Skip to main content
Top
Published in: Cancer Cell International 1/2015

Open Access 01-12-2015 | Primary research

ESC reverses epithelial mesenchymal transition induced by transforming growth factor-β via inhibition of Smad signal pathway in HepG2 liver cancer cells

Authors: Xiao-Ni Liu, Shuang Wang, Qing Yang, Ya-Jie Wang, De-Xi Chen, Xiao-Xin Zhu

Published in: Cancer Cell International | Issue 1/2015

Login to get access

Abstract

Background

Epithelial mesenchymal transition (EMT) mediated by TGF-β pays an important role in malignant tumor acquired abilities of migration and invasion. Our previous study showed that the extract of Stellera chamaejasme L. (ESC) was against proliferation of a variety of tumor cells, but there were no studies in the effects of ESC on EMT in tumor cells. In this study, TGF-β was adopted to induce EMT in HepG2 cells and the influence of ESC on EMT was observed.

Methods

MTT assay was used to observe the cell viability. Wound healing assay and transwell assay were used to observe the migration and invasion activities. Western blot and immunofluorescence methods were used to observe the expression of proteins.

Results

We found that HepG2 cells induced by TGF-β showed mesenchymal morphology, down-regulation of epithelial marker E-cadherin and up-regulation of mesenchymal marker Vimentin, indicating that TGF-β could mediate epithelial mesenchymal induction in HepG2 cells. ESC could reverse the mesenchymal morphology and regulate expressions of marker proteins in HepG2 induced by TGF-β and significantly inhibit TGF-β induced HepG2 cell migration and invasion. We further found that ESC could also significantly depress Smad2 phosphorylation and nuclear translocation, and ESC had coordination with SB432542, a specific inhibitor of TβRI kinases.

Conclusions

These results suggested that the ESC could reverse epithelial mesenchymal transition induced by TGF-β via inhibition Smad2 signaling pathway.
Literature
1.
go back to reference Thiery JP, Acloque H, Huang YJR, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;5:871–90.CrossRef Thiery JP, Acloque H, Huang YJR, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;5:871–90.CrossRef
2.
go back to reference Scanlon CS, Van Tubergen EA, Inglehart RC, D’Silva NJ. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res. 2013;2:114–21.CrossRef Scanlon CS, Van Tubergen EA, Inglehart RC, D’Silva NJ. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res. 2013;2:114–21.CrossRef
3.
go back to reference Liu X, Xie L, Wang Y, Chen D, Zhu X. Advance of pharmacological studies on reversing epithelial-mesenchymal transition of tumors. Chin Pharmacol Bull. 2013;11:1481–5. Liu X, Xie L, Wang Y, Chen D, Zhu X. Advance of pharmacological studies on reversing epithelial-mesenchymal transition of tumors. Chin Pharmacol Bull. 2013;11:1481–5.
4.
go back to reference Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;6:1420–8.CrossRef Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;6:1420–8.CrossRef
5.
go back to reference Battaglia S, Benzoubir N, Nobilet S, Charneau P, Samuel D, Zignego AL, Atfi A, Bréchot C, Bourgeade MF. Liver cancer-derived Hepatitis C virus core proteins shift TGF-Beta responses from tumor suppression to epithelial-mesenchymal transition. PLoS One. 2009;2:e4355.CrossRef Battaglia S, Benzoubir N, Nobilet S, Charneau P, Samuel D, Zignego AL, Atfi A, Bréchot C, Bourgeade MF. Liver cancer-derived Hepatitis C virus core proteins shift TGF-Beta responses from tumor suppression to epithelial-mesenchymal transition. PLoS One. 2009;2:e4355.CrossRef
6.
go back to reference Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, Dijke P. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 1997;17:5353–62.CrossRef Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, Dijke P. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 1997;17:5353–62.CrossRef
7.
go back to reference Li J, Zhang JJ, Pang XX, ZhengChen XL, Gan LS. Biflavanones with anti-proliferative activity against eight human solid tumor cell lines from Stellera chamaejasme. Fitoterapia. 2014;93:163–7.CrossRefPubMed Li J, Zhang JJ, Pang XX, ZhengChen XL, Gan LS. Biflavanones with anti-proliferative activity against eight human solid tumor cell lines from Stellera chamaejasme. Fitoterapia. 2014;93:163–7.CrossRefPubMed
8.
go back to reference Yang D, Wang P, Ren X (2015) Apoptosis induced by chamaejasmine in human osteosarcoma cells through p53 pathway. Tumour Biol (Epub ahead of print). Yang D, Wang P, Ren X (2015) Apoptosis induced by chamaejasmine in human osteosarcoma cells through p53 pathway. Tumour Biol (Epub ahead of print).
9.
go back to reference Yang QX, Cheng MC, Wang L, Kan XX, Zhu XX, Xiao HB. Antitumor components screening of Stellera chamaejasme L. under the case of discrete distribution of active data. Yao Xue Xue Bao. 2014;6:927–31. Yang QX, Cheng MC, Wang L, Kan XX, Zhu XX, Xiao HB. Antitumor components screening of Stellera chamaejasme L. under the case of discrete distribution of active data. Yao Xue Xue Bao. 2014;6:927–31.
10.
go back to reference Zhang C, Zhou SS, Feng LY, Zhang DY, Lin NM, Zhang LH, Pan JP, Wang JB, Li J. In vitro anti-cancer activity of chamaejasmenin B and neochamaejasmin C isolated from the root of Stellera chamaejasme L. Acta Pharmacol Sin. 2013;2:262–70.CrossRef Zhang C, Zhou SS, Feng LY, Zhang DY, Lin NM, Zhang LH, Pan JP, Wang JB, Li J. In vitro anti-cancer activity of chamaejasmenin B and neochamaejasmin C isolated from the root of Stellera chamaejasme L. Acta Pharmacol Sin. 2013;2:262–70.CrossRef
11.
go back to reference Liu X, Zhu X. Stellera Chamaejasme L. extract induces apoptosis of human lung cancer cells via activation of the death receptor-dependent pathway. Exp Ther Med. 2012;4:605–10.PubMedCentralPubMed Liu X, Zhu X. Stellera Chamaejasme L. extract induces apoptosis of human lung cancer cells via activation of the death receptor-dependent pathway. Exp Ther Med. 2012;4:605–10.PubMedCentralPubMed
12.
go back to reference Liu X, Yang Q, Zhang G, Li Y, Chen Y, Weng X, Wang Y, Wang Y, Zhu X. Anti-tumor pharmacological evaluation of extracts from Stellera chamaejasme L. based on hollow fiber assay. BMC Complement Altern Med. 2014;14:116.PubMedCentralCrossRefPubMed Liu X, Yang Q, Zhang G, Li Y, Chen Y, Weng X, Wang Y, Wang Y, Zhu X. Anti-tumor pharmacological evaluation of extracts from Stellera chamaejasme L. based on hollow fiber assay. BMC Complement Altern Med. 2014;14:116.PubMedCentralCrossRefPubMed
13.
go back to reference Miyazono K. Transforming growth factor-b signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci. 2009;8:314–23.CrossRef Miyazono K. Transforming growth factor-b signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci. 2009;8:314–23.CrossRef
14.
go back to reference Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;6024:1559–64.CrossRef Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;6024:1559–64.CrossRef
15.
go back to reference Longo V, Brunetti O, D’Oronzo S, Ostuni C, Gatti P, Silvestris F. Bone metastases in hepatocellular carcinoma: an emerging issue. Cancer Metastasis. 2014;1:333–42. Longo V, Brunetti O, D’Oronzo S, Ostuni C, Gatti P, Silvestris F. Bone metastases in hepatocellular carcinoma: an emerging issue. Cancer Metastasis. 2014;1:333–42.
16.
go back to reference Li W, Kang Y. A new Lnc in metastasis: long noncoding RNA mediates the prometastatic functions of TGF-beta. Cancer Cell. 2014;5:557–9.CrossRef Li W, Kang Y. A new Lnc in metastasis: long noncoding RNA mediates the prometastatic functions of TGF-beta. Cancer Cell. 2014;5:557–9.CrossRef
17.
go back to reference Ru NY, Wu J, Chen ZN, Bian H. HAb18G/CD147 is involved in TGF-β-induced epithelial-mesenchymal transition and hepatocellular carcinoma invasion. Cell Biol Int. 2015;1:44–51.CrossRef Ru NY, Wu J, Chen ZN, Bian H. HAb18G/CD147 is involved in TGF-β-induced epithelial-mesenchymal transition and hepatocellular carcinoma invasion. Cell Biol Int. 2015;1:44–51.CrossRef
18.
go back to reference Fleming TP, Papenbrock T, Fesenko I, Hausen P, Sheth B. Assembly of tight junctions during early vertebrate development. Semin Cell Dev Biol. 2000;4:291–9.CrossRef Fleming TP, Papenbrock T, Fesenko I, Hausen P, Sheth B. Assembly of tight junctions during early vertebrate development. Semin Cell Dev Biol. 2000;4:291–9.CrossRef
19.
go back to reference Weinberg R. The biology of cancer. Garland Science; 2006. pp. 864. Weinberg R. The biology of cancer. Garland Science; 2006. pp. 864.
20.
go back to reference Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD. Introducing intermediate filaments: from discovery to disease. J Clin Invest. 2009;17:1763–71.CrossRef Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD. Introducing intermediate filaments: from discovery to disease. J Clin Invest. 2009;17:1763–71.CrossRef
21.
go back to reference Ogrodnik M, Salmonowicz H, Brown R, Turkowska J, Średniawa W, Pattabiraman S, Amen T, Abraham AC, Eichler N, Lyakhovetsky R, Kaganovich D. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of Vimentin. Proc Natl Acad Sci USA. 2014;22:8049–54.CrossRef Ogrodnik M, Salmonowicz H, Brown R, Turkowska J, Średniawa W, Pattabiraman S, Amen T, Abraham AC, Eichler N, Lyakhovetsky R, Kaganovich D. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of Vimentin. Proc Natl Acad Sci USA. 2014;22:8049–54.CrossRef
22.
go back to reference Ko H, So Y, Jeon H, Jeong MH, Choi HK, Ryu SH, Lee SW, Yoon HG, Choi KC. TGF-β1-induced epithelial-mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells. Cancer Lett. 2013;1:205–13.CrossRef Ko H, So Y, Jeon H, Jeong MH, Choi HK, Ryu SH, Lee SW, Yoon HG, Choi KC. TGF-β1-induced epithelial-mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells. Cancer Lett. 2013;1:205–13.CrossRef
23.
go back to reference Zi Z, Chapnick DA, Liu X. Dynamics of TGF-β/Smad signaling. FEBS Lett. 2012;14:1921–8.CrossRef Zi Z, Chapnick DA, Liu X. Dynamics of TGF-β/Smad signaling. FEBS Lett. 2012;14:1921–8.CrossRef
24.
go back to reference Liu LC, Tsao TC, Hsu SR, Wang HC, Tsai TC, Kao JY, Way TD. EGCG inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transition via the inhibition of Smad2 and Erk1/2 signaling pathways in nonsmall cell lung cancer cells. J Agric Food Chem. 2012;39:9863–73.CrossRef Liu LC, Tsao TC, Hsu SR, Wang HC, Tsai TC, Kao JY, Way TD. EGCG inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transition via the inhibition of Smad2 and Erk1/2 signaling pathways in nonsmall cell lung cancer cells. J Agric Food Chem. 2012;39:9863–73.CrossRef
25.
go back to reference Pang K, Ryan JF, Baxevanis AD, Martindale MQ. Evolution of the TGF-β signaling pathway and its potential role in the ctenophore, Mnemiopsisleidyi. PLoS One. 2011;9:e24152.CrossRef Pang K, Ryan JF, Baxevanis AD, Martindale MQ. Evolution of the TGF-β signaling pathway and its potential role in the ctenophore, Mnemiopsisleidyi. PLoS One. 2011;9:e24152.CrossRef
Metadata
Title
ESC reverses epithelial mesenchymal transition induced by transforming growth factor-β via inhibition of Smad signal pathway in HepG2 liver cancer cells
Authors
Xiao-Ni Liu
Shuang Wang
Qing Yang
Ya-Jie Wang
De-Xi Chen
Xiao-Xin Zhu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2015
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-015-0265-2

Other articles of this Issue 1/2015

Cancer Cell International 1/2015 Go to the issue

Reviewer acknowledgement

Thanking our 2014 reviewers

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine