg. 2007;94:1496–500.CrossRef Martin L, Lagergren J, Lindblad M, et al. Malnutrition after oesophageal cancer surgery in Sweden. Br J Surg. 2007;94:1496–500.CrossRef
25.
go back to reference Wang P, Li Y, Sun H, et al. Analysis of the associated factors for weight loss after minimally invasive Mckeown esophagectomy. Thorac Cancer. 2019;10:209–18.CrossRef Wang P, Li Y, Sun H, et al. Analysis of the associated factors for weight loss after minimally invasive Mckeown esophagectomy. Thorac Cancer. 2019;10:209–18.CrossRef
26.
go back to reference Park SY, Kim DJ, Suh JW, et al. Risk factors for weight loss 1 year after esophagectomy and gastric pull-up for esophageal cancer. J Gastrointest Surg. 2018;22:1137–43.CrossRef Park SY, Kim DJ, Suh JW, et al. Risk factors for weight loss 1 year after esophagectomy and gastric pull-up for esophageal cancer. J Gastrointest Surg. 2018;22:1137–43.CrossRef
27.
go back to reference Hynes O, Anandavadivelan P, Gossage J, et al. The impact of pre- and post-operative weight loss and body mass index on prognosis in patients with esophageal cancer. Eur J Surg Oncol. 2017;43:1559–65.CrossRef Hynes O, Anandavadivelan P, Gossage J, et al. The impact of pre- and post-operative weight loss and body mass index on prognosis in patients with esophageal cancer. Eur J Surg Oncol. 2017;43:1559–65.CrossRef
28.
go back to reference Okada G, Matsumoto Y, Nakamura Y, et al. Nutritional changes and factors contributing to postoperative weight recovery after esophagectomy. Esophagus. 2017;14:343–50.CrossRef Okada G, Matsumoto Y, Nakamura Y, et al. Nutritional changes and factors contributing to postoperative weight recovery after esophagectomy. Esophagus. 2017;14:343–50.CrossRef
29.
go back to reference Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:1–253. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:1–253.
30.
go back to reference Takesue T, Takeuchi H, Ogura M, et al. A Prospective randomized trial of enteral nutrition after thoracoscopic esophagectomy for esophageal cancer. Ann Surg Oncol. 2015;22:802–9.CrossRef Takesue T, Takeuchi H, Ogura M, et al. A Prospective randomized trial of enteral nutrition after thoracoscopic esophagectomy for esophageal cancer. Ann Surg Oncol. 2015;22:802–9.CrossRef
31.
go back to reference Weijs TJ, van Eden HWJ, Ruurda JP, et al. Routine jejunostomy tube feeding following esophagectomy. J Thorac Dis. 2017;9:851–60.CrossRef Weijs TJ, van Eden HWJ, Ruurda JP, et al. Routine jejunostomy tube feeding following esophagectomy. J Thorac Dis. 2017;9:851–60.CrossRef
32.
go back to reference Ryan AM, Reynolds JV, Healy L, et al. Enteral nutrition enriched with eicosapentaenoic acid (EPA) preserves lean body mass following esophageal cancer surgery:results of a double-blinded randomized controlled trial. Ann Surg. 2009;249:353–63.CrossRef Ryan AM, Reynolds JV, Healy L, et al. Enteral nutrition enriched with eicosapentaenoic acid (EPA) preserves lean body mass following esophageal cancer surgery:results of a double-blinded randomized controlled trial. Ann Surg. 2009;249:353–63.CrossRef
33.
go back to reference Matsuda Y, Habu D, Lee S, et al. Enteral diet enriched with ω-3 fatty acid improves oxygenation after thoracic esophagectomy. World J Surg. 2017;41:1584–94.CrossRef Matsuda Y, Habu D, Lee S, et al. Enteral diet enriched with ω-3 fatty acid improves oxygenation after thoracic esophagectomy. World J Surg. 2017;41:1584–94.CrossRef
34.
go back to reference Navidi M, Phillips AW. Hybrid minimally invasive esophagectomy for esophageal cancer. N Engl J Med. 2019;380:e28.CrossRef Navidi M, Phillips AW. Hybrid minimally invasive esophagectomy for esophageal cancer. N Engl J Med. 2019;380:e28.CrossRef
35.
go back to reference Shen Y, Zhong M, Wu W, et al. The impact of tidal volume on pulmonary complications following minimally invasive esophagectomy: a randomized and controlled study. J Thorac Cardiovasc Surg. 2013;146:1267–74.CrossRef Shen Y, Zhong M, Wu W, et al. The impact of tidal volume on pulmonary complications following minimally invasive esophagectomy: a randomized and controlled study. J Thorac Cardiovasc Surg. 2013;146:1267–74.CrossRef
36.
go back to reference Hervochon R, Bobbio A, Guinet C, et al. Body mass index and total psoas area affect outcomes in patients undergoing pneumonectomy for cancer. Ann Thorac Surg. 2017;103:287–95.CrossRef Hervochon R, Bobbio A, Guinet C, et al. Body mass index and total psoas area affect outcomes in patients undergoing pneumonectomy for cancer. Ann Thorac Surg. 2017;103:287–95.CrossRef
37.
go back to reference Hammad A, Kaido T, Hamaguchi Y, et al. Impact of sarcopenic overweight on the outcomes after living donor liver transplantation. Hepatob Surg Nutr. 2017;6:367–78.CrossRef Hammad A, Kaido T, Hamaguchi Y, et al. Impact of sarcopenic overweight on the outcomes after living donor liver transplantation. Hepatob Surg Nutr. 2017;6:367–78.CrossRef
Metadata
Title
Severe weight loss after minimally invasive oesophagectomy is associated with poor survival in patients with oesophageal cancer at 5 years
Authors
Yasufumi Koterazawa
Taro Oshikiri
Gosuke Takiguchi
Naoki Urakawa
Hiroshi Hasegawa
Masashi Yamamoto
Shingo Kanaji
Kimihiro Yamashita
Takeru Matsuda
Tetsu Nakamura
Satoshi Suzuki
Yoshihiro Kakeji
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2020
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-020-01543-1

Other articles of this Issue 1/2020

BMC Gastroenterology 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine