Skip to main content
Top
Published in: International Journal of Legal Medicine 2/2022

Open Access 01-03-2022 | Epigenetics | Original Article

Evidence for differences in DNA methylation between Germans and Japanese

Authors: J. Becker, P. Böhme, A. Reckert, S. B. Eickhoff, B. E. Koop, J. Blum, T. Gündüz, M. Takayama, W. Wagner, S. Ritz-Timme

Published in: International Journal of Legal Medicine | Issue 2/2022

Login to get access

Abstract

As a contribution to the discussion about the possible effects of ethnicity/ancestry on age estimation based on DNA methylation (DNAm) patterns, we directly compared age-associated DNAm in German and Japanese donors in one laboratory under identical conditions. DNAm was analyzed by pyrosequencing for 22 CpG sites (CpGs) in the genes PDE4C, RPA2, ELOVL2, DDO, and EDARADD in buccal mucosa samples from German and Japanese donors (N = 368 and N = 89, respectively).
Twenty of these CpGs revealed a very high correlation with age and were subsequently tested for differences between German and Japanese donors aged between 10 and 65 years (N = 287 and N = 83, respectively). ANCOVA was performed by testing the Japanese samples against age- and sex-matched German subsamples (N = 83 each; extracted 500 times from the German total sample). The median p values suggest a strong evidence for significant differences (p < 0.05) at least for two CpGs (EDARADD, CpG 2, and PDE4C, CpG 2) and no differences for 11 CpGs (p > 0.3).
Age prediction models based on DNAm data from all 20 CpGs from German training data did not reveal relevant differences between the Japanese test samples and German subsamples. Obviously, the high number of included “robust CpGs” prevented relevant effects of differences in DNAm at two CpGs.
Nevertheless, the presented data demonstrates the need for further research regarding the impact of confounding factors on DNAm in the context of ethnicity/ancestry to ensure a high quality of age estimation. One approach may be the search for “robust” CpG markers—which requires the targeted investigation of different populations, at best by collaborative research with coordinated research strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maulani, C. and E.I. Auerkari, Age estimation using DNA methylation technique in forensics: a systematic review. Egyptian Journal of Forensic Sciences, 2020. 10(1). Maulani, C. and E.I. Auerkari, Age estimation using DNA methylation technique in forensics: a systematic review. Egyptian Journal of Forensic Sciences, 2020. 10(1).
2.
go back to reference Hanafi M, Soedarsono N, Auerkari E (2021) Biological age estimation using DNA methylation analysis: a systematic review. Sci Dent J 5(1):1–11CrossRef Hanafi M, Soedarsono N, Auerkari E (2021) Biological age estimation using DNA methylation analysis: a systematic review. Sci Dent J 5(1):1–11CrossRef
3.
go back to reference Weidner CI, Wagner W (2014) The epigenetic tracks of aging. Biol Chem 395(11):1307–1314CrossRef Weidner CI, Wagner W (2014) The epigenetic tracks of aging. Biol Chem 395(11):1307–1314CrossRef
4.
go back to reference Böhme, P., A. Reckert, J. Becker, and S. Ritz-Timme, Molecular methods for age estimation. Rechtsmedizin, 2021. Böhme, P., A. Reckert, J. Becker, and S. Ritz-Timme, Molecular methods for age estimation. Rechtsmedizin, 2021.
5.
go back to reference Daunay A, Baudrin LG, Deleuze JF, How-Kit A (2019) Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Sci Rep 9(1):8862CrossRef Daunay A, Baudrin LG, Deleuze JF, How-Kit A (2019) Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Sci Rep 9(1):8862CrossRef
6.
go back to reference Jung SE, Lim SM, Hong SR, Lee EH, Shin KJ, Lee HY (2019) DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci Int Genet 38:1–8CrossRef Jung SE, Lim SM, Hong SR, Lee EH, Shin KJ, Lee HY (2019) DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci Int Genet 38:1–8CrossRef
7.
go back to reference Wozniak A, Heidegger A, Piniewska-Rog D, Pospiech E, Xavier C, Pisarek A, Kartasinska E, Boron M, Freire-Aradas A, Wojtas M, de la Puente M, Niederstatter H, Ploski R, Spolnicka M, Kayser M, Phillips C, Parson W, Branicki W, V. Consortium (2021) Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging (Albany NY) 13(5):6459–6484CrossRef Wozniak A, Heidegger A, Piniewska-Rog D, Pospiech E, Xavier C, Pisarek A, Kartasinska E, Boron M, Freire-Aradas A, Wojtas M, de la Puente M, Niederstatter H, Ploski R, Spolnicka M, Kayser M, Phillips C, Parson W, Branicki W, V. Consortium (2021) Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging (Albany NY) 13(5):6459–6484CrossRef
8.
go back to reference Han Y, Franzen J, Stiehl T, Gobs M, Kuo CC, Nikolić M, Hapala J, Koop BE, Strathmann K, Ritz-Timme S, Wagner W (2020) New targeted approaches for epigenetic age predictions. BMC Biol 18(1):71CrossRef Han Y, Franzen J, Stiehl T, Gobs M, Kuo CC, Nikolić M, Hapala J, Koop BE, Strathmann K, Ritz-Timme S, Wagner W (2020) New targeted approaches for epigenetic age predictions. BMC Biol 18(1):71CrossRef
9.
go back to reference Koop BE, Reckert A, Becker J, Han Y, Wagner W, Ritz-Timme S (2020) Epigenetic clocks may come out of rhythm-implications for the estimation of chronological age in forensic casework. Int J Legal Med 134(6):2215–2228CrossRef Koop BE, Reckert A, Becker J, Han Y, Wagner W, Ritz-Timme S (2020) Epigenetic clocks may come out of rhythm-implications for the estimation of chronological age in forensic casework. Int J Legal Med 134(6):2215–2228CrossRef
10.
go back to reference Dhingra R, Nwanaji-Enwerem JC, Samet M, Ward-Caviness CK (2018) DNA methylation age-environmental influences, health impacts, and its role in environmental epidemiology. Curr Environ Health Rep 5(3):317–327CrossRef Dhingra R, Nwanaji-Enwerem JC, Samet M, Ward-Caviness CK (2018) DNA methylation age-environmental influences, health impacts, and its role in environmental epidemiology. Curr Environ Health Rep 5(3):317–327CrossRef
11.
go back to reference Kader F, Ghai M (2017) DNA methylation-based variation between human populations. Mol Genet Genomics 292(1):5–35CrossRef Kader F, Ghai M (2017) DNA methylation-based variation between human populations. Mol Genet Genomics 292(1):5–35CrossRef
12.
go back to reference Spolnicka, M., E. Pospiech, B. Peplonska, R. Zbiec-Piekarska, Z. Makowska, A. Pieta, J. Karlowska-Pik, B. Ziemkiewicz, M. Wezyk, P. Gasperowicz, T. Bednarczuk, M. Barcikowska, C. Zekanowski, R. Ploski, and W. Branicki, DNA methylation in ELOVL2 and C1orf132 correctly predicted chronological age of individuals from three disease groups. Int J Legal Med, 2017. Spolnicka, M., E. Pospiech, B. Peplonska, R. Zbiec-Piekarska, Z. Makowska, A. Pieta, J. Karlowska-Pik, B. Ziemkiewicz, M. Wezyk, P. Gasperowicz, T. Bednarczuk, M. Barcikowska, C. Zekanowski, R. Ploski, and W. Branicki, DNA methylation in ELOVL2 and C1orf132 correctly predicted chronological age of individuals from three disease groups. Int J Legal Med, 2017.
13.
go back to reference Thong Z, Tan JYY, Loo ES, Phua YW, Chan XLS, Syn CK (2021) Artificial neural network, predictor variables and sensitivity threshold for DNA methylation-based age prediction using blood samples. Sci Rep 11(1):1744CrossRef Thong Z, Tan JYY, Loo ES, Phua YW, Chan XLS, Syn CK (2021) Artificial neural network, predictor variables and sensitivity threshold for DNA methylation-based age prediction using blood samples. Sci Rep 11(1):1744CrossRef
14.
go back to reference Cho S, Jung SE, Hong SR, Lee EH, Lee JH, Lee SD, Lee HY (2017) Independent validation of DNA-based approaches for age prediction in blood. Forensic Sci Int Genet 29:250–256CrossRef Cho S, Jung SE, Hong SR, Lee EH, Lee JH, Lee SD, Lee HY (2017) Independent validation of DNA-based approaches for age prediction in blood. Forensic Sci Int Genet 29:250–256CrossRef
15.
go back to reference Fleckhaus J, Freire-Aradas A, Rothschild MA, Schneider PM (2017) Impact of genetic ancestry on chronological age prediction using DNA methylation analysis. Forensic Sci Int Genet Suppl Ser 6:e399–e400CrossRef Fleckhaus J, Freire-Aradas A, Rothschild MA, Schneider PM (2017) Impact of genetic ancestry on chronological age prediction using DNA methylation analysis. Forensic Sci Int Genet Suppl Ser 6:e399–e400CrossRef
16.
go back to reference Adkins RM, Krushkal J, Tylavsky FA, Thomas F (2011) Racial differences in gene-specific DNA methylation levels are present at birth. Birth Defects Res A Clin Mol Teratol 91(8):728–736CrossRef Adkins RM, Krushkal J, Tylavsky FA, Thomas F (2011) Racial differences in gene-specific DNA methylation levels are present at birth. Birth Defects Res A Clin Mol Teratol 91(8):728–736CrossRef
17.
go back to reference Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 12(1):R10CrossRef Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 12(1):R10CrossRef
18.
go back to reference Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD, Roux J, Pritchard JK, Gilad Y (2014) Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet 10(9):e1004663CrossRef Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD, Roux J, Pritchard JK, Gilad Y (2014) Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet 10(9):e1004663CrossRef
19.
go back to reference Moen EL, Zhang X, Mu W, Delaney SM, Wing C, McQuade J, Myers J, Godley LA, Dolan ME, Zhang W (2013) Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits. Genetics 194(4):987–996CrossRef Moen EL, Zhang X, Mu W, Delaney SM, Wing C, McQuade J, Myers J, Godley LA, Dolan ME, Zhang W (2013) Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits. Genetics 194(4):987–996CrossRef
20.
go back to reference Goncearenco A, LaBarre BA, Petrykowska HM, Jaratlerdsiri W, Bornman MSR, Turner SD, Hayes VM, Elnitski L (2021) DNA methylation profiles unique to Kalahari KhoeSan individuals. Epigenetics 16(5):537–553CrossRef Goncearenco A, LaBarre BA, Petrykowska HM, Jaratlerdsiri W, Bornman MSR, Turner SD, Hayes VM, Elnitski L (2021) DNA methylation profiles unique to Kalahari KhoeSan individuals. Epigenetics 16(5):537–553CrossRef
21.
go back to reference Fagny M, Patin E, MacIsaac JL, Rotival M, Flutre T, Jones MJ, Siddle KJ, Quach H, Harmant C, McEwen LM, Froment A, Heyer E, Gessain A, Betsem E, Mouguiama-Daouda P, Hombert JM, Perry GH, Barreiro LB, Kobor MS, Quintana-Murci L (2015) The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nat Commun 6:10047CrossRef Fagny M, Patin E, MacIsaac JL, Rotival M, Flutre T, Jones MJ, Siddle KJ, Quach H, Harmant C, McEwen LM, Froment A, Heyer E, Gessain A, Betsem E, Mouguiama-Daouda P, Hombert JM, Perry GH, Barreiro LB, Kobor MS, Quintana-Murci L (2015) The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nat Commun 6:10047CrossRef
22.
go back to reference Li Y, Xu Y, Liu T, Chang H, Yang X (2021) The regulation mechanisms and the Lamarckian inheritance property of DNA methylation in animals. Mamm Genome 32(3):135–152CrossRef Li Y, Xu Y, Liu T, Chang H, Yang X (2021) The regulation mechanisms and the Lamarckian inheritance property of DNA methylation in animals. Mamm Genome 32(3):135–152CrossRef
23.
go back to reference Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13(2):97–109CrossRef Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13(2):97–109CrossRef
24.
go back to reference Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, Ritz BR, Chen B, Lu AT, Rickabaugh TM, Jamieson BD, Sun D, Li S, Chen W, Quintana-Murci L, Fagny M, Kobor MS, Tsao PS, Reiner AP, Edlefsen KL, Absher D, Assimes TL (2016) An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol 17(1):171CrossRef Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, Ritz BR, Chen B, Lu AT, Rickabaugh TM, Jamieson BD, Sun D, Li S, Chen W, Quintana-Murci L, Fagny M, Kobor MS, Tsao PS, Reiner AP, Edlefsen KL, Absher D, Assimes TL (2016) An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol 17(1):171CrossRef
25.
go back to reference Tajuddin SM, Hernandez DG, Chen BH (2019) N Noren Hooten, NA Mode, MA Nalls, AB Singleton, N Ejiogu, KN Chitrala, AB Zonderman, MK Evans, Novel age-associated DNA methylation changes and epigenetic age acceleration in middle-aged African Americans and whites. Clin Epigenetics 11(1):119CrossRef Tajuddin SM, Hernandez DG, Chen BH (2019) N Noren Hooten, NA Mode, MA Nalls, AB Singleton, N Ejiogu, KN Chitrala, AB Zonderman, MK Evans, Novel age-associated DNA methylation changes and epigenetic age acceleration in middle-aged African Americans and whites. Clin Epigenetics 11(1):119CrossRef
26.
go back to reference Daca-Roszak P, Jaksik R, Paczkowska J, Witt M, Zietkiewicz E (2020) Discrimination between human populations using a small number of differentially methylated CpG sites: a preliminary study using lymphoblastoid cell lines and peripheral blood samples of European and Chinese origin. BMC Genomics 21(1):706CrossRef Daca-Roszak P, Jaksik R, Paczkowska J, Witt M, Zietkiewicz E (2020) Discrimination between human populations using a small number of differentially methylated CpG sites: a preliminary study using lymphoblastoid cell lines and peripheral blood samples of European and Chinese origin. BMC Genomics 21(1):706CrossRef
27.
go back to reference Husquin LT, Rotival M, Fagny M, Quach H, Zidane N, McEwen LM, MacIsaac JL, Kobor MS, Aschard H, Patin E, Quintana-Murci L (2018) Exploring the genetic basis of human population differences in DNA methylation and their causal impact on immune gene regulation. Genome Biol 19(1):222CrossRef Husquin LT, Rotival M, Fagny M, Quach H, Zidane N, McEwen LM, MacIsaac JL, Kobor MS, Aschard H, Patin E, Quintana-Murci L (2018) Exploring the genetic basis of human population differences in DNA methylation and their causal impact on immune gene regulation. Genome Biol 19(1):222CrossRef
28.
go back to reference Naue J, Hoefsloot HCJ, Kloosterman AD, Verschure PJ (2018) Forensic DNA methylation profiling from minimal traces: How low can we go? Forensic Sci Int Genet 33:17–23CrossRef Naue J, Hoefsloot HCJ, Kloosterman AD, Verschure PJ (2018) Forensic DNA methylation profiling from minimal traces: How low can we go? Forensic Sci Int Genet 33:17–23CrossRef
29.
go back to reference Naue J, Hoefsloot HCJ, Mook ORF, Rijlaarsdam-Hoekstra L, van der Zwalm MCH, Henneman P, Kloosterman AD, Verschure PJ (2017) Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. Forensic Sci Int Genet 31:19–28CrossRef Naue J, Hoefsloot HCJ, Mook ORF, Rijlaarsdam-Hoekstra L, van der Zwalm MCH, Henneman P, Kloosterman AD, Verschure PJ (2017) Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression. Forensic Sci Int Genet 31:19–28CrossRef
30.
go back to reference Bekaert B, Kamalandua A, Zapico SC, Van de Voorde W, Decorte R (2015) Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics 10(10):922–930CrossRef Bekaert B, Kamalandua A, Zapico SC, Van de Voorde W, Decorte R (2015) Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics 10(10):922–930CrossRef
31.
go back to reference Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jockel KH, Erbel R, Muhleisen TW, Zenke M, Brummendorf TH, Wagner W (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15(2):R24CrossRef Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jockel KH, Erbel R, Muhleisen TW, Zenke M, Brummendorf TH, Wagner W (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15(2):R24CrossRef
32.
go back to reference Fraser HB, Lam LL, Neumann SM, Kobor MS (2012) Population-specificity of human DNA methylation. Genome Biol 13(2):R8CrossRef Fraser HB, Lam LL, Neumann SM, Kobor MS (2012) Population-specificity of human DNA methylation. Genome Biol 13(2):R8CrossRef
33.
go back to reference Giri AK, Bharadwaj S, Banerjee P, Chakraborty S, Parekatt V, Rajashekar D, Tomar A, Ravindran A, Basu A, Tandon N, Bharadwaj D (2017) DNA methylation profiling reveals the presence of population-specific signatures correlating with phenotypic characteristics. Mol Genet Genomics 292(3):655–662CrossRef Giri AK, Bharadwaj S, Banerjee P, Chakraborty S, Parekatt V, Rajashekar D, Tomar A, Ravindran A, Basu A, Tandon N, Bharadwaj D (2017) DNA methylation profiling reveals the presence of population-specific signatures correlating with phenotypic characteristics. Mol Genet Genomics 292(3):655–662CrossRef
34.
go back to reference Giuliani C, Sazzini M, Bacalini MG, Pirazzini C, Marasco E, Fontanesi E, Franceschi C, Luiselli D, Garagnani P (2016) Epigenetic variability across human populations: a focus on DNA methylation profiles of the KRTCAP3, MAD1L1 and BRSK2 Genes. Genome Biol Evol 8(9):2760–2773CrossRef Giuliani C, Sazzini M, Bacalini MG, Pirazzini C, Marasco E, Fontanesi E, Franceschi C, Luiselli D, Garagnani P (2016) Epigenetic variability across human populations: a focus on DNA methylation profiles of the KRTCAP3, MAD1L1 and BRSK2 Genes. Genome Biol Evol 8(9):2760–2773CrossRef
35.
go back to reference Wang Y, Lu D, Chung YJ, Xu S (2018) Genetic structure, divergence and admixture of Han Chinese Japanese and Korean populations. Hereditas 155:19CrossRef Wang Y, Lu D, Chung YJ, Xu S (2018) Genetic structure, divergence and admixture of Han Chinese Japanese and Korean populations. Hereditas 155:19CrossRef
36.
go back to reference Horai S, Murayama K, Hayasaka K, Matsubayashi S, Hattori Y, Fucharoen G, Harihara S, Park KS, Omoto K, Pan IH (1996) mtDNA polymorphism in East Asian populations, with special reference to the peopling of Japan. Am J Hum Genet 59(3):579–590PubMedPubMedCentral Horai S, Murayama K, Hayasaka K, Matsubayashi S, Hattori Y, Fucharoen G, Harihara S, Park KS, Omoto K, Pan IH (1996) mtDNA polymorphism in East Asian populations, with special reference to the peopling of Japan. Am J Hum Genet 59(3):579–590PubMedPubMedCentral
37.
go back to reference Yasumizu Y, Sakaue S, Konuma T, Suzuki K, Matsuda K, Murakami Y, Kubo M, Palamara PF, Kamatani Y, Okada Y (2020) Genome-wide natural selection signatures are linked to genetic risk of modern phenotypes in the japanese population. Mol Biol Evol 37(5):1306–1316CrossRef Yasumizu Y, Sakaue S, Konuma T, Suzuki K, Matsuda K, Murakami Y, Kubo M, Palamara PF, Kamatani Y, Okada Y (2020) Genome-wide natural selection signatures are linked to genetic risk of modern phenotypes in the japanese population. Mol Biol Evol 37(5):1306–1316CrossRef
38.
go back to reference Zbiec-Piekarska R, Spolnicka M, Kupiec T, Parys-Proszek A, Makowska Z, Paleczka A, Kucharczyk K, Ploski R, Branicki W (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet 17:173–179CrossRef Zbiec-Piekarska R, Spolnicka M, Kupiec T, Parys-Proszek A, Makowska Z, Paleczka A, Kucharczyk K, Ploski R, Branicki W (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet 17:173–179CrossRef
39.
go back to reference Montesanto A, D’Aquila P, Lagani V, Paparazzo E, Geracitano S, Formentini L, Giacconi R, Cardelli M, Provinciali M, Bellizzi D, Passarino G (2020) A new robust epigenetic model for forensic age prediction. J Forensic Sci 65(5):1424–1431CrossRef Montesanto A, D’Aquila P, Lagani V, Paparazzo E, Geracitano S, Formentini L, Giacconi R, Cardelli M, Provinciali M, Bellizzi D, Passarino G (2020) A new robust epigenetic model for forensic age prediction. J Forensic Sci 65(5):1424–1431CrossRef
40.
go back to reference Al-Ghanmy, H.S.G., N.A.M. Al-Rashedi, and A.Y. Ayied, Age estimation by DNA methylation levels in Iraqi subjects. Gene Reports, 2021. 23. Al-Ghanmy, H.S.G., N.A.M. Al-Rashedi, and A.Y. Ayied, Age estimation by DNA methylation levels in Iraqi subjects. Gene Reports, 2021. 23.
Metadata
Title
Evidence for differences in DNA methylation between Germans and Japanese
Authors
J. Becker
P. Böhme
A. Reckert
S. B. Eickhoff
B. E. Koop
J. Blum
T. Gündüz
M. Takayama
W. Wagner
S. Ritz-Timme
Publication date
01-03-2022
Publisher
Springer Berlin Heidelberg
Keyword
Epigenetics
Published in
International Journal of Legal Medicine / Issue 2/2022
Print ISSN: 0937-9827
Electronic ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-021-02736-3

Other articles of this Issue 2/2022

International Journal of Legal Medicine 2/2022 Go to the issue