Skip to main content
Top
Published in: Neuroinformatics 3/2022

Open Access 01-07-2022 | Epilepsy | Data Original Article

A Practical Workflow for Organizing Clinical Intraoperative and Long-term iEEG Data in BIDS

Authors: Matteo Demuru, Dorien van Blooijs, Willemiek Zweiphenning, Dora Hermes, Frans Leijten, Maeike Zijlmans, on behalf of the RESPect group

Published in: Neuroinformatics | Issue 3/2022

Login to get access

Abstract

The neuroscience community increasingly uses the Brain Imaging Data Structure (BIDS) to organize data, extending from MRI to electrophysiology data. While automated tools and workflows are developed that help organize MRI data from the scanner to BIDS, these workflows are lacking for clinical intracranial EEG (iEEG data). We present a practical workflow on how to organize full clinical iEEG epilepsy data into BIDS. We present electrophysiological datasets recorded from twelve subjects who underwent intracranial monitoring followed by resective epilepsy surgery at the University Medical Center Utrecht, the Netherlands, and became seizure-free after surgery. These data include intraoperative electrocorticography recordings from six patients, long-term electrocorticography recordings from three patients and stereo-encephalography recordings from three patients. We describe the 6 steps in the pipeline that are essential to structure the data from these clinical iEEG recordings into BIDS and the challenges during this process. These proposed workflow enable centers performing clinical iEEG recordings to structure their data to improve accessibility, reusability and interoperability of clinical data.
Literature
go back to reference Branco, M. P., et al. (2018). ALICE: A tool for automatic localization of intra-cranial electrodes for clinical and high-density grids. Journal of Neuroscience Methods, 301, 43–51.CrossRef Branco, M. P., et al. (2018). ALICE: A tool for automatic localization of intra-cranial electrodes for clinical and high-density grids. Journal of Neuroscience Methods, 301, 43–51.CrossRef
go back to reference Choudhury, S., Fishman, J. R., McGowan, M. L., & Juengst, E. T. (2014). Big data, open science and the brain: Lessons learned from genomics. Frontiers in Human Neuroscience, 8, 239.CrossRef Choudhury, S., Fishman, J. R., McGowan, M. L., & Juengst, E. T. (2014). Big data, open science and the brain: Lessons learned from genomics. Frontiers in Human Neuroscience, 8, 239.CrossRef
go back to reference Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53, 1–15.CrossRef Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53, 1–15.CrossRef
go back to reference Fischl, B. (2012) FreeSurfer. Neuroimage 62, 774–781. Fischl, B. (2012) FreeSurfer. Neuroimage 62, 774–781.
go back to reference Gorgolewski, K. J., et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3, 160044.CrossRef Gorgolewski, K. J., et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3, 160044.CrossRef
go back to reference Gorgolewski, K. J., et al. (2017). BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Computational Biology, 13, e1005209.CrossRef Gorgolewski, K. J., et al. (2017). BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Computational Biology, 13, e1005209.CrossRef
go back to reference Groothuysen, D. (2019). Guiding the neurosurgeon in resective epilepsy surgery. University of Twente. Groothuysen, D.  (2019). Guiding the neurosurgeon in resective epilepsy surgery. University of Twente.
go back to reference Halchenko, Y. O. & Others. (2018). Open Source Software: Heudiconv. Zenodo, 10. Halchenko, Y. O. & Others. (2018). Open Source Software: Heudiconv. Zenodo, 10.
go back to reference Hermes, D., Miller, K. J., Noordmans, H. J., Vansteensel, M. J., & Ramsey, N. F. (2010). Automated electrocorticographic electrode localization on individually rendered brain surfaces. Journal of Neuroscience Methods, 185, 293–298.CrossRef Hermes, D., Miller, K. J., Noordmans, H. J., Vansteensel, M. J., & Ramsey, N. F. (2010). Automated electrocorticographic electrode localization on individually rendered brain surfaces. Journal of Neuroscience Methods, 185, 293–298.CrossRef
go back to reference Holdgraf, C., et al. (2019). iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Scientific Data, 6, 102.CrossRef Holdgraf, C., et al. (2019). iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Scientific Data, 6, 102.CrossRef
go back to reference Klein, A., & Tourville, J. (2012). 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol. Frontiers in Neuroscience vol. 6. Klein, A., & Tourville, J. (2012). 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol. Frontiers in Neuroscience vol. 6.
go back to reference Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for neuroimaging data analysis: DICOM to NIfTI conversion. Journal of Neuroscience Methods, 264, 47–56.CrossRef Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for neuroimaging data analysis: DICOM to NIfTI conversion. Journal of Neuroscience Methods, 264, 47–56.CrossRef
go back to reference Niso, G., et al. (2018). MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 5, 180110.CrossRef Niso, G., et al. (2018). MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 5, 180110.CrossRef
go back to reference Pernet, C. R., et al. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data, 6, 103.CrossRef Pernet, C. R., et al. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data, 6, 103.CrossRef
go back to reference van Blooijs, D., Leijten, F. S. S., van Rijen, P. C., Meijer, H. G. E., & Huiskamp, G. J. M. (2018). Evoked directional network characteristics of epileptogenic tissue derived from single pulse electrical stimulation. Human Brain Mapping, 39, 4611–4622.CrossRef van Blooijs, D., Leijten, F. S. S., van Rijen, P. C., Meijer, H. G. E., & Huiskamp, G. J. M. (2018). Evoked directional network characteristics of epileptogenic tissue derived from single pulse electrical stimulation. Human Brain Mapping, 39, 4611–4622.CrossRef
go back to reference Wilkinson, M. D., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 160018.CrossRef Wilkinson, M. D., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 160018.CrossRef
go back to reference Zijlmans, M., Zweiphenning, W., & van Klink, N. (2019). Changing concepts in presurgical assessment for epilepsy surgery. Nature Reviews. Neurology, 10, 1–13. Zijlmans, M., Zweiphenning, W., & van Klink, N. (2019). Changing concepts in presurgical assessment for epilepsy surgery. Nature Reviews. Neurology, 10, 1–13.
Metadata
Title
A Practical Workflow for Organizing Clinical Intraoperative and Long-term iEEG Data in BIDS
Authors
Matteo Demuru
Dorien van Blooijs
Willemiek Zweiphenning
Dora Hermes
Frans Leijten
Maeike Zijlmans
on behalf of the RESPect group
Publication date
01-07-2022
Publisher
Springer US
Keyword
Epilepsy
Published in
Neuroinformatics / Issue 3/2022
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-022-09567-6

Other articles of this Issue 3/2022

Neuroinformatics 3/2022 Go to the issue