Skip to main content
Top
Published in: Cancer Cell International 1/2021

Open Access 01-12-2021 | Esophageal Cancer | Review

Recent advances of m6A methylation modification in esophageal squamous cell carcinoma

Authors: Xiaoqing Zhang, Ning Lu, Li Wang, Yixuan Wang, Minna Li, Ying Zhou, Manli Cui, Mingxin Zhang, Lingmin Zhang

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

In recent years, with the development of RNA sequencing technology and bioinformatics methods, the epigenetic modification of RNA based on N6-methyladenosine (m6A) has gradually become a research hotspot in the field of bioscience. m6A is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs). m6A methylation modification can dynamically and reversibly regulate RNA transport, localization, translation and degradation through the interaction of methyltransferase, demethylase and reading protein. m6A methylation can regulate the expression of proto-oncogenes and tumor suppressor genes at the epigenetic modification level to affect tumor occurrence and metastasis. The morbidity and mortality of esophageal cancer (EC) are still high worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common tissue subtype of EC. This article reviews the related concepts, biological functions and recent advances of m6A methylation in ESCC, and looks forward to the prospect of m6A methylation as a new diagnostic biomarker and potential therapeutic target for ESCC.
Literature
1.
go back to reference Abnet CC, et al. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154:360–73.PubMedCrossRef Abnet CC, et al. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154:360–73.PubMedCrossRef
3.
go back to reference Cheung WY, et al. Genetic variations in esophageal cancer risk and prognosis. Gastroenterol Clin North Am. 2009;38:75–91.PubMedCrossRef Cheung WY, et al. Genetic variations in esophageal cancer risk and prognosis. Gastroenterol Clin North Am. 2009;38:75–91.PubMedCrossRef
4.
go back to reference Hassanabad AF, Chehade R, Breadner D, Raphael J. Esophageal carcinoma: towards targeted therapies. Cell Oncol. 2020;43(2):195–209.CrossRef Hassanabad AF, Chehade R, Breadner D, Raphael J. Esophageal carcinoma: towards targeted therapies. Cell Oncol. 2020;43(2):195–209.CrossRef
5.
go back to reference van Rossum PSN, Mohammad NH, Vleggaar FP, van Hillegersberg R. Treatment for unresectable or metastatic oesophageal cancer: current evidence and trends. Nat Rev Gastroenterol Hepatol. 2018;15:235–49.PubMedCrossRef van Rossum PSN, Mohammad NH, Vleggaar FP, van Hillegersberg R. Treatment for unresectable or metastatic oesophageal cancer: current evidence and trends. Nat Rev Gastroenterol Hepatol. 2018;15:235–49.PubMedCrossRef
6.
go back to reference Abbas G, Krasna M. Overview of esophageal cancer. Ann Car-diothorac Surg. 2017;6(2):131.CrossRef Abbas G, Krasna M. Overview of esophageal cancer. Ann Car-diothorac Surg. 2017;6(2):131.CrossRef
7.
go back to reference Zhao Y, Shi Y, Shen H, Xie W. m6A-binding proteins: the emerging crucial performers in epigenetics. Hematol Oncol. 2020;13:35.CrossRef Zhao Y, Shi Y, Shen H, Xie W. m6A-binding proteins: the emerging crucial performers in epigenetics. Hematol Oncol. 2020;13:35.CrossRef
8.
go back to reference Kane SE, Beemon K. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: Implications for RNA processing. Mol Cell Biol. 1985;5(9):2298–306.PubMedPubMedCentral Kane SE, Beemon K. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: Implications for RNA processing. Mol Cell Biol. 1985;5(9):2298–306.PubMedPubMedCentral
10.
go back to reference Bokar JA, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3(11):1233–47.PubMedPubMedCentral Bokar JA, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3(11):1233–47.PubMedPubMedCentral
11.
go back to reference Zhang S. Mechanism of N(6)-methyladenosine modification and its emerging role in cancer. Pharmacol Ther. 2018;189:173–83.PubMedCrossRef Zhang S. Mechanism of N(6)-methyladenosine modification and its emerging role in cancer. Pharmacol Ther. 2018;189:173–83.PubMedCrossRef
12.
15.
go back to reference Wang X, Lu Z, Gomez A, et al. N-6-methyladenosine -dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.PubMedCrossRef Wang X, Lu Z, Gomez A, et al. N-6-methyladenosine -dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.PubMedCrossRef
16.
go back to reference Parashar NC, Parashar G, Nayyar H, et al. N6-adenine DNA methylation demystified in eukaryotic genome: From biology to pathology. Biochimie. 2018;144:56–62.PubMedCrossRef Parashar NC, Parashar G, Nayyar H, et al. N6-adenine DNA methylation demystified in eukaryotic genome: From biology to pathology. Biochimie. 2018;144:56–62.PubMedCrossRef
17.
go back to reference Edupuganti RR, Geiger S, Lindeboom RGH, et al. N- 6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 2017;24(10):870.PubMedPubMedCentralCrossRef Edupuganti RR, Geiger S, Lindeboom RGH, et al. N- 6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 2017;24(10):870.PubMedPubMedCentralCrossRef
18.
go back to reference Wang Y, Li Y, Toth JI, et al. N6- methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 2014;16(2):191–8.PubMedPubMedCentralCrossRef Wang Y, Li Y, Toth JI, et al. N6- methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 2014;16(2):191–8.PubMedPubMedCentralCrossRef
20.
go back to reference Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29.PubMedCrossRef Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29.PubMedCrossRef
21.
22.
go back to reference Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469–72.PubMedPubMedCentralCrossRef Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469–72.PubMedPubMedCentralCrossRef
23.
go back to reference Cardelli M, Marchegiani F, Cavallone L, et al. A polymorphism of the YTHDF2 gene (1p35) located in an Alu-rich genomic domain is associated with human longevity. J Gerontol A Biol Sci Med Sci. 2006;61(6):547–56.PubMedCrossRef Cardelli M, Marchegiani F, Cavallone L, et al. A polymorphism of the YTHDF2 gene (1p35) located in an Alu-rich genomic domain is associated with human longevity. J Gerontol A Biol Sci Med Sci. 2006;61(6):547–56.PubMedCrossRef
24.
go back to reference Huang H, Weng H, Sun W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95.PubMedPubMedCentralCrossRef Huang H, Weng H, Sun W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95.PubMedPubMedCentralCrossRef
26.
go back to reference Xiao Y, Xue J, Zhang L, et al. Misalignment fault diagnosis for wind turbines based on information fusion. Entropy (Basel). 2021;23(2):243.CrossRef Xiao Y, Xue J, Zhang L, et al. Misalignment fault diagnosis for wind turbines based on information fusion. Entropy (Basel). 2021;23(2):243.CrossRef
27.
go back to reference Nagaki Y, Motoyama S, Yamaguchi T, et al. m(6)A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma associated with poor prognosis. Genes Cells. 2020;25(8):547–61.PubMedCrossRef Nagaki Y, Motoyama S, Yamaguchi T, et al. m(6)A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma associated with poor prognosis. Genes Cells. 2020;25(8):547–61.PubMedCrossRef
28.
go back to reference Xue J, Xiao P, Yu X, Zhang X. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma. Hum Cell. 2021;34(2):502–14.PubMedCrossRef Xue J, Xiao P, Yu X, Zhang X. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma. Hum Cell. 2021;34(2):502–14.PubMedCrossRef
29.
go back to reference Yang N, Ying P, Tian J, et al. Genetic variants in m6A modification genes are associated with esophageal squamous-cell carcinoma in the Chinese population. Carcinogenesis. 2020;41(6):761–8.PubMedCrossRef Yang N, Ying P, Tian J, et al. Genetic variants in m6A modification genes are associated with esophageal squamous-cell carcinoma in the Chinese population. Carcinogenesis. 2020;41(6):761–8.PubMedCrossRef
30.
go back to reference Xia TL, Li X, Wang X, et al. Upregulation of METTL3 expression predicts poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Manag Res. 2020;12:5729–37.PubMedPubMedCentralCrossRef Xia TL, Li X, Wang X, et al. Upregulation of METTL3 expression predicts poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Manag Res. 2020;12:5729–37.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Liu S, Huang M, Chen Z, et al. FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13. Exp Cell Res. 2020;389(1):111894.PubMedCrossRef Liu S, Huang M, Chen Z, et al. FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13. Exp Cell Res. 2020;389(1):111894.PubMedCrossRef
33.
go back to reference Guo H, Wang B, Xu K, et al. m6A reader HNRNPA2B1 promotes esophageal cancer progression via up-regulation of ACLY and ACC1. Front Oncol. 2020;10:553045.PubMedPubMedCentralCrossRef Guo H, Wang B, Xu K, et al. m6A reader HNRNPA2B1 promotes esophageal cancer progression via up-regulation of ACLY and ACC1. Front Oncol. 2020;10:553045.PubMedPubMedCentralCrossRef
34.
go back to reference Xu LC, Pan JX, Pan HD. Construction and validation of an m6A RNA methylation regulators-based prognostic signature for esophageal cancer. Cancer Manag Res. 2020;12:5385–94.PubMedPubMedCentralCrossRef Xu LC, Pan JX, Pan HD. Construction and validation of an m6A RNA methylation regulators-based prognostic signature for esophageal cancer. Cancer Manag Res. 2020;12:5385–94.PubMedPubMedCentralCrossRef
35.
go back to reference Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, et al. Autophagy-related microRNAs: possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res. 2020;161:105133.PubMedCrossRef Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, et al. Autophagy-related microRNAs: possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res. 2020;161:105133.PubMedCrossRef
36.
go back to reference Jamali L, Tofigh R, Tutunchi S, et al. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol. 2018;233(11):8538–50.PubMedCrossRef Jamali L, Tofigh R, Tutunchi S, et al. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol. 2018;233(11):8538–50.PubMedCrossRef
37.
go back to reference Naeli P, Pourhanifeh MH, Karimzadeh MR, et al. Circular RNAs and gastrointestinal cancers: epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol. 2020;145:102854.PubMedCrossRef Naeli P, Pourhanifeh MH, Karimzadeh MR, et al. Circular RNAs and gastrointestinal cancers: epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol. 2020;145:102854.PubMedCrossRef
38.
go back to reference Hesari A, Azizian M, Sheikhi A, et al. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: current and future status. Int J Cancer. 2019;144(6):1215–26.PubMedCrossRef Hesari A, Azizian M, Sheikhi A, et al. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: current and future status. Int J Cancer. 2019;144(6):1215–26.PubMedCrossRef
39.
go back to reference Sarvizadeh M, Hasanpour O, Naderi Ghale-Noie Z, et al. Allicin and digestive system cancers: from chemical structure to its therapeutic opportunities. Front Oncol. 2021;11:650256.PubMedPubMedCentralCrossRef Sarvizadeh M, Hasanpour O, Naderi Ghale-Noie Z, et al. Allicin and digestive system cancers: from chemical structure to its therapeutic opportunities. Front Oncol. 2021;11:650256.PubMedPubMedCentralCrossRef
40.
go back to reference Xu LC, Pan JX, Pan HD. Construction and validation of an m6A RNA methylation regulators-based prognostic signature for esophageal cancer. Cancer Manag Res. 2020;6(12):5385–94.CrossRef Xu LC, Pan JX, Pan HD. Construction and validation of an m6A RNA methylation regulators-based prognostic signature for esophageal cancer. Cancer Manag Res. 2020;6(12):5385–94.CrossRef
41.
go back to reference Liu X, Gonzalez G, Dai X, et al. Adenylate kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m6A-based epitranscriptomic mechanism. Mol Ther. 2020;28(12):2593–604.PubMedCrossRefPubMedCentral Liu X, Gonzalez G, Dai X, et al. Adenylate kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m6A-based epitranscriptomic mechanism. Mol Ther. 2020;28(12):2593–604.PubMedCrossRefPubMedCentral
42.
go back to reference Zhang CZ, Samanta D, Lu HQ, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. PNAS. 2016;113(14):E2047–56.PubMedPubMedCentralCrossRef Zhang CZ, Samanta D, Lu HQ, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. PNAS. 2016;113(14):E2047–56.PubMedPubMedCentralCrossRef
43.
go back to reference Hao L, Wang JM, Liu BQ, et al. m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. Biochim Biophys Acta Mol Cell Res. 2021;1868:118878.PubMedCrossRef Hao L, Wang JM, Liu BQ, et al. m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. Biochim Biophys Acta Mol Cell Res. 2021;1868:118878.PubMedCrossRef
44.
go back to reference Fukumoto T, Zhu H, Nacarelli T, et al. N(6)-methylation of adenosine of FZD10 mRNA contributes to PARP inhibitor resistance. Cancer Res. 2019;79:2812–20.PubMedPubMedCentralCrossRef Fukumoto T, Zhu H, Nacarelli T, et al. N(6)-methylation of adenosine of FZD10 mRNA contributes to PARP inhibitor resistance. Cancer Res. 2019;79:2812–20.PubMedPubMedCentralCrossRef
45.
go back to reference Wang XL, Li ZH, Kong BH, et al. Reduced m6A mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget. 2017;8(58):98918–30.PubMedPubMedCentralCrossRef Wang XL, Li ZH, Kong BH, et al. Reduced m6A mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget. 2017;8(58):98918–30.PubMedPubMedCentralCrossRef
46.
go back to reference Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter- bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 2017;552(7683):126–31.PubMedPubMedCentralCrossRef Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter- bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 2017;552(7683):126–31.PubMedPubMedCentralCrossRef
47.
go back to reference Vu LP, Pickering BF, Cheng YM, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23(11):1369–76.PubMedPubMedCentralCrossRef Vu LP, Pickering BF, Cheng YM, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23(11):1369–76.PubMedPubMedCentralCrossRef
49.
go back to reference Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V, et al. Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 2018;37:522–33.PubMedCrossRef Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V, et al. Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 2018;37:522–33.PubMedCrossRef
50.
go back to reference Cui Q, Shi HL, Ye P, et al. m6A RNA methylation regulates the Self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18(11):2622–34.PubMedPubMedCentralCrossRef Cui Q, Shi HL, Ye P, et al. m6A RNA methylation regulates the Self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18(11):2622–34.PubMedPubMedCentralCrossRef
51.
go back to reference Zhang SC, Zhao BS, Zhou AD, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31(4):591-606.e6.PubMedPubMedCentralCrossRef Zhang SC, Zhao BS, Zhou AD, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31(4):591-606.e6.PubMedPubMedCentralCrossRef
52.
go back to reference Jin D, Guo J, Wu Y, et al. m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. Hematol Oncol. 2019;12:135.CrossRef Jin D, Guo J, Wu Y, et al. m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. Hematol Oncol. 2019;12:135.CrossRef
53.
go back to reference Liu S, Li Q, Li G, et al. The mechanism of m(6)A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by beta-elemene. Cell Death Dis. 2020;11:969.PubMedPubMedCentralCrossRef Liu S, Li Q, Li G, et al. The mechanism of m(6)A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by beta-elemene. Cell Death Dis. 2020;11:969.PubMedPubMedCentralCrossRef
54.
go back to reference Ding N, You A, Tian W, et al. Chidamide increases the sensitivity of Non-small Cell Lung Cancer to Crizotinib by decreasing c-MET mRNA methylation. Int J Biol Sci. 2020;16:2595–611.PubMedPubMedCentralCrossRef Ding N, You A, Tian W, et al. Chidamide increases the sensitivity of Non-small Cell Lung Cancer to Crizotinib by decreasing c-MET mRNA methylation. Int J Biol Sci. 2020;16:2595–611.PubMedPubMedCentralCrossRef
56.
go back to reference Chen MN, Wei L, Law CT, et al. RNA N6-methyladenosine methyl-transferase- like 3 promotes liver cancer progression through YTH-DF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254–70.PubMedCrossRef Chen MN, Wei L, Law CT, et al. RNA N6-methyladenosine methyl-transferase- like 3 promotes liver cancer progression through YTH-DF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254–70.PubMedCrossRef
57.
go back to reference Lin Z, Niu Y, Wan A, Chen D, Liang H, Chen X, et al. RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J. 2020;39:e103181.PubMedPubMedCentralCrossRef Lin Z, Niu Y, Wan A, Chen D, Liang H, Chen X, et al. RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J. 2020;39:e103181.PubMedPubMedCentralCrossRef
58.
go back to reference Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methylade-nosine-dependent primary Micro RNA processing. Hepatology. 2017;65(2):529–43.PubMedCrossRef Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methylade-nosine-dependent primary Micro RNA processing. Hepatology. 2017;65(2):529–43.PubMedCrossRef
59.
go back to reference Yang Z, Li J, Feng GX, et al. MicroRNA-145 modulates N6-methy-ladenosine levels by targeting the 3’- untranslated mRNA region of the N6-methyladenosine binding YTH domain family 2 protein. J Biol Chem. 2017;292(9):3614–23.PubMedPubMedCentralCrossRef Yang Z, Li J, Feng GX, et al. MicroRNA-145 modulates N6-methy-ladenosine levels by targeting the 3’- untranslated mRNA region of the N6-methyladenosine binding YTH domain family 2 protein. J Biol Chem. 2017;292(9):3614–23.PubMedPubMedCentralCrossRef
60.
go back to reference Sun Y, Li S, Yu W, et al. N(6)-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer. Cell Death Dis. 2020;11:836.PubMedPubMedCentralCrossRef Sun Y, Li S, Yu W, et al. N(6)-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer. Cell Death Dis. 2020;11:836.PubMedPubMedCentralCrossRef
61.
go back to reference Nishizawa Y, Konno M, Asai A, et al. Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget. 2018;9(7):7476–86.PubMedCrossRef Nishizawa Y, Konno M, Asai A, et al. Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget. 2018;9(7):7476–86.PubMedCrossRef
62.
go back to reference Taketo K, Konno M, Asai A, et al. The epitranscriptome m6A writer METTL3 promotes chemo and radioresistance in pancreatic cancer cells. Int J Oncol. 2018;52:621–9.PubMed Taketo K, Konno M, Asai A, et al. The epitranscriptome m6A writer METTL3 promotes chemo and radioresistance in pancreatic cancer cells. Int J Oncol. 2018;52:621–9.PubMed
63.
go back to reference Wang S, Sun C, Li J, et al. Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Cancer Lett. 2017;408:112–20.PubMedCrossRef Wang S, Sun C, Li J, et al. Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Cancer Lett. 2017;408:112–20.PubMedCrossRef
64.
go back to reference Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 2014;8:284–96.PubMedPubMedCentralCrossRef Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 2014;8:284–96.PubMedPubMedCentralCrossRef
Metadata
Title
Recent advances of m6A methylation modification in esophageal squamous cell carcinoma
Authors
Xiaoqing Zhang
Ning Lu
Li Wang
Yixuan Wang
Minna Li
Ying Zhou
Manli Cui
Mingxin Zhang
Lingmin Zhang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-02132-2

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine