Skip to main content
Top
Published in: Archives of Public Health 1/2023

Open Access 01-12-2023 | Epigenetics | Systematic Review

Effect of epigenetics on vitamin D levels: a systematic review until December 2020

Authors: Ali Forouhari, Motahar Heidari-Beni, Shaahin Veisi, Parnian Poursafa, Roya Kelishadi

Published in: Archives of Public Health | Issue 1/2023

Login to get access

Abstract

Background

The association between epigenetic modification of the genes involved in the vitamin D metabolic pathway and vitamin D metabolites’ status has been elucidated incompletely. This study aims to review the studies on the mentioned association and create a brighter view of this topic.

Methods

A systematic literature search was conducted in Medline database (PubMed), Scopus, and Web of Science up to the end of November 2020. Original articles which reported the effect of epigenetic alteration—methylation level or its changes—of genes involved in vitamin D regulation on the vitamin D metabolites serum level or its changes were included. The National Institutes of Health (NIH) checklist was used to assess the quality of included articles.

Results

Among 2566 records, nine reports were included in the systematic review according to the inclusion and exclusion criteria. Studies discussed the contribution of methylation status of members of the cytochrome P450 family (CYP2R1, CYP27B1, CYP24A1), and Vitamin D Receptor (VDR) genes to vitamin D level variance. CYP2R1 methylation status could regulate the contributing factors affecting the vitamin D serum level and predict response to vitamin D supplementation. Studies revealed that impaired methylation of CYP24A1 occurs in response to an increase in serum level of 25-hydroxyvitamin D (25(OH)D). It is reported that the association between methylation levels of CYP2R1, CYP24A1, and VDR genes and 25(OH)D level is not affected by the methyl-donors bioavailability.

Conclusions

The epigenetic modification of the vitamin D-related genes could explain the vitamin D levels variation among populations. Large-scale clinical trials in various ethnicities are suggested to find the effect of epigenetics on vitamin D response variation.

Registration

The systematic review protocol was registered on PROSPERO (registration number: CRD42022306327).
Appendix
Available only for authorised users
Literature
1.
go back to reference Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: a vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res. 2016;64:138–51.PubMedCrossRef Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: a vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res. 2016;64:138–51.PubMedCrossRef
2.
go back to reference Mitsche MA, McDonald JG, Hobbs HH, Cohen JC. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. Elife. 2015;4:e07999.PubMedPubMedCentralCrossRef Mitsche MA, McDonald JG, Hobbs HH, Cohen JC. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. Elife. 2015;4:e07999.PubMedPubMedCentralCrossRef
3.
go back to reference Gupta RP, Hollis BW, Patel SB, Patrick KS, Bell NH. CYP3A4 is a human microsomal vitamin D 25-hydroxylase. J Bone Miner Res. 2004;19(4):680–8.PubMedCrossRef Gupta RP, Hollis BW, Patel SB, Patrick KS, Bell NH. CYP3A4 is a human microsomal vitamin D 25-hydroxylase. J Bone Miner Res. 2004;19(4):680–8.PubMedCrossRef
4.
go back to reference Roizen JD, Li D, O’Lear L, Javaid MK, Shaw NJ, Ebeling PR, et al. CYP3A4 mutation causes vitamin D-dependent rickets type 3. J Clin Invest. 2018;128(5):1913–8.PubMedPubMedCentralCrossRef Roizen JD, Li D, O’Lear L, Javaid MK, Shaw NJ, Ebeling PR, et al. CYP3A4 mutation causes vitamin D-dependent rickets type 3. J Clin Invest. 2018;128(5):1913–8.PubMedPubMedCentralCrossRef
5.
go back to reference Fu GK, Lin D, Zhang MY, Bikle DD, Shackleton CH, Miller WL, et al. Cloning of human 25-hydroxyvitamin D-1 alpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol. 1997;11(13):1961–70.PubMed Fu GK, Lin D, Zhang MY, Bikle DD, Shackleton CH, Miller WL, et al. Cloning of human 25-hydroxyvitamin D-1 alpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol. 1997;11(13):1961–70.PubMed
7.
go back to reference Saccone D, Asani F, Bornman L. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene. 2015;561(2):171–80.PubMedCrossRef Saccone D, Asani F, Bornman L. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene. 2015;561(2):171–80.PubMedCrossRef
8.
go back to reference Bikle D, Christakos S. New aspects of vitamin D metabolism and action - addressing the skin as source and target. Nat Rev Endocrinol. 2020;16(4):234–52.PubMedCrossRef Bikle D, Christakos S. New aspects of vitamin D metabolism and action - addressing the skin as source and target. Nat Rev Endocrinol. 2020;16(4):234–52.PubMedCrossRef
9.
go back to reference Carlberg C, Bendik I, Wyss A, Meier E, Sturzenbecker LJ, Grippo JF, et al. Two nuclear signalling pathways for vitamin D. Nature. 1993;361(6413):657–60.PubMedCrossRef Carlberg C, Bendik I, Wyss A, Meier E, Sturzenbecker LJ, Grippo JF, et al. Two nuclear signalling pathways for vitamin D. Nature. 1993;361(6413):657–60.PubMedCrossRef
10.
go back to reference Henikoff S, Greally JM. Epigenetics, cellular memory and gene regulation. Curr Biol. 2016;26(14):R644–8.PubMedCrossRef Henikoff S, Greally JM. Epigenetics, cellular memory and gene regulation. Curr Biol. 2016;26(14):R644–8.PubMedCrossRef
12.
go back to reference Bahrami A, Sadeghnia HR, Tabatabaeizadeh SA, Bahrami-Taghanaki H, Behboodi N, Esmaeili H, et al. Genetic and epigenetic factors influencing vitamin D status. J Cell Physiol. 2018;233(5):4033–43.PubMedCrossRef Bahrami A, Sadeghnia HR, Tabatabaeizadeh SA, Bahrami-Taghanaki H, Behboodi N, Esmaeili H, et al. Genetic and epigenetic factors influencing vitamin D status. J Cell Physiol. 2018;233(5):4033–43.PubMedCrossRef
13.
go back to reference Cross HS. Extrarenal vitamin D hydroxylase expression and activity in normal and malignant cells: modification of expression by epigenetic mechanisms and dietary substances. Nutr Rev. 2007;65(8 Pt 2):108–12.CrossRef Cross HS. Extrarenal vitamin D hydroxylase expression and activity in normal and malignant cells: modification of expression by epigenetic mechanisms and dietary substances. Nutr Rev. 2007;65(8 Pt 2):108–12.CrossRef
14.
go back to reference Abboud M, Rybchyn MS, Rizk R, Fraser DR, Mason RS. Sunlight exposure is just one of the factors which influence vitamin D status. Photochem Photobiol Sci. 2017;16(3):302–13.PubMedCrossRef Abboud M, Rybchyn MS, Rizk R, Fraser DR, Mason RS. Sunlight exposure is just one of the factors which influence vitamin D status. Photochem Photobiol Sci. 2017;16(3):302–13.PubMedCrossRef
15.
go back to reference Saffery R, Ellis J, Morley R. A convergent model for placental dysfunction encompassing combined sub-optimal one-carbon donor and vitamin D bioavailability. Med Hypotheses. 2009;73(6):1023–8.PubMedCrossRef Saffery R, Ellis J, Morley R. A convergent model for placental dysfunction encompassing combined sub-optimal one-carbon donor and vitamin D bioavailability. Med Hypotheses. 2009;73(6):1023–8.PubMedCrossRef
16.
go back to reference Novakovic B, Sibson M, Ng HK, Manuelpillai U, Rakyan V, Down T, et al. Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem. 2009;284(22):14838–48.PubMedPubMedCentralCrossRef Novakovic B, Sibson M, Ng HK, Manuelpillai U, Rakyan V, Down T, et al. Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem. 2009;284(22):14838–48.PubMedPubMedCentralCrossRef
17.
go back to reference Wimalawansa SJ, Vitamin D, Deficiency. Effects on oxidative stress, Epigenetics, Gene Regulation, and aging. Biology. 2019;8(2). Wimalawansa SJ, Vitamin D, Deficiency. Effects on oxidative stress, Epigenetics, Gene Regulation, and aging. Biology. 2019;8(2).
18.
go back to reference Meyer MB, Zella LA, Nerenz RD, Pike JW. Characterizing early events associated with the activation of target genes by 1,25-dihydroxyvitamin D3 in mouse kidney and intestine in vivo. J Biol Chem. 2007;282(31):22344–52.PubMedCrossRef Meyer MB, Zella LA, Nerenz RD, Pike JW. Characterizing early events associated with the activation of target genes by 1,25-dihydroxyvitamin D3 in mouse kidney and intestine in vivo. J Biol Chem. 2007;282(31):22344–52.PubMedCrossRef
19.
go back to reference Carlberg C, Velleuer E. Nutrition and epigenetic programming. Curr Opin Clin Nutr Metab Care. 2023;26(3):259–65.PubMedCrossRef Carlberg C, Velleuer E. Nutrition and epigenetic programming. Curr Opin Clin Nutr Metab Care. 2023;26(3):259–65.PubMedCrossRef
21.
go back to reference Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed). 2021;372:n71.PubMed Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed). 2021;372:n71.PubMed
23.
go back to reference Beckett EL, Duesing K, Martin C, Jones P, Furst J, King K, et al. Relationship between methylation status of vitamin D-related genes, vitamin D levels, and methyl-donor biochemistry. J Nutr Intermediary Metabolism. 2016;6:8–15.CrossRef Beckett EL, Duesing K, Martin C, Jones P, Furst J, King K, et al. Relationship between methylation status of vitamin D-related genes, vitamin D levels, and methyl-donor biochemistry. J Nutr Intermediary Metabolism. 2016;6:8–15.CrossRef
24.
go back to reference Chen L, Dong Y, Chen J, Huang Y, Zhu H. Epigenetics predicts serum 25-Hydroxyvitamin D response to vitamin D3 supplementation in African Americans. Mol Nutr Food Res. 2020;64(1):1900738.CrossRef Chen L, Dong Y, Chen J, Huang Y, Zhu H. Epigenetics predicts serum 25-Hydroxyvitamin D response to vitamin D3 supplementation in African Americans. Mol Nutr Food Res. 2020;64(1):1900738.CrossRef
25.
go back to reference Wang M, Kong W, He B, Li Z, Song H, Shi P, et al. Vitamin D and the promoter methylation of its metabolic pathway genes in association with the risk and prognosis of tuberculosis. Clin Epigenetics. 2018;10(1):118.PubMedPubMedCentralCrossRef Wang M, Kong W, He B, Li Z, Song H, Shi P, et al. Vitamin D and the promoter methylation of its metabolic pathway genes in association with the risk and prognosis of tuberculosis. Clin Epigenetics. 2018;10(1):118.PubMedPubMedCentralCrossRef
26.
go back to reference Zhou Y, Zhao L-J, Xu X, Ye A, Travers-Gustafson D, Zhou B, et al. DNA methylation levels of CYP2R1 and CYP24A1 predict vitamin D response variation. J Steroid Biochem Mol Biol. 2014;144:207–14.PubMedCrossRef Zhou Y, Zhao L-J, Xu X, Ye A, Travers-Gustafson D, Zhou B, et al. DNA methylation levels of CYP2R1 and CYP24A1 predict vitamin D response variation. J Steroid Biochem Mol Biol. 2014;144:207–14.PubMedCrossRef
27.
go back to reference Wjst M, Heimbeck I, Kutschke D, Pukelsheim K. Epigenetic regulation of vitamin D converting enzymes. J Steroid Biochem Mol Biol. 2010;121(1):80–3.PubMedCrossRef Wjst M, Heimbeck I, Kutschke D, Pukelsheim K. Epigenetic regulation of vitamin D converting enzymes. J Steroid Biochem Mol Biol. 2010;121(1):80–3.PubMedCrossRef
28.
29.
go back to reference Suderman M, Stene LC, Bohlin J, Page CM, Holvik K, Parr CL, et al. 25-Hydroxyvitamin D in pregnancy and genome wide cord blood DNA methylation in two pregnancy cohorts (MoBa and ALSPAC). J Steroid Biochem Mol Biol. 2016;159:102–9.PubMedPubMedCentralCrossRef Suderman M, Stene LC, Bohlin J, Page CM, Holvik K, Parr CL, et al. 25-Hydroxyvitamin D in pregnancy and genome wide cord blood DNA methylation in two pregnancy cohorts (MoBa and ALSPAC). J Steroid Biochem Mol Biol. 2016;159:102–9.PubMedPubMedCentralCrossRef
30.
go back to reference Novakovic B, Galati JC, Chen A, Morley R, Craig JM, Saffery R. Maternal vitamin D predominates over genetic factors in determining neonatal circulating vitamin D concentrations. Am J Clin Nutr. 2012;96(1):188–95.PubMedCrossRef Novakovic B, Galati JC, Chen A, Morley R, Craig JM, Saffery R. Maternal vitamin D predominates over genetic factors in determining neonatal circulating vitamin D concentrations. Am J Clin Nutr. 2012;96(1):188–95.PubMedCrossRef
31.
go back to reference Harvey NC, Sheppard A, Godfrey KM, McLean C, Garratt E, Ntani G, et al. Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J Bone Miner Res. 2014;29(3):600–7.PubMedCrossRef Harvey NC, Sheppard A, Godfrey KM, McLean C, Garratt E, Ntani G, et al. Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J Bone Miner Res. 2014;29(3):600–7.PubMedCrossRef
32.
go back to reference Fetahu IS, Höbaus J, Kállay E. Vitamin D and the epigenome. Front Physiol. 2014;5(164). Fetahu IS, Höbaus J, Kállay E. Vitamin D and the epigenome. Front Physiol. 2014;5(164).
33.
go back to reference Snegarova V, Naydenova D. Vitamin D: a review of its Effects on Epigenetics and Gene Regulation. Folia Med (Plovdiv). 2020;62(4):662–7.PubMedCrossRef Snegarova V, Naydenova D. Vitamin D: a review of its Effects on Epigenetics and Gene Regulation. Folia Med (Plovdiv). 2020;62(4):662–7.PubMedCrossRef
35.
go back to reference Zhu H, Wang X, Shi H, Su S, Harshfield GA, Gutin B, et al. A Genome-Wide Methylation Study of Severe Vitamin D Deficiency in African American Adolescents. The Journal of Pediatrics. 2013;162(5):1004-9.e1. Zhu H, Wang X, Shi H, Su S, Harshfield GA, Gutin B, et al. A Genome-Wide Methylation Study of Severe Vitamin D Deficiency in African American Adolescents. The Journal of Pediatrics. 2013;162(5):1004-9.e1.
36.
go back to reference Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90.PubMedPubMedCentralCrossRef Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90.PubMedPubMedCentralCrossRef
37.
go back to reference Lee K, Pausova Z. Cigarette smoking and DNA methylation. Front Genet. 2013;4. Lee K, Pausova Z. Cigarette smoking and DNA methylation. Front Genet. 2013;4.
38.
go back to reference Kuan V, Martineau AR, Griffiths CJ, Hyppönen E, Walton R. DHCR7 mutations linked to higher vitamin D status allowed early human migration to Northern latitudes. BMC Evol Biol. 2013;13(1):144.PubMedPubMedCentralCrossRef Kuan V, Martineau AR, Griffiths CJ, Hyppönen E, Walton R. DHCR7 mutations linked to higher vitamin D status allowed early human migration to Northern latitudes. BMC Evol Biol. 2013;13(1):144.PubMedPubMedCentralCrossRef
39.
go back to reference Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19(13):2739–45.PubMedPubMedCentralCrossRef Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19(13):2739–45.PubMedPubMedCentralCrossRef
40.
go back to reference Mazahery H, von Hurst PR. Factors affecting 25-Hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients. 2015;7(7):5111–42.PubMedPubMedCentralCrossRef Mazahery H, von Hurst PR. Factors affecting 25-Hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients. 2015;7(7):5111–42.PubMedPubMedCentralCrossRef
41.
go back to reference Zittermann A, Ernst JB, Gummert JF, Börgermann J. Vitamin D supplementation, body weight and human serum 25-hydroxyvitamin D response: a systematic review. Eur J Nutr. 2014;53(2):367–74.PubMedCrossRef Zittermann A, Ernst JB, Gummert JF, Börgermann J. Vitamin D supplementation, body weight and human serum 25-hydroxyvitamin D response: a systematic review. Eur J Nutr. 2014;53(2):367–74.PubMedCrossRef
42.
go back to reference Hyppönen E, Vimaleswaran KS, Zhou A. Genetic determinants of 25-Hydroxyvitamin D concentrations and their relevance to Public Health. Nutrients. 2022;14(20):4408.PubMedPubMedCentralCrossRef Hyppönen E, Vimaleswaran KS, Zhou A. Genetic determinants of 25-Hydroxyvitamin D concentrations and their relevance to Public Health. Nutrients. 2022;14(20):4408.PubMedPubMedCentralCrossRef
43.
go back to reference Bahrami A, Mehramiz M, Ghayour-Mobarhan M, Bahrami-Taghanaki H, Sadeghi Ardekani K, Tayefi M, et al. A genetic variant in the cytochrome P450 family 2 subfamily R member 1 determines response to vitamin D supplementation. Clin Nutr. 2019;38(2):676–81.PubMedCrossRef Bahrami A, Mehramiz M, Ghayour-Mobarhan M, Bahrami-Taghanaki H, Sadeghi Ardekani K, Tayefi M, et al. A genetic variant in the cytochrome P450 family 2 subfamily R member 1 determines response to vitamin D supplementation. Clin Nutr. 2019;38(2):676–81.PubMedCrossRef
44.
go back to reference Cross HS, Lipkin M, Kállay E. Nutrients regulate the Colonic vitamin D system in mice: relevance for human Colon malignancy. J Nutr. 2006;136(3):561–4.PubMedCrossRef Cross HS, Lipkin M, Kállay E. Nutrients regulate the Colonic vitamin D system in mice: relevance for human Colon malignancy. J Nutr. 2006;136(3):561–4.PubMedCrossRef
45.
go back to reference Carlberg C, Haq A. The concept of the personal vitamin D response index. J Steroid Biochem Mol Biol. 2018;175:12–7.PubMedCrossRef Carlberg C, Haq A. The concept of the personal vitamin D response index. J Steroid Biochem Mol Biol. 2018;175:12–7.PubMedCrossRef
46.
go back to reference Neme A, Seuter S, Malinen M, Nurmi T, Tuomainen T-P, Virtanen JK, et al. In vivo transcriptome changes of human white blood cells in response to vitamin D. J Steroid Biochem Mol Biol. 2019;188:71–6.PubMedCrossRef Neme A, Seuter S, Malinen M, Nurmi T, Tuomainen T-P, Virtanen JK, et al. In vivo transcriptome changes of human white blood cells in response to vitamin D. J Steroid Biochem Mol Biol. 2019;188:71–6.PubMedCrossRef
47.
go back to reference Carlberg C, Seuter S, de Mello VDF, Schwab U, Voutilainen S, Pulkki K, et al. Primary vitamin D target genes allow a categorization of possible benefits of vitamin D3 supplementation. PLoS ONE. 2013;8(7):e71042.PubMedPubMedCentralCrossRef Carlberg C, Seuter S, de Mello VDF, Schwab U, Voutilainen S, Pulkki K, et al. Primary vitamin D target genes allow a categorization of possible benefits of vitamin D3 supplementation. PLoS ONE. 2013;8(7):e71042.PubMedPubMedCentralCrossRef
48.
go back to reference Wilfinger J, Seuter S, Tuomainen T-P, Virtanen JK, Voutilainen S, Nurmi T, et al. Primary vitamin D receptor target genes as biomarkers for the vitamin D3 status in the hematopoietic system. J Nutr Biochem. 2014;25(8):875–84.PubMedCrossRef Wilfinger J, Seuter S, Tuomainen T-P, Virtanen JK, Voutilainen S, Nurmi T, et al. Primary vitamin D receptor target genes as biomarkers for the vitamin D3 status in the hematopoietic system. J Nutr Biochem. 2014;25(8):875–84.PubMedCrossRef
49.
go back to reference Ryynänen J, Neme A, Tuomainen T-P, Virtanen JK, Voutilainen S, Nurmi T, et al. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Mol Nutr Food Res. 2014;58(10):2036–45.PubMedCrossRef Ryynänen J, Neme A, Tuomainen T-P, Virtanen JK, Voutilainen S, Nurmi T, et al. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Mol Nutr Food Res. 2014;58(10):2036–45.PubMedCrossRef
50.
go back to reference Saksa N, Neme A, Ryynänen J, Uusitupa M, de Mello VDF, Voutilainen S, et al. Dissecting high from low responders in a vitamin D3 intervention study. J Steroid Biochem Mol Biol. 2015;148:275–82.PubMedCrossRef Saksa N, Neme A, Ryynänen J, Uusitupa M, de Mello VDF, Voutilainen S, et al. Dissecting high from low responders in a vitamin D3 intervention study. J Steroid Biochem Mol Biol. 2015;148:275–82.PubMedCrossRef
51.
go back to reference Vukić M, Neme A, Seuter S, Saksa N, de Mello VDF, Nurmi T, et al. Relevance of vitamin D receptor target genes for monitoring the vitamin D responsiveness of primary human cells. PLoS ONE. 2015;10(4):e0124339.PubMedPubMedCentralCrossRef Vukić M, Neme A, Seuter S, Saksa N, de Mello VDF, Nurmi T, et al. Relevance of vitamin D receptor target genes for monitoring the vitamin D responsiveness of primary human cells. PLoS ONE. 2015;10(4):e0124339.PubMedPubMedCentralCrossRef
52.
go back to reference Seuter S, Virtanen JK, Nurmi T, Pihlajamäki J, Mursu J, Voutilainen S, et al. Molecular evaluation of vitamin D responsiveness of healthy young adults. J Steroid Biochem Mol Biol. 2017;174:314–21.PubMedCrossRef Seuter S, Virtanen JK, Nurmi T, Pihlajamäki J, Mursu J, Voutilainen S, et al. Molecular evaluation of vitamin D responsiveness of healthy young adults. J Steroid Biochem Mol Biol. 2017;174:314–21.PubMedCrossRef
Metadata
Title
Effect of epigenetics on vitamin D levels: a systematic review until December 2020
Authors
Ali Forouhari
Motahar Heidari-Beni
Shaahin Veisi
Parnian Poursafa
Roya Kelishadi
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Epigenetics
Published in
Archives of Public Health / Issue 1/2023
Electronic ISSN: 2049-3258
DOI
https://doi.org/10.1186/s13690-023-01122-2

Other articles of this Issue 1/2023

Archives of Public Health 1/2023 Go to the issue