Skip to main content
Top
Published in: BMC Pediatrics 1/2024

Open Access 01-12-2024 | Epilepsy | Case Report

Novel NARS2 variants in a patient with early-onset status epilepticus: case study and literature review

Authors: Nuo Yang, Limin Chen, Yanfeng Zhang, Xuemei Wu, Yunpeng Hao, Fan Yang, Zuozhen Yang, Jianmin Liang

Published in: BMC Pediatrics | Issue 1/2024

Login to get access

Abstract

Background

NARS2 as a member of aminoacyl-tRNA synthetases was necessary to covalently join a specific tRNA to its cognate amino acid. Biallelic variants in NARS2 were reported with disorders such as Leigh syndrome, deafness, epilepsy, and severe myopathy.

Case presentation

Detailed clinical phenotypes were collected and the NARS2 variants were discovered by whole exome sequencing and verified by Sanger sequencing. Additionally, 3D protein structure visualization was performed by UCSF Chimera. The proband in our study had early-onset status epilepticus with abnormal EEG and MRI results. She also performed global developmental delay (GDD) and myocardial dysfunction. Next-generation sequencing (NGS) and Sanger sequencing revealed compound heterozygous missense variants [NM_024678.6:exon14: c.1352G > A(p.Arg451His); c.707T > C(p.Phe236Ser)] of the NARS2 gene. The proband develops refractory epilepsy with GDD and hyperlactatemia. Unfortunately, she finally died for status seizures two months later.

Conclusion

We discovered two novel missense variants of NARS2 in a patient with early-onset status epilepticus and myocardial dysfunction. The NGS enables the patient to be clearly diagnosed as combined oxidative phosphorylation deficiency 24 (COXPD24, OMIM:616,239), and our findings expands the spectrum of gene variants in COXPD24.
Appendix
Available only for authorised users
Literature
1.
go back to reference Simon M, Richard EM, Wang X, Shahzad M, Huang VH, Qaiser TA, Potluri P, Mahl SE, Davila A, Nazli S, et al. Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome. PLoS Genet. 2015;11(3): e1005097.CrossRefPubMedPubMedCentral Simon M, Richard EM, Wang X, Shahzad M, Huang VH, Qaiser TA, Potluri P, Mahl SE, Davila A, Nazli S, et al. Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome. PLoS Genet. 2015;11(3): e1005097.CrossRefPubMedPubMedCentral
2.
go back to reference Bonnefond L, Fender A, Rudinger-Thirion J, Giegé R, Florentz C, Sissler M. Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS. Biochemistry. 2005;44(12):4805–16.CrossRefPubMed Bonnefond L, Fender A, Rudinger-Thirion J, Giegé R, Florentz C, Sissler M. Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS. Biochemistry. 2005;44(12):4805–16.CrossRefPubMed
3.
go back to reference Sofou K, Kollberg G, Holmström M, Dávila M, Darin N, Gustafsson CM, Holme E, Oldfors A, Tulinius M, Asin-Cayuela J. Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome. Mol Genet Genomic Med. 2015;3(1):59–68.CrossRefPubMed Sofou K, Kollberg G, Holmström M, Dávila M, Darin N, Gustafsson CM, Holme E, Oldfors A, Tulinius M, Asin-Cayuela J. Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome. Mol Genet Genomic Med. 2015;3(1):59–68.CrossRefPubMed
4.
go back to reference Vanlander AV, Menten B, Smet J, De Meirleir L, Sante T, De Paepe B, Seneca S, Pearce SF, Powell CA, Vergult S, et al. Two siblings with homozygous pathogenic splice-site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2). Hum Mutat. 2015;36(2):222–31.CrossRefPubMed Vanlander AV, Menten B, Smet J, De Meirleir L, Sante T, De Paepe B, Seneca S, Pearce SF, Powell CA, Vergult S, et al. Two siblings with homozygous pathogenic splice-site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2). Hum Mutat. 2015;36(2):222–31.CrossRefPubMed
5.
go back to reference Mizuguchi T, Nakashima M, Kato M, Yamada K, Okanishi T, Ekhilevitch N, Mandel H, Eran A, Toyono M, Sawaishi Y, et al. PARS2 and NARS2 mutations in infantile-onset neurodegenerative disorder. J Hum Genet. 2017;62(5):525–9.CrossRefPubMed Mizuguchi T, Nakashima M, Kato M, Yamada K, Okanishi T, Ekhilevitch N, Mandel H, Eran A, Toyono M, Sawaishi Y, et al. PARS2 and NARS2 mutations in infantile-onset neurodegenerative disorder. J Hum Genet. 2017;62(5):525–9.CrossRefPubMed
6.
go back to reference Seaver LH, DeRoos S, Andersen NJ, Betz B, Prokop J, Lannen N, Jordan R, Rajasekaran S. Lethal NARS2-related disorder associated with rapidly progressive intractable epilepsy and global brain atrophy. Pediatr Neurol. 2018;89:26–30.CrossRefPubMed Seaver LH, DeRoos S, Andersen NJ, Betz B, Prokop J, Lannen N, Jordan R, Rajasekaran S. Lethal NARS2-related disorder associated with rapidly progressive intractable epilepsy and global brain atrophy. Pediatr Neurol. 2018;89:26–30.CrossRefPubMed
7.
go back to reference Sofou K, Kollberg G, Hedberg-Oldfors C, Oldfors A. The phenotypic variability and natural history of NARS2 associated disease. Eur J Paediatr Neurol. 2021;31:31–7.CrossRefPubMed Sofou K, Kollberg G, Hedberg-Oldfors C, Oldfors A. The phenotypic variability and natural history of NARS2 associated disease. Eur J Paediatr Neurol. 2021;31:31–7.CrossRefPubMed
8.
go back to reference Štěrbová K, Vlčková M, Hansíková H, Sebroňová V, Sedláčková L, Pavlíček P, Laššuthová P. Novel variants in the NARS2 gene as a cause of infantile-onset severe epilepsy leading to fatal refractory status epilepticus: case study and literature review. Neurogenetics. 2021;22(4):359–64.CrossRefPubMed Štěrbová K, Vlčková M, Hansíková H, Sebroňová V, Sedláčková L, Pavlíček P, Laššuthová P. Novel variants in the NARS2 gene as a cause of infantile-onset severe epilepsy leading to fatal refractory status epilepticus: case study and literature review. Neurogenetics. 2021;22(4):359–64.CrossRefPubMed
9.
go back to reference Vafaee-Shahi M, Farhadi M, Razmara E, Morovvati S, Ghasemi S, Abedini SS, Bagher Z, Alizadeh R, Falah M. Novel phenotype and genotype spectrum of NARS2 and literature review of previous mutations. Ir J Med Sci. 2021;191(4):1877–90.CrossRefPubMed Vafaee-Shahi M, Farhadi M, Razmara E, Morovvati S, Ghasemi S, Abedini SS, Bagher Z, Alizadeh R, Falah M. Novel phenotype and genotype spectrum of NARS2 and literature review of previous mutations. Ir J Med Sci. 2021;191(4):1877–90.CrossRefPubMed
10.
go back to reference Abuín JM, Pichel JC, Pena TF, Amigo J. BigBWA: approaching the burrows-wheeler aligner to big data technologies. Bioinformatics. 2015;31(24):4003–5.CrossRefPubMed Abuín JM, Pichel JC, Pena TF, Amigo J. BigBWA: approaching the burrows-wheeler aligner to big data technologies. Bioinformatics. 2015;31(24):4003–5.CrossRefPubMed
11.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.CrossRefPubMedPubMedCentral McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.CrossRefPubMedPubMedCentral
12.
go back to reference Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.CrossRefPubMedPubMedCentral Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.CrossRefPubMedPubMedCentral
13.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–24.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–24.CrossRefPubMedPubMedCentral
14.
go back to reference Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.PubMed Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.PubMed
15.
go back to reference Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–w303.CrossRefPubMedPubMedCentral Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–w303.CrossRefPubMedPubMedCentral
16.
go back to reference Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.ADSCrossRefPubMedPubMedCentral Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.ADSCrossRefPubMedPubMedCentral
17.
go back to reference Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.CrossRefPubMed Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.CrossRefPubMed
18.
go back to reference Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.ADSCrossRefPubMedPubMedCentral Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.ADSCrossRefPubMedPubMedCentral
19.
go back to reference Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, Khera AV, Lowther C, Gauthier LD, Wang H, et al. A structural variation reference for medical and population genetics. Nature. 2020;581(7809):444–51.ADSCrossRefPubMedPubMedCentral Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, Khera AV, Lowther C, Gauthier LD, Wang H, et al. A structural variation reference for medical and population genetics. Nature. 2020;581(7809):444–51.ADSCrossRefPubMedPubMedCentral
20.
go back to reference Lee JS, Yoo T, Lee M, Lee Y, Jeon E, Kim SY, Lim BC, Kim KJ, Choi M, Chae JH. Genetic heterogeneity in Leigh syndrome: highlighting treatable and novel genetic causes. Clin Genet. 2020;97(4):586–94.CrossRefPubMed Lee JS, Yoo T, Lee M, Lee Y, Jeon E, Kim SY, Lim BC, Kim KJ, Choi M, Chae JH. Genetic heterogeneity in Leigh syndrome: highlighting treatable and novel genetic causes. Clin Genet. 2020;97(4):586–94.CrossRefPubMed
21.
go back to reference Palombo F, Graziano C, Al Wardy N, Nouri N, Marconi C, Magini P, et al. Autozygosity-driven genetic diagnosis in consanguineous families from Italy and the Greater Middle East. Hum Genet. 2020;139(11):1429–41.CrossRefPubMed Palombo F, Graziano C, Al Wardy N, Nouri N, Marconi C, Magini P, et al. Autozygosity-driven genetic diagnosis in consanguineous families from Italy and the Greater Middle East. Hum Genet. 2020;139(11):1429–41.CrossRefPubMed
22.
go back to reference Zhang Y, Zhao X, Xu Y, Chen L, Li N, Yao R, Wang X, Wang J, Yu T. Study of novel NARS2 variants in patient of combined oxidative phosphorylation deficiency 24. Transl Pediatr. 2022;11(4):448–57.CrossRefPubMedPubMedCentral Zhang Y, Zhao X, Xu Y, Chen L, Li N, Yao R, Wang X, Wang J, Yu T. Study of novel NARS2 variants in patient of combined oxidative phosphorylation deficiency 24. Transl Pediatr. 2022;11(4):448–57.CrossRefPubMedPubMedCentral
23.
go back to reference Yagasaki H, Sano F, Narusawa H, Watanabe D, Kaga Y, Kobayashi K, Asano Y, Nagata M, Yonei A, Inukai T. Compound heterozygous variants of the NARS2 gene in siblings with developmental delay, epilepsy, and neonatal diabetes syndrome. Am J Med Genet A. 2022;188(8):2466–71.CrossRefPubMed Yagasaki H, Sano F, Narusawa H, Watanabe D, Kaga Y, Kobayashi K, Asano Y, Nagata M, Yonei A, Inukai T. Compound heterozygous variants of the NARS2 gene in siblings with developmental delay, epilepsy, and neonatal diabetes syndrome. Am J Med Genet A. 2022;188(8):2466–71.CrossRefPubMed
24.
go back to reference Yang Z, Cao J, Song Y, Li S, Jiao Z, Ren S, Gao X, Zhang S, Liu J, Chen Y. Whole-exome sequencing identified novel variants in three Chinese Leigh syndrome pedigrees. Am J Med Genet A. 2022;188(4):1214–25.CrossRefPubMed Yang Z, Cao J, Song Y, Li S, Jiao Z, Ren S, Gao X, Zhang S, Liu J, Chen Y. Whole-exome sequencing identified novel variants in three Chinese Leigh syndrome pedigrees. Am J Med Genet A. 2022;188(4):1214–25.CrossRefPubMed
25.
go back to reference Tanaka R, Takeguchi R, Kuroda M, Suzuki N, Makita Y, Yanagi K, Kaname T, Takahashi S. Novel NARS2 variant causing leigh syndrome with normal lactate levels. Hum Genome Var. 2022;9(1):12.CrossRefPubMedPubMedCentral Tanaka R, Takeguchi R, Kuroda M, Suzuki N, Makita Y, Yanagi K, Kaname T, Takahashi S. Novel NARS2 variant causing leigh syndrome with normal lactate levels. Hum Genome Var. 2022;9(1):12.CrossRefPubMedPubMedCentral
26.
go back to reference Al-Sharif F, Alsadeq H, Rozan A, Halabi MB, Badwilan H, Mohammed AA, Rahman M, Balgith T. Bilateral nonsyndromic sensorineural hearing loss caused by a NARS2 mutation. Cureus. 2022;14(11):e31467.PubMedPubMedCentral Al-Sharif F, Alsadeq H, Rozan A, Halabi MB, Badwilan H, Mohammed AA, Rahman M, Balgith T. Bilateral nonsyndromic sensorineural hearing loss caused by a NARS2 mutation. Cureus. 2022;14(11):e31467.PubMedPubMedCentral
27.
go back to reference Cokyaman T, Cetin H, Dogan D, Silan F. A new entity in the NARS2 variant: the first reported case of type 1 diabetes mellitus associated with the phenotype. J Trop Pediatr. 2022;69(1):fmac108.CrossRefPubMed Cokyaman T, Cetin H, Dogan D, Silan F. A new entity in the NARS2 variant: the first reported case of type 1 diabetes mellitus associated with the phenotype. J Trop Pediatr. 2022;69(1):fmac108.CrossRefPubMed
28.
go back to reference Hu W, Fang H, Peng Y, Li L, Guo D, Tang J, Yi J, Liu Q, Qin W, Wu L, et al. Clinical and genetic analyses of premature mitochondrial encephalopathy with epilepsia partialis continua caused by novel biallelic NARS2 mutations. Front Neurosci. 2022;16: 1076183.CrossRefPubMedPubMedCentral Hu W, Fang H, Peng Y, Li L, Guo D, Tang J, Yi J, Liu Q, Qin W, Wu L, et al. Clinical and genetic analyses of premature mitochondrial encephalopathy with epilepsia partialis continua caused by novel biallelic NARS2 mutations. Front Neurosci. 2022;16: 1076183.CrossRefPubMedPubMedCentral
29.
go back to reference Fine AS, Nemeth CL, Kaufman ML, Fatemi A. Mitochondrial aminoacyl-tRNA synthetase disorders: an emerging group of developmental disorders of myelination. J Neurodev Disord. 2019;11(1):29.CrossRefPubMedPubMedCentral Fine AS, Nemeth CL, Kaufman ML, Fatemi A. Mitochondrial aminoacyl-tRNA synthetase disorders: an emerging group of developmental disorders of myelination. J Neurodev Disord. 2019;11(1):29.CrossRefPubMedPubMedCentral
31.
go back to reference Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R. Reviving mitochondrial bioenergetics: a relevant approach in epilepsy. Mitochondrion. 2021;58:213–26.CrossRefPubMed Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R. Reviving mitochondrial bioenergetics: a relevant approach in epilepsy. Mitochondrion. 2021;58:213–26.CrossRefPubMed
32.
go back to reference Götz A, Tyynismaa H, Euro L, Ellonen P, Hyötyläinen T, Ojala T, Hämäläinen RH, Tommiska J, Raivio T, Oresic M, et al. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet. 2011;88(5):635–42.CrossRefPubMedPubMedCentral Götz A, Tyynismaa H, Euro L, Ellonen P, Hyötyläinen T, Ojala T, Hämäläinen RH, Tommiska J, Raivio T, Oresic M, et al. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet. 2011;88(5):635–42.CrossRefPubMedPubMedCentral
33.
go back to reference Ardissone A, Tonduti D, Legati A, Lamantea E, Barone R, Dorboz I, Boespflug-Tanguy O, Nebbia G, Maggioni M, Garavaglia B, et al. KARS-related diseases: progressive leukoencephalopathy with brainstem and spinal cord calcifications as new phenotype and a review of literature. Orphanet J Rare Dis. 2018;13(1):45.CrossRefPubMedPubMedCentral Ardissone A, Tonduti D, Legati A, Lamantea E, Barone R, Dorboz I, Boespflug-Tanguy O, Nebbia G, Maggioni M, Garavaglia B, et al. KARS-related diseases: progressive leukoencephalopathy with brainstem and spinal cord calcifications as new phenotype and a review of literature. Orphanet J Rare Dis. 2018;13(1):45.CrossRefPubMedPubMedCentral
34.
go back to reference Seneca S, Goemans N, Van Coster R, Givron P, Reybrouck T, Sciot R, Meulemans A, Smet J, Van Hove JL. A mitochondrial tRNA aspartate mutation causing isolated mitochondrial myopathy. Am J Med Genet A. 2005;137(2):170–5.CrossRefPubMed Seneca S, Goemans N, Van Coster R, Givron P, Reybrouck T, Sciot R, Meulemans A, Smet J, Van Hove JL. A mitochondrial tRNA aspartate mutation causing isolated mitochondrial myopathy. Am J Med Genet A. 2005;137(2):170–5.CrossRefPubMed
35.
36.
go back to reference Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry. 2012;51(44):8705–29.CrossRefPubMed Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry. 2012;51(44):8705–29.CrossRefPubMed
37.
go back to reference Bullwinkle TJ, Ibba M. Emergence and Evolution. In: Aminoacyl-tRNA Synthetases in Biology and Medicine edn. Edited by Kim S. Dordrecht: Springer Netherlands; 2014: 43–87. Bullwinkle TJ, Ibba M. Emergence and Evolution. In: Aminoacyl-tRNA Synthetases in Biology and Medicine edn. Edited by Kim S. Dordrecht: Springer Netherlands; 2014: 43–87.
Metadata
Title
Novel NARS2 variants in a patient with early-onset status epilepticus: case study and literature review
Authors
Nuo Yang
Limin Chen
Yanfeng Zhang
Xuemei Wu
Yunpeng Hao
Fan Yang
Zuozhen Yang
Jianmin Liang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2024
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-024-04553-0

Other articles of this Issue 1/2024

BMC Pediatrics 1/2024 Go to the issue