Skip to main content
Top
Published in: European Journal of Medical Research 1/2024

Open Access 01-12-2024 | Epilepsy | Research

Identification of potential crucial genes and therapeutic targets for epilepsy

Authors: Shitao Wang, Zhenrong Xie, Tian Jun, Xuelu Ma, Mengen Zhang, Feng Rao, Hui Xu, Jinghong Lu, Xiangqian Ding, Zongyou Li

Published in: European Journal of Medical Research | Issue 1/2024

Login to get access

Abstract

Background

Epilepsy, a central neurological disorder, has a complex genetic architecture. There is some evidence suggesting that genetic factors play a role in both the occurrence of epilepsy and its treatment. However, the genetic determinants of epilepsy are largely unknown. This study aimed to identify potential therapeutic targets for epilepsy.

Methods

Differentially expressed genes (DEGs) were extracted from the expression profiles of GSE44031 and GSE1834. Gene co-expression analysis was used to confirm the regulatory relationship between newly discovered epilepsy candidate genes and known epilepsy genes. Expression quantitative trait loci analysis was conducted to determine if epilepsy risk single-nucleotide polymorphisms regulate DEGs’ expression in human brain tissue. Finally, protein–protein interaction analysis and drug–gene interaction analysis were performed to assess the role of DEGs in epilepsy treatment.

Results

The study found that the protein tyrosine phosphatase receptor-type O gene (PTPRO) and the growth arrest and DNA damage inducible alpha gene (GADD45A) were significantly upregulated in epileptic rats compared to controls in both datasets. Gene co-expression analysis revealed that PTPRO was co-expressed with RBP4, NDN, PAK3, FOXG1, IDS, and IDS, and GADD45A was co-expressed with LRRK2 in human brain tissue. Expression quantitative trait loci analysis suggested that epilepsy risk single-nucleotide polymorphisms could be responsible for the altered PTPRO and GADD45A expression in human brain tissue. Moreover, the protein encoded by GADD45A had a direct interaction with approved antiepileptic drug targets, and GADD45A interacts with genistein and cisplatin.

Conclusions

The results of this study highlight PTPRO and GADD45A as potential genes for the diagnosis and treatment of epilepsy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia. 2010;51(5):883–90.PubMedPubMedCentralCrossRef Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia. 2010;51(5):883–90.PubMedPubMedCentralCrossRef
2.
go back to reference Avanzini G, Franceschetti S. Cellular biology of epileptogenesis. Lancet Neurol. 2003;2(1):33–42.PubMedCrossRef Avanzini G, Franceschetti S. Cellular biology of epileptogenesis. Lancet Neurol. 2003;2(1):33–42.PubMedCrossRef
3.
go back to reference Pitkänen A, Sutula TP. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 2002;1(3):173–81.PubMedCrossRef Pitkänen A, Sutula TP. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 2002;1(3):173–81.PubMedCrossRef
4.
5.
6.
go back to reference Helbig I, Scheffer IE, Mulley JC, Berkovic SF. Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurol. 2008;7(3):231–45.PubMedCrossRef Helbig I, Scheffer IE, Mulley JC, Berkovic SF. Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurol. 2008;7(3):231–45.PubMedCrossRef
8.
go back to reference Epi4K Consortium. Epi4K: gene discovery in 4,000 genomes. Epilepsia. 2012;53(8):1457–67.CrossRef Epi4K Consortium. Epi4K: gene discovery in 4,000 genomes. Epilepsia. 2012;53(8):1457–67.CrossRef
9.
go back to reference Dibbens LM, Heron SE, Mulley JC. A polygenic heterogeneity model for common epilepsies with complex genetics. Genes Brain Behav. 2007;6(7):593–7.PubMedCrossRef Dibbens LM, Heron SE, Mulley JC. A polygenic heterogeneity model for common epilepsies with complex genetics. Genes Brain Behav. 2007;6(7):593–7.PubMedCrossRef
10.
go back to reference International League Against Epilepsy Consortium on Complex Epilepsies. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 2014;13(9):893–903.CrossRef International League Against Epilepsy Consortium on Complex Epilepsies. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 2014;13(9):893–903.CrossRef
11.
go back to reference International League Against Epilepsy Consortium on Complex Epilepsies. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nat Genet. 2023;55(9):1471–82.CrossRef International League Against Epilepsy Consortium on Complex Epilepsies. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nat Genet. 2023;55(9):1471–82.CrossRef
12.
13.
go back to reference Mirza N, Appleton R, Burn S, du Plessis D, Duncan R, Farah JO, et al. Genetic regulation of gene expression in the epileptic human hippocampus. Hum Mol Genet. 2017;26(9):1759–69.PubMedPubMedCentralCrossRef Mirza N, Appleton R, Burn S, du Plessis D, Duncan R, Farah JO, et al. Genetic regulation of gene expression in the epileptic human hippocampus. Hum Mol Genet. 2017;26(9):1759–69.PubMedPubMedCentralCrossRef
14.
go back to reference Lu M, Feng R, Zhang C, Xiao Y, Yin C. Identifying novel drug targets for Epilepsy through a Brain Transcriptome-Wide Association Study and Protein-Wide Association Study with chemical-gene-interaction analysis. Mol Neurobiol. 2023;60(9):5055–66.PubMedPubMedCentralCrossRef Lu M, Feng R, Zhang C, Xiao Y, Yin C. Identifying novel drug targets for Epilepsy through a Brain Transcriptome-Wide Association Study and Protein-Wide Association Study with chemical-gene-interaction analysis. Mol Neurobiol. 2023;60(9):5055–66.PubMedPubMedCentralCrossRef
15.
go back to reference Rawat C, Kushwaha S, Srivastava AK, Kukreti R. Peripheral blood gene expression signatures associated with epilepsy and its etiologic classification. Genomics. 2020;112(1):218–24.PubMedCrossRef Rawat C, Kushwaha S, Srivastava AK, Kukreti R. Peripheral blood gene expression signatures associated with epilepsy and its etiologic classification. Genomics. 2020;112(1):218–24.PubMedCrossRef
16.
go back to reference International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat Commun. 2018;9(1):5269.CrossRef International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat Commun. 2018;9(1):5269.CrossRef
17.
go back to reference Kullmann DM, Schorge S, Walker MC, Wykes RC. Gene therapy in epilepsy-is it time for clinical trials? Nat Rev Neurol. 2014;10(5):300–4.PubMedCrossRef Kullmann DM, Schorge S, Walker MC, Wykes RC. Gene therapy in epilepsy-is it time for clinical trials? Nat Rev Neurol. 2014;10(5):300–4.PubMedCrossRef
18.
go back to reference Deng JL, Xu YH, Wang G. Identification of potential crucial genes and key pathways in breast cancer using bioinformatic analysis. Front Genet. 2019;10:695.PubMedPubMedCentralCrossRef Deng JL, Xu YH, Wang G. Identification of potential crucial genes and key pathways in breast cancer using bioinformatic analysis. Front Genet. 2019;10:695.PubMedPubMedCentralCrossRef
19.
go back to reference Ceylan H. Identification of hub genes associated with obesity-induced hepatocellular carcinoma risk based on integrated bioinformatics analysis. Med Oncol. 2021;38(6):63.PubMedCrossRef Ceylan H. Identification of hub genes associated with obesity-induced hepatocellular carcinoma risk based on integrated bioinformatics analysis. Med Oncol. 2021;38(6):63.PubMedCrossRef
20.
go back to reference Ma L, Lu H, Chen R, Wu M, Jin Y, Zhang J, et al. Identification of key genes and potential new biomarkers for ovarian aging: a study based on RNA-sequencing data. Front Genet. 2020;11: 590660.PubMedPubMedCentralCrossRef Ma L, Lu H, Chen R, Wu M, Jin Y, Zhang J, et al. Identification of key genes and potential new biomarkers for ovarian aging: a study based on RNA-sequencing data. Front Genet. 2020;11: 590660.PubMedPubMedCentralCrossRef
21.
go back to reference Ceylan H. Integrated bioinformatics analysis to identify alternative therapeutic targets for Alzheimer’s disease: insights from a synaptic machinery perspective. J Mol Neurosci. 2022;72(2):273–86.PubMedCrossRef Ceylan H. Integrated bioinformatics analysis to identify alternative therapeutic targets for Alzheimer’s disease: insights from a synaptic machinery perspective. J Mol Neurosci. 2022;72(2):273–86.PubMedCrossRef
22.
go back to reference Friedman LK, Mancuso J, Patel A, Kudur V, Leheste JR, Iacobas S, et al. Transcriptome profiling of hippocampal CA1 after early-life seizure-induced preconditioning may elucidate new genetic therapies for epilepsy. Eur J Neurosci. 2013;38(1):2139–52.PubMedPubMedCentralCrossRef Friedman LK, Mancuso J, Patel A, Kudur V, Leheste JR, Iacobas S, et al. Transcriptome profiling of hippocampal CA1 after early-life seizure-induced preconditioning may elucidate new genetic therapies for epilepsy. Eur J Neurosci. 2013;38(1):2139–52.PubMedPubMedCentralCrossRef
23.
go back to reference Wilson DN, Chung H, Elliott RC, Bremer E, George D, Koh S. Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci. 2005;25(3):285–98.PubMedCrossRef Wilson DN, Chung H, Elliott RC, Bremer E, George D, Koh S. Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci. 2005;25(3):285–98.PubMedCrossRef
24.
go back to reference Freytag S, Burgess R, Oliver KL, Bahlo M. brain-coX: investigating and visualising gene co-expression in seven human brain transcriptomic datasets. Genome Med. 2017;9(1):55.PubMedPubMedCentralCrossRef Freytag S, Burgess R, Oliver KL, Bahlo M. brain-coX: investigating and visualising gene co-expression in seven human brain transcriptomic datasets. Genome Med. 2017;9(1):55.PubMedPubMedCentralCrossRef
25.
go back to reference Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014;17:1418–28.PubMedPubMedCentralCrossRef Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014;17:1418–28.PubMedPubMedCentralCrossRef
26.
go back to reference Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.PubMedCrossRef Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.PubMedCrossRef
27.
go back to reference Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020;48(D1):D1031–41.PubMed Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020;48(D1):D1031–41.PubMed
28.
go back to reference von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61.CrossRef von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61.CrossRef
29.
go back to reference Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics. 2014;47:1–24.CrossRef Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics. 2014;47:1–24.CrossRef
30.
go back to reference Cotto KC, Wagner AH, Feng YY, Kiwala S, Coffman AC, Spies G, et al. DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucleic Acids Res. 2018;46(D1):D1068–73.PubMedCrossRef Cotto KC, Wagner AH, Feng YY, Kiwala S, Coffman AC, Spies G, et al. DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucleic Acids Res. 2018;46(D1):D1068–73.PubMedCrossRef
31.
go back to reference Wang M, Yu J, Xiao X, Zhang B, Tang J. Changes of biochemical biomarkers in the serum of children with convulsion status epilepticus: a prospective study. BMC Neurol. 2022;22(1):196.PubMedPubMedCentralCrossRef Wang M, Yu J, Xiao X, Zhang B, Tang J. Changes of biochemical biomarkers in the serum of children with convulsion status epilepticus: a prospective study. BMC Neurol. 2022;22(1):196.PubMedPubMedCentralCrossRef
32.
go back to reference Lipponen A, Paananen J, Puhakka N, Pitkänen A. Analysis of post-traumatic brain injury gene expression signature reveals tubulins, Nfe2l2, Nfkb, Cd44, and S100a4 as treatment targets. Sci Rep. 2016;6:31570.PubMedPubMedCentralCrossRef Lipponen A, Paananen J, Puhakka N, Pitkänen A. Analysis of post-traumatic brain injury gene expression signature reveals tubulins, Nfe2l2, Nfkb, Cd44, and S100a4 as treatment targets. Sci Rep. 2016;6:31570.PubMedPubMedCentralCrossRef
33.
go back to reference Wang J, Lin ZJ, Liu L, Xu HQ, Shi YW, Yi YH, et al. Epilepsy-associated genes. Seizure. 2017;44:11–20.PubMedCrossRef Wang J, Lin ZJ, Liu L, Xu HQ, Shi YW, Yi YH, et al. Epilepsy-associated genes. Seizure. 2017;44:11–20.PubMedCrossRef
34.
go back to reference Wang S, Zhang X, Zhou L, Wu Q, Han Y. Analysis of GABRG2 C588T polymorphism in genetic epilepsy and evaluation of GABRG2 in drug treatment. Clin Transl Sci. 2021;14(5):1725–33.PubMedPubMedCentralCrossRef Wang S, Zhang X, Zhou L, Wu Q, Han Y. Analysis of GABRG2 C588T polymorphism in genetic epilepsy and evaluation of GABRG2 in drug treatment. Clin Transl Sci. 2021;14(5):1725–33.PubMedPubMedCentralCrossRef
35.
go back to reference Wang S, Zhou L, He C, Wang D, Cai X, Yu Y, et al. The association between STX1B polymorphisms and treatment response in patients with Epilepsy. Front Pharmacol. 2021;12: 701575.PubMedPubMedCentralCrossRef Wang S, Zhou L, He C, Wang D, Cai X, Yu Y, et al. The association between STX1B polymorphisms and treatment response in patients with Epilepsy. Front Pharmacol. 2021;12: 701575.PubMedPubMedCentralCrossRef
36.
go back to reference Jiang W, Wei M, Liu M, Pan Y, Cao D, Yang X, et al. Identification of Protein Tyrosine Phosphatase Receptor Type O (PTPRO) as a synaptic adhesion molecule that promotes synapse formation. J Neurosci. 2017;37(41):9828–43.PubMedPubMedCentralCrossRef Jiang W, Wei M, Liu M, Pan Y, Cao D, Yang X, et al. Identification of Protein Tyrosine Phosphatase Receptor Type O (PTPRO) as a synaptic adhesion molecule that promotes synapse formation. J Neurosci. 2017;37(41):9828–43.PubMedPubMedCentralCrossRef
37.
go back to reference Gonzalez-Brito MR, Bixby JL. Protein tyrosine phosphatase receptor type O regulates development and function of the sensory nervous system. Mol Cell Neurosci. 2009;42(4):458–65.PubMedPubMedCentralCrossRef Gonzalez-Brito MR, Bixby JL. Protein tyrosine phosphatase receptor type O regulates development and function of the sensory nervous system. Mol Cell Neurosci. 2009;42(4):458–65.PubMedPubMedCentralCrossRef
38.
go back to reference LeBlanc M, Kulle B, Sundet K, Agartz I, Melle I, Djurovic S, et al. Genome-wide study identifies PTPRO and WDR72 and FOXQ1-SUMO1P1 interaction associated with neurocognitive function. J Psychiatr Res. 2012;46(2):271–8.PubMedCrossRef LeBlanc M, Kulle B, Sundet K, Agartz I, Melle I, Djurovic S, et al. Genome-wide study identifies PTPRO and WDR72 and FOXQ1-SUMO1P1 interaction associated with neurocognitive function. J Psychiatr Res. 2012;46(2):271–8.PubMedCrossRef
39.
go back to reference Matsunaga E, Nambu S, Oka M, Iriki A. Comparative analysis of developmentally regulated expressions of Gadd45a, Gadd45b, and Gadd45g in the mouse and marmoset cerebral cortex. Neuroscience. 2015;284:566–80.PubMedCrossRef Matsunaga E, Nambu S, Oka M, Iriki A. Comparative analysis of developmentally regulated expressions of Gadd45a, Gadd45b, and Gadd45g in the mouse and marmoset cerebral cortex. Neuroscience. 2015;284:566–80.PubMedCrossRef
40.
41.
go back to reference Chakraborty C, Doss CGP, Chen L, Zhu H. Evaluating Protein-protein Interaction (PPI) networks for diseases pathway, target discovery, and drug-design using ‘In silico Pharmacology.’ Curr Protein Pept Sci. 2014;15(6):561–71.PubMedCrossRef Chakraborty C, Doss CGP, Chen L, Zhu H. Evaluating Protein-protein Interaction (PPI) networks for diseases pathway, target discovery, and drug-design using ‘In silico Pharmacology.’ Curr Protein Pept Sci. 2014;15(6):561–71.PubMedCrossRef
42.
go back to reference Amiri Gheshlaghi S, Mohammad Jafari R, Algazo M, Rahimi N, Alshaib H, Dehpour AR. Genistein modulation of seizure: involvement of estrogen and serotonin receptors. J Nat Med. 2017;71(3):537–44.PubMedCrossRef Amiri Gheshlaghi S, Mohammad Jafari R, Algazo M, Rahimi N, Alshaib H, Dehpour AR. Genistein modulation of seizure: involvement of estrogen and serotonin receptors. J Nat Med. 2017;71(3):537–44.PubMedCrossRef
43.
go back to reference Elsayed AA, Menze ET, Tadros MG, Ibrahim BMM, Sabri NA, Khalifa AE. Effects of genistein on pentylenetetrazole-induced behavioral and neurochemical deficits in ovariectomized rats. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(1):27–36.PubMedCrossRef Elsayed AA, Menze ET, Tadros MG, Ibrahim BMM, Sabri NA, Khalifa AE. Effects of genistein on pentylenetetrazole-induced behavioral and neurochemical deficits in ovariectomized rats. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(1):27–36.PubMedCrossRef
44.
go back to reference Cattaneo MT, Filipazzi V, Piazza E, Damiani E, Mancarella G. Transient blindness and seizure associated with cisplatin therapy. J Cancer Res Clin Oncol. 1988;114(5):528–30.PubMedCrossRef Cattaneo MT, Filipazzi V, Piazza E, Damiani E, Mancarella G. Transient blindness and seizure associated with cisplatin therapy. J Cancer Res Clin Oncol. 1988;114(5):528–30.PubMedCrossRef
45.
go back to reference Dana R, Spartacus RK, Mutha S, Bhat P. Seizure following chemotherapy (paclitaxel and cisplatin) in a patient of carcinoma cervix. Indian J Pharmacol. 2016;48(6):736–8.PubMedPubMedCentralCrossRef Dana R, Spartacus RK, Mutha S, Bhat P. Seizure following chemotherapy (paclitaxel and cisplatin) in a patient of carcinoma cervix. Indian J Pharmacol. 2016;48(6):736–8.PubMedPubMedCentralCrossRef
46.
go back to reference Riaz M, Abbasi MH, Sheikh N, Saleem T, Virk AO. GABRA1 and GABRA6 gene mutations in idiopathic generalized epilepsy patients. Seizure. 2021;93:88–94.PubMedCrossRef Riaz M, Abbasi MH, Sheikh N, Saleem T, Virk AO. GABRA1 and GABRA6 gene mutations in idiopathic generalized epilepsy patients. Seizure. 2021;93:88–94.PubMedCrossRef
47.
go back to reference Kaminski VL, Kulmann-Leal B, Tyska-Nunes GL, Beltrame BP, Riesgo RDS, Schüler-Faccini L, et al. Association between NKG2/KLR gene variants and epilepsy in Autism Spectrum Disorder. J Neuroimmunol. 2023;381: 578132.PubMedCrossRef Kaminski VL, Kulmann-Leal B, Tyska-Nunes GL, Beltrame BP, Riesgo RDS, Schüler-Faccini L, et al. Association between NKG2/KLR gene variants and epilepsy in Autism Spectrum Disorder. J Neuroimmunol. 2023;381: 578132.PubMedCrossRef
Metadata
Title
Identification of potential crucial genes and therapeutic targets for epilepsy
Authors
Shitao Wang
Zhenrong Xie
Tian Jun
Xuelu Ma
Mengen Zhang
Feng Rao
Hui Xu
Jinghong Lu
Xiangqian Ding
Zongyou Li
Publication date
01-12-2024
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2024
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-024-01643-8

Other articles of this Issue 1/2024

European Journal of Medical Research 1/2024 Go to the issue