Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

Open Access 01-12-2021 | Epigenetics | Research

METTL3-mediated m6A mRNA modification of FBXW7 suppresses lung adenocarcinoma

Authors: Yingtong Wu, Ning Chang, Yong Zhang, Xinxin Zhang, Leidi Xu, Yinggang Che, Tianyun Qiao, Bin Wu, Ying Zhou, Jun Jiang, Jie Xiong, Jian Zhang, Jian Zhang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

FBXW7 m6A modification plays an important role in lung adenocarcinoma (LUAD) progression; however, the underlying mechanisms remain unclear.

Methods

The correlation between FBXW7 and various genes related to m6A modification was analyzed using The Cancer Genome Atlas database. The regulatory effects of METTL3 on FBXW7 mRNA m6A modification were examined in a cell model, and the underlying mechanism was determined by methylated RNA immunoprecipitation, RNA immunoprecipitation, luciferase reporter, and mutagenesis assays. In vitro experiments were performed to further explore the biological effects of METTL3-mediated FBXW7 m6A modification on LUAD development.

Results

Decreased FBXW7 expression was accompanied by downregulated METTL3 expression in human LUAD tissues and was associated with a worse prognosis for LUAD in The Cancer Genome Atlas database. m6A was highly enriched in METTL3-mediated FBXW7 transcripts, and increased m6A modification in the coding sequence region increased its translation. Functionally, METTL3 overexpression or knockdown affected the apoptosis and proliferation phenotype of LUAD cells by regulating FBXW7 m6A modification and expression. Furthermore, FBXW7 overexpression in METTL3-depleted cells partially restored LUAD cell suppression in vitro and in vivo.

Conclusions

Our findings reveal that METTL3 positively regulates FBXW7 expression and confirm the tumor-suppressive role of m6A-modified FBXW7, thus providing insight into its epigenetic regulatory mechanisms in LUAD initiation and development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef
2.
go back to reference Lee J, Park S, Park H, Kim S, Lee J, Lee J, et al. Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma. Cell. 2019;177(7):1842–57 e21.PubMedCrossRef Lee J, Park S, Park H, Kim S, Lee J, Lee J, et al. Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma. Cell. 2019;177(7):1842–57 e21.PubMedCrossRef
3.
go back to reference Zheng N, Zhou Q, Wang Z, Wei W. Recent advances in SCF ubiquitin ligase complex: clinical implications. Biochim Biophys Acta. 2016;1866(1):12–22.PubMedPubMedCentral Zheng N, Zhou Q, Wang Z, Wei W. Recent advances in SCF ubiquitin ligase complex: clinical implications. Biochim Biophys Acta. 2016;1866(1):12–22.PubMedPubMedCentral
5.
go back to reference Yumimoto K, Nakayama K. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol. 2020;67:1–15. Yumimoto K, Nakayama K. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol. 2020;67:1–15.
6.
go back to reference Wang J, Wang H, Peters M, Ding N, Ribback S, Utpatel K, et al. Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. J Hepatol. 2019;71(4):742–52.PubMedPubMedCentralCrossRef Wang J, Wang H, Peters M, Ding N, Ribback S, Utpatel K, et al. Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. J Hepatol. 2019;71(4):742–52.PubMedPubMedCentralCrossRef
7.
go back to reference Gstalder C, Liu D, Miao D, Lutterbach B, DeVine A, Lin C, et al. Fbxw7Inactivation of Impairs dsRNA Sensing and Confers Resistance to PD-1 Blockade. Cancer discovery. 2020;10(9):1296–311. Gstalder C, Liu D, Miao D, Lutterbach B, DeVine A, Lin C, et al. Fbxw7Inactivation of Impairs dsRNA Sensing and Confers Resistance to PD-1 Blockade. Cancer discovery. 2020;10(9):1296–311.
8.
go back to reference Yokobori T, Mimori K, Iwatsuki M, Ishii H, Onoyama I, Fukagawa T, et al. p53-altered FBXW7 expression determines poor prognosis in gastric cancer cases. Cancer Res. 2009;69(9):3788–94.PubMedCrossRef Yokobori T, Mimori K, Iwatsuki M, Ishii H, Onoyama I, Fukagawa T, et al. p53-altered FBXW7 expression determines poor prognosis in gastric cancer cases. Cancer Res. 2009;69(9):3788–94.PubMedCrossRef
9.
go back to reference Lu K, Zhou X. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol. 2007;8(11):904–16.PubMedCrossRef Lu K, Zhou X. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol. 2007;8(11):904–16.PubMedCrossRef
11.
go back to reference Mansour M, Sanda T, Lawton L, Li X, Kreslavsky T, Novina C, et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 2013;210(8):1545–57.PubMedPubMedCentralCrossRef Mansour M, Sanda T, Lawton L, Li X, Kreslavsky T, Novina C, et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 2013;210(8):1545–57.PubMedPubMedCentralCrossRef
12.
go back to reference Peer E, Rechavi G, Dominissini D. Epitranscriptomics: regulation of mRNA metabolism through modifications. Curr Opin Chem Biol. 2017;41:93–8.PubMedCrossRef Peer E, Rechavi G, Dominissini D. Epitranscriptomics: regulation of mRNA metabolism through modifications. Curr Opin Chem Biol. 2017;41:93–8.PubMedCrossRef
13.
go back to reference Perry RP, Kelley DE. Existence of methylated messenger RNA in mouse L cells. Cell. 1974;1(1):37–42.CrossRef Perry RP, Kelley DE. Existence of methylated messenger RNA in mouse L cells. Cell. 1974;1(1):37–42.CrossRef
14.
go back to reference Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. Rna-a Publication of the Rna Society. 1997;3(11):1233–47. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. Rna-a Publication of the Rna Society. 1997;3(11):1233–47.
16.
go back to reference Wang X, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.PubMedCrossRef Wang X, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.PubMedCrossRef
17.
go back to reference Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7.PubMedPubMedCentralCrossRef Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7.PubMedPubMedCentralCrossRef
18.
go back to reference Zheng G, Dahl J, Niu Y, Fedorcsak P, Huang C, Li C, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29.PubMedCrossRef Zheng G, Dahl J, Niu Y, Fedorcsak P, Huang C, Li C, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29.PubMedCrossRef
19.
go back to reference Meyer K, Patil D, Zhou J, Zinoviev A, Skabkin M, Elemento O, et al. 5′ UTR m (6) A promotes cap-independent translation. Cell. 2015;163(4):999–1010.PubMedPubMedCentralCrossRef Meyer K, Patil D, Zhou J, Zinoviev A, Skabkin M, Elemento O, et al. 5′ UTR m (6) A promotes cap-independent translation. Cell. 2015;163(4):999–1010.PubMedPubMedCentralCrossRef
20.
go back to reference Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95.PubMedPubMedCentralCrossRef Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95.PubMedPubMedCentralCrossRef
21.
go back to reference Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N-Methyladenosine RNA Demethylase. Cancer Cell. 2017;31(1):127–41.PubMedCrossRef Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N-Methyladenosine RNA Demethylase. Cancer Cell. 2017;31(1):127–41.PubMedCrossRef
22.
go back to reference Zhang S, et al. mA Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer cell. 2017;31(4):591–606 e6.PubMedPubMedCentralCrossRef Zhang S, et al. mA Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer cell. 2017;31(4):591–606 e6.PubMedPubMedCentralCrossRef
23.
go back to reference Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 2018;415:11–9.PubMedCrossRef Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 2018;415:11–9.PubMedCrossRef
24.
go back to reference Chen M, Wei L, Law CT, Tsang FH, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology (Baltimore, Md). 2018;67(6):2254–70.CrossRef Chen M, Wei L, Law CT, Tsang FH, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology (Baltimore, Md). 2018;67(6):2254–70.CrossRef
25.
go back to reference Liu J, Eckert MA, Harada BT, Liu SM, et al. mA mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol. 2018;20(9):1074–83.PubMedPubMedCentralCrossRef Liu J, Eckert MA, Harada BT, Liu SM, et al. mA mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol. 2018;20(9):1074–83.PubMedPubMedCentralCrossRef
28.
go back to reference Ye M, Zhang Y, Zhang X, Zhang J, Jing P, Cao L, et al. Targeting FBW7 as a strategy to overcome resistance to targeted therapy in non-small cell lung Cancer. Cancer Res. 2017;77(13):3527–39.PubMedCrossRef Ye M, Zhang Y, Zhang X, Zhang J, Jing P, Cao L, et al. Targeting FBW7 as a strategy to overcome resistance to targeted therapy in non-small cell lung Cancer. Cancer Res. 2017;77(13):3527–39.PubMedCrossRef
29.
go back to reference Zhang Y, Zhang X, Ye M, Jing P, Xiong J, Han Z, et al. FBW7 loss promotes epithelial-to-mesenchymal transition in non-small cell lung cancer through the stabilization of snail protein. Cancer Lett. 2018;419:75–83.PubMedCrossRef Zhang Y, Zhang X, Ye M, Jing P, Xiong J, Han Z, et al. FBW7 loss promotes epithelial-to-mesenchymal transition in non-small cell lung cancer through the stabilization of snail protein. Cancer Lett. 2018;419:75–83.PubMedCrossRef
30.
go back to reference Cennamo A, Falsetto A, De Pascale V, Gallo G, Della Corte M. A rare gastric ulcer complication: the gastrocolic fistula. A case report. Chir Ital. 2001;53(6):869–72.PubMed Cennamo A, Falsetto A, De Pascale V, Gallo G, Della Corte M. A rare gastric ulcer complication: the gastrocolic fistula. A case report. Chir Ital. 2001;53(6):869–72.PubMed
31.
go back to reference Liu J, Lichtenberg T, Hoadley K, Poisson L, Lazar A, Cherniack A, et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell. 2018;173(2):400–16 e11.PubMedPubMedCentralCrossRef Liu J, Lichtenberg T, Hoadley K, Poisson L, Lazar A, Cherniack A, et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell. 2018;173(2):400–16 e11.PubMedPubMedCentralCrossRef
32.
go back to reference Zhou Y, Zeng P, Li Y, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44(10):e91.PubMedPubMedCentralCrossRef Zhou Y, Zeng P, Li Y, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44(10):e91.PubMedPubMedCentralCrossRef
33.
go back to reference Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–W60.PubMedPubMedCentralCrossRef Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–W60.PubMedPubMedCentralCrossRef
34.
go back to reference Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 2004;18(21):2573–80.PubMedPubMedCentralCrossRef Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 2004;18(21):2573–80.PubMedPubMedCentralCrossRef
35.
go back to reference Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777–D83.PubMedCrossRef Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777–D83.PubMedCrossRef
36.
go back to reference Wang Y, Liu Z, Yao B, et al. Long non-coding RNA CASC2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CASC2/miR-367/FBXW7 axis. Molecular cancer. 2017;16(1):123.PubMedPubMedCentralCrossRef Wang Y, Liu Z, Yao B, et al. Long non-coding RNA CASC2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CASC2/miR-367/FBXW7 axis. Molecular cancer. 2017;16(1):123.PubMedPubMedCentralCrossRef
37.
go back to reference Akhoondi S, Lindstrom L, Widschwendter M, et al. Inactivation of FBXW7/hCDC4-β expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer. Breast Cancer Res. 2010;12(6):R105.PubMedPubMedCentralCrossRef Akhoondi S, Lindstrom L, Widschwendter M, et al. Inactivation of FBXW7/hCDC4-β expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer. Breast Cancer Res. 2010;12(6):R105.PubMedPubMedCentralCrossRef
38.
go back to reference Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17(1):95–103.PubMedCrossRef Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17(1):95–103.PubMedCrossRef
39.
go back to reference Welcker M, Larimore EA, Swanger J, et al. Fbw7 dimerization determines the specificity and robustness of substrate degradation. Genes Dev. 2013;27(23):2531–6.PubMedPubMedCentralCrossRef Welcker M, Larimore EA, Swanger J, et al. Fbw7 dimerization determines the specificity and robustness of substrate degradation. Genes Dev. 2013;27(23):2531–6.PubMedPubMedCentralCrossRef
40.
go back to reference Mao J, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama K, et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 2004;432(7018):775–9.PubMedCrossRef Mao J, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama K, et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 2004;432(7018):775–9.PubMedCrossRef
41.
go back to reference Xing M, Liu Q, Mao C, Zeng H, Zhang X, Zhao S, et al. The 18S rRNA m A methyltransferase METTL5 promotes mouse embryonic stem cell differentiation. EMBO reports. 2020;21(10):e49863. Xing M, Liu Q, Mao C, Zeng H, Zhang X, Zhao S, et al. The 18S rRNA m A methyltransferase METTL5 promotes mouse embryonic stem cell differentiation. EMBO reports. 2020;21(10):e49863.
42.
go back to reference Huang H, Weng H, Chen J. mA modification in coding and non-coding RNAs: roles and therapeutic implications in Cancer. Cancer Cell. 2020;37(3):270–88.PubMedCrossRefPubMedCentral Huang H, Weng H, Chen J. mA modification in coding and non-coding RNAs: roles and therapeutic implications in Cancer. Cancer Cell. 2020;37(3):270–88.PubMedCrossRefPubMedCentral
43.
44.
go back to reference Deng R, Cheng Y, Ye S, Zhang J, Huang R, Li P, et al. mA methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. OncoTargets and therapy. 2019;12:4391–402.PubMedPubMedCentralCrossRef Deng R, Cheng Y, Ye S, Zhang J, Huang R, Li P, et al. mA methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. OncoTargets and therapy. 2019;12:4391–402.PubMedPubMedCentralCrossRef
45.
go back to reference Li T, Hu PS, Zuo Z, Lin JF, et al. METTL3 facilitates tumor progression via an mA-IGF2BP2-dependent mechanism in colorectal carcinoma. Molecular cancer. 2019;18(1):112.PubMedPubMedCentralCrossRef Li T, Hu PS, Zuo Z, Lin JF, et al. METTL3 facilitates tumor progression via an mA-IGF2BP2-dependent mechanism in colorectal carcinoma. Molecular cancer. 2019;18(1):112.PubMedPubMedCentralCrossRef
46.
go back to reference Relli V, Trerotola M, Guerra E, Alberti S. Abandoning the notion of non-small cell lung Cancer. Trends Mol Med. 2019;25(7):585–94.PubMedCrossRef Relli V, Trerotola M, Guerra E, Alberti S. Abandoning the notion of non-small cell lung Cancer. Trends Mol Med. 2019;25(7):585–94.PubMedCrossRef
47.
go back to reference Gurda G, Zhang L, Wang Y, Chen L, Geddes S, Cho W, et al. Utility of five commonly used immunohistochemical markers TTF-1, Napsin A, CK7, CK5/6 and P63 in primary and metastatic adenocarcinoma and squamous cell carcinoma of the lung: a retrospective study of 246 fine needle aspiration cases. Clin Transl Med. 2015;4:16.PubMedPubMedCentralCrossRef Gurda G, Zhang L, Wang Y, Chen L, Geddes S, Cho W, et al. Utility of five commonly used immunohistochemical markers TTF-1, Napsin A, CK7, CK5/6 and P63 in primary and metastatic adenocarcinoma and squamous cell carcinoma of the lung: a retrospective study of 246 fine needle aspiration cases. Clin Transl Med. 2015;4:16.PubMedPubMedCentralCrossRef
48.
go back to reference Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. mA mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12(1):135.PubMedPubMedCentralCrossRef Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. mA mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12(1):135.PubMedPubMedCentralCrossRef
49.
go back to reference Liu J, Yang X, Shi W. Identifying differentially expressed genes and pathways in two types of non-small cell lung cancer: adenocarcinoma and squamous cell carcinoma. Genet Mol Res. 2014;13(1):95–102.PubMedCrossRef Liu J, Yang X, Shi W. Identifying differentially expressed genes and pathways in two types of non-small cell lung cancer: adenocarcinoma and squamous cell carcinoma. Genet Mol Res. 2014;13(1):95–102.PubMedCrossRef
51.
go back to reference Campbell J, Yau C, Bowlby R, Liu Y, Brennan K, Fan H, et al. Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell reports. 2018;23(1):194–212 e6.PubMedCrossRef Campbell J, Yau C, Bowlby R, Liu Y, Brennan K, Fan H, et al. Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell reports. 2018;23(1):194–212 e6.PubMedCrossRef
Metadata
Title
METTL3-mediated m6A mRNA modification of FBXW7 suppresses lung adenocarcinoma
Authors
Yingtong Wu
Ning Chang
Yong Zhang
Xinxin Zhang
Leidi Xu
Yinggang Che
Tianyun Qiao
Bin Wu
Ying Zhou
Jun Jiang
Jie Xiong
Jian Zhang
Jian Zhang
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Epigenetics
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-01880-3

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine