Skip to main content
Top
Published in: BMC Medicine 1/2023

Open Access 01-12-2023 | Epigenetics | Research article

A novel approach to risk exposure and epigenetics—the use of multidimensional context to gain insights into the early origins of cardiometabolic and neurocognitive health

Authors: Jane W. Y. Ng, Janine F. Felix, David M. Olson

Published in: BMC Medicine | Issue 1/2023

Login to get access

Abstract

Background

Each mother–child dyad represents a unique combination of genetic and environmental factors. This constellation of variables impacts the expression of countless genes. Numerous studies have uncovered changes in DNA methylation (DNAm), a form of epigenetic regulation, in offspring related to maternal risk factors. How these changes work together to link maternal-child risks to childhood cardiometabolic and neurocognitive traits remains unknown. This question is a key research priority as such traits predispose to future non-communicable diseases (NCDs). We propose viewing risk and the genome through a multidimensional lens to identify common DNAm patterns shared among diverse risk profiles.

Methods

We identified multifactorial Maternal Risk Profiles (MRPs) generated from population-based data (n = 15,454, Avon Longitudinal Study of Parents and Children (ALSPAC)). Using cord blood HumanMethylation450 BeadChip data, we identified genome-wide patterns of DNAm that co-vary with these MRPs. We tested the prospective relation of these DNAm patterns (n = 914) to future outcomes using decision tree analysis. We then tested the reproducibility of these patterns in (1) DNAm data at age 7 and 17 years within the same cohort (n = 973 and 974, respectively) and (2) cord DNAm in an independent cohort, the Generation R Study (n = 686).

Results

We identified twenty MRP-related DNAm patterns at birth in ALSPAC. Four were prospectively related to cardiometabolic and/or neurocognitive childhood outcomes. These patterns were replicated in DNAm data from blood collected at later ages. Three of these patterns were externally validated in cord DNAm data in Generation R. Compared to previous literature, DNAm patterns exhibited novel spatial distribution across the genome that intersects with chromatin functional and tissue-specific signatures.

Conclusions

To our knowledge, we are the first to leverage multifactorial population-wide data to detect patterns of variability in DNAm. This context-based approach decreases biases stemming from overreliance on specific samples or variables. We discovered molecular patterns demonstrating prospective and replicable relations to complex traits. Moreover, results suggest that patterns harbour a genome-wide organisation specific to chromatin regulation and target tissues. These preliminary findings warrant further investigation to better reflect the reality of human context in molecular studies of NCDs.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Hypponen E, Smith GD, Power C. Effects of grandmothers’ smoking in pregnancy on birth weight: intergenerational cohort study. BMJ (Clinical research ed). 2003;327(7420):898.PubMedCrossRef Hypponen E, Smith GD, Power C. Effects of grandmothers’ smoking in pregnancy on birth weight: intergenerational cohort study. BMJ (Clinical research ed). 2003;327(7420):898.PubMedCrossRef
2.
go back to reference Sugden K, Hannon EJ, Arseneault L, Belsky DW, Corcoran DL, Fisher HL, et al. Patterns of reliability: assessing the reproducibility and integrity of DNA methylation measurement. Patterns. 2020;1(2):100014. Sugden K, Hannon EJ, Arseneault L, Belsky DW, Corcoran DL, Fisher HL, et al. Patterns of reliability: assessing the reproducibility and integrity of DNA methylation measurement. Patterns. 2020;1(2):100014.
3.
go back to reference Barker DJP. Maternal and fetal origins of cardiovascular disease. In: Fowkes FGR, editor. Epidemiology of Peripheral Vascular Disease. London: Springer; 1991. p. 247–54.CrossRef Barker DJP. Maternal and fetal origins of cardiovascular disease. In: Fowkes FGR, editor. Epidemiology of Peripheral Vascular Disease. London: Springer; 1991. p. 247–54.CrossRef
4.
go back to reference Knopik VS, Marceau K, Bidwell LC, Rolan E. Prenatal substance exposure and offspring development: does DNA methylation play a role? Neurotoxicol Teratol. 2019;71:50–63.PubMedCrossRef Knopik VS, Marceau K, Bidwell LC, Rolan E. Prenatal substance exposure and offspring development: does DNA methylation play a role? Neurotoxicol Teratol. 2019;71:50–63.PubMedCrossRef
5.
go back to reference Akhabir L, Stringer R, Desai D, Mandhane PJ, Azad MB, Moraes TJ, et al. DNA methylation changes in cord blood and the developmental origins of health and disease - a systematic review and replication study. BMC Genomics. 2022;23(1):221.PubMedPubMedCentralCrossRef Akhabir L, Stringer R, Desai D, Mandhane PJ, Azad MB, Moraes TJ, et al. DNA methylation changes in cord blood and the developmental origins of health and disease - a systematic review and replication study. BMC Genomics. 2022;23(1):221.PubMedPubMedCentralCrossRef
6.
go back to reference Luo Y, Lu X, Xie H. Dynamic Alu methylation during normal development, aging, and tumorigenesis. BioMed Res Int. 2014;2014:784706. Luo Y, Lu X, Xie H. Dynamic Alu methylation during normal development, aging, and tumorigenesis. BioMed Res Int. 2014;2014:784706.
7.
go back to reference Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol. 2017;18(12):717–27.PubMedCrossRef Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol. 2017;18(12):717–27.PubMedCrossRef
8.
go back to reference Doku DT, Acacio-Claro PJ, Koivusilta L, Rimpelä A. Social determinants of adolescent smoking over three generations. Scandinavian Journal of Public Health. 2020;48(6):646–56.PubMedCrossRef Doku DT, Acacio-Claro PJ, Koivusilta L, Rimpelä A. Social determinants of adolescent smoking over three generations. Scandinavian Journal of Public Health. 2020;48(6):646–56.PubMedCrossRef
9.
go back to reference Erickson AC, Arbour LT. Heavy smoking during pregnancy as a marker for other risk factors of adverse birth outcomes: a population-based study in British Columbia, Canada. BMC Public Health. 2012;12(1):102.PubMedPubMedCentralCrossRef Erickson AC, Arbour LT. Heavy smoking during pregnancy as a marker for other risk factors of adverse birth outcomes: a population-based study in British Columbia, Canada. BMC Public Health. 2012;12(1):102.PubMedPubMedCentralCrossRef
10.
go back to reference Cosin-Tomas M, Cilleros-Portet A, Aguilar-Lacasaña S, Fernandez-Jimenez N, Bustamante M. Prenatal maternal smoke, DNA methylation, and multi-omics of tissues and child health. Curr Environ Health Rep. 2022;9(3):502–12.PubMedPubMedCentralCrossRef Cosin-Tomas M, Cilleros-Portet A, Aguilar-Lacasaña S, Fernandez-Jimenez N, Bustamante M. Prenatal maternal smoke, DNA methylation, and multi-omics of tissues and child health. Curr Environ Health Rep. 2022;9(3):502–12.PubMedPubMedCentralCrossRef
11.
go back to reference Li L, Peters H, Gama A, Carvalhal MI, Nogueira HG, Rosado-Marques V, et al. Maternal smoking in pregnancy association with childhood adiposity and blood pressure. Pediatr Obes. 2016;11(3):202–9.PubMedCrossRef Li L, Peters H, Gama A, Carvalhal MI, Nogueira HG, Rosado-Marques V, et al. Maternal smoking in pregnancy association with childhood adiposity and blood pressure. Pediatr Obes. 2016;11(3):202–9.PubMedCrossRef
13.
go back to reference Gilliland FD, Li Y-F, Peters JM. Effects of maternal smoking during pregnancy and environmental tobacco smoke on asthma and wheezing in children. Am J Respir Crit Care Med. 2001;163(2):429–36.PubMedCrossRef Gilliland FD, Li Y-F, Peters JM. Effects of maternal smoking during pregnancy and environmental tobacco smoke on asthma and wheezing in children. Am J Respir Crit Care Med. 2001;163(2):429–36.PubMedCrossRef
14.
go back to reference Biederman J, Monuteaux MC, Faraone SV, Mick E. Parsing the associations between prenatal exposure to nicotine and offspring psychopathology in a nonreferred sample. The Journal of adolescent health : official publication of the Society for Adolescent Medicine. 2009;45(2):142–8.PubMedCrossRef Biederman J, Monuteaux MC, Faraone SV, Mick E. Parsing the associations between prenatal exposure to nicotine and offspring psychopathology in a nonreferred sample. The Journal of adolescent health : official publication of the Society for Adolescent Medicine. 2009;45(2):142–8.PubMedCrossRef
15.
go back to reference Leybovitz-Haleluya N, Wainstock T, Landau D, Sheiner E. Maternal smoking during pregnancy and the risk of pediatric cardiovascular diseases of the offspring: a population-based cohort study with up to 18-years of follow up. Reproductive toxicology (Elmsford, NY). 2018;78:69–74.CrossRef Leybovitz-Haleluya N, Wainstock T, Landau D, Sheiner E. Maternal smoking during pregnancy and the risk of pediatric cardiovascular diseases of the offspring: a population-based cohort study with up to 18-years of follow up. Reproductive toxicology (Elmsford, NY). 2018;78:69–74.CrossRef
17.
go back to reference Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the ‘children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2013;42(1):111–27.PubMedCrossRef Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the ‘children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2013;42(1):111–27.PubMedCrossRef
18.
go back to reference Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.PubMedCrossRef Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.PubMedCrossRef
19.
go back to reference Cnattingius S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine & Tobacco Res. 2004;6(Suppl_2):S125–40.CrossRef Cnattingius S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine & Tobacco Res. 2004;6(Suppl_2):S125–40.CrossRef
20.
go back to reference Holloway AC, Cuu DQ, Morrison KM, Gerstein HC, Tarnopolsky MA. Transgenerational effects of fetal and neonatal exposure to nicotine. Endocrine. 2007;31(3):254–9.PubMedCrossRef Holloway AC, Cuu DQ, Morrison KM, Gerstein HC, Tarnopolsky MA. Transgenerational effects of fetal and neonatal exposure to nicotine. Endocrine. 2007;31(3):254–9.PubMedCrossRef
21.
go back to reference Bruin JE, Gerstein HC, Holloway AC. Long-term consequences of fetal and neonatal nicotine exposure: a critical review. Toxicological sciences : an official journal of the Society of Toxicology. 2010;116(2):364–74.PubMedCrossRef Bruin JE, Gerstein HC, Holloway AC. Long-term consequences of fetal and neonatal nicotine exposure: a critical review. Toxicological sciences : an official journal of the Society of Toxicology. 2010;116(2):364–74.PubMedCrossRef
22.
go back to reference Paternoster L, Howe LD, Tilling K, Weedon MN, Freathy RM, Frayling TM, et al. Adult height variants affect birth length and growth rate in children. Hum Mol Genet. 2011;20(20):4069–75.PubMedPubMedCentralCrossRef Paternoster L, Howe LD, Tilling K, Weedon MN, Freathy RM, Frayling TM, et al. Adult height variants affect birth length and growth rate in children. Hum Mol Genet. 2011;20(20):4069–75.PubMedPubMedCentralCrossRef
23.
24.
go back to reference Relton CL, Gaunt T, McArdle W, Ho K, Duggirala A, Shihab H, et al. Data resource profile: accessible resource for integrated epigenomic studies (ARIES). Int J Epidemiol. 2015;44(4):1181–90.PubMedCrossRef Relton CL, Gaunt T, McArdle W, Ho K, Duggirala A, Shihab H, et al. Data resource profile: accessible resource for integrated epigenomic studies (ARIES). Int J Epidemiol. 2015;44(4):1181–90.PubMedCrossRef
25.
go back to reference Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van Ijzendoorn MH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243–64.PubMedCrossRef Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van Ijzendoorn MH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243–64.PubMedCrossRef
26.
go back to reference Duda RO, Hart PE, Stork DG. Pattern Classification Wiley. New York: Wiley; 2001. p. 680. Duda RO, Hart PE, Stork DG. Pattern Classification Wiley. New York: Wiley; 2001. p. 680.
27.
go back to reference Team RC. R: a language and environment for statistical computing. 2013. Team RC. R: a language and environment for statistical computing. 2013.
28.
go back to reference Husson F, Josse J, Le S, Mazet J, Husson MF. Package ‘FactoMineR.’ An R package. 2016;96:698. Husson F, Josse J, Le S, Mazet J, Husson MF. Package ‘FactoMineR.’ An R package. 2016;96:698.
30.
go back to reference Rai B. Feature selection and predictive modeling of housing data using random forest. World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering. 2017;11(4):919–23. Rai B. Feature selection and predictive modeling of housing data using random forest. World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering. 2017;11(4):919–23.
31.
go back to reference Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Soft. 2010;36(11):1–13. Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Soft. 2010;36(11):1–13.
32.
go back to reference Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425–31.PubMedPubMedCentralCrossRef Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425–31.PubMedPubMedCentralCrossRef
33.
go back to reference Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, et al. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2014;122(10):1147–53.PubMedPubMedCentralCrossRef Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, et al. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2014;122(10):1147–53.PubMedPubMedCentralCrossRef
34.
go back to reference Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén S-E, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE. 2012;7(7): e41361.PubMedPubMedCentralCrossRef Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén S-E, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE. 2012;7(7): e41361.PubMedPubMedCentralCrossRef
35.
go back to reference Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26.CrossRef Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26.CrossRef
36.
go back to reference Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics. 2014;30(3):428–30.PubMedCrossRef Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics. 2014;30(3):428–30.PubMedCrossRef
37.
go back to reference Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A, Suderman M, et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2015;44(4):1288–304.PubMedPubMedCentralCrossRef Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A, Suderman M, et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2015;44(4):1288–304.PubMedPubMedCentralCrossRef
38.
go back to reference Macleod J, Hickman M, Bowen E, Alati R, Tilling K, Smith GD. Parental drug use, early adversities, later childhood problems and children’s use of tobacco and alcohol at age 10: birth cohort study. Addiction. 2008;103(10):1731–43.PubMedCrossRef Macleod J, Hickman M, Bowen E, Alati R, Tilling K, Smith GD. Parental drug use, early adversities, later childhood problems and children’s use of tobacco and alcohol at age 10: birth cohort study. Addiction. 2008;103(10):1731–43.PubMedCrossRef
39.
go back to reference Washbrook E, Propper C, Sayal K. Pre-school hyperactivity/attention problems and educational outcomes in adolescence: prospective longitudinal study. Br J Psychiatry. 2013;203(4):265–71.PubMedCrossRef Washbrook E, Propper C, Sayal K. Pre-school hyperactivity/attention problems and educational outcomes in adolescence: prospective longitudinal study. Br J Psychiatry. 2013;203(4):265–71.PubMedCrossRef
40.
go back to reference Odintsova VV, Rebattu V, Hagenbeek FA, Pool R, Beck JJ, Ehli EA, et al. Predicting complex traits and exposures from polygenic scores and blood and buccal DNA methylation profiles. Front Psychiatry. 2021;12: 688464.PubMedPubMedCentralCrossRef Odintsova VV, Rebattu V, Hagenbeek FA, Pool R, Beck JJ, Ehli EA, et al. Predicting complex traits and exposures from polygenic scores and blood and buccal DNA methylation profiles. Front Psychiatry. 2021;12: 688464.PubMedPubMedCentralCrossRef
41.
go back to reference Sala C, Di Lena P, Fernandes Durso D, Prodi A, Castellani G, Nardini C. Evaluation of pre-processing on the meta-analysis of DNA methylation data from the Illumina HumanMethylation450 BeadChip platform. PLoS ONE. 2020;15(3): e0229763.PubMedPubMedCentralCrossRef Sala C, Di Lena P, Fernandes Durso D, Prodi A, Castellani G, Nardini C. Evaluation of pre-processing on the meta-analysis of DNA methylation data from the Illumina HumanMethylation450 BeadChip platform. PLoS ONE. 2020;15(3): e0229763.PubMedPubMedCentralCrossRef
42.
go back to reference Teschendorff AE, Relton CL. Statistical and integrative system-level analysis of DNA methylation data. Nat Rev Genet. 2018;19(3):129.PubMedCrossRef Teschendorff AE, Relton CL. Statistical and integrative system-level analysis of DNA methylation data. Nat Rev Genet. 2018;19(3):129.PubMedCrossRef
43.
go back to reference Northstone K, Lewcock M, Groom A, Boyd A, Macleod J, Timpson N, et al. The Avon Longitudinal Study of Parents and Children (ALSPAC): an update on the enrolled sample of index children in 2019. Wellcome Open Res. 2019;4:51.PubMedPubMedCentralCrossRef Northstone K, Lewcock M, Groom A, Boyd A, Macleod J, Timpson N, et al. The Avon Longitudinal Study of Parents and Children (ALSPAC): an update on the enrolled sample of index children in 2019. Wellcome Open Res. 2019;4:51.PubMedPubMedCentralCrossRef
44.
go back to reference Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. The American Journal of Human Genetics. 2016;98(4):680–96.PubMedCrossRef Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. The American Journal of Human Genetics. 2016;98(4):680–96.PubMedCrossRef
45.
go back to reference Grant CE, Bailey TL. XSTREME: comprehensive motif analysis of biological sequence datasets. BioRxiv. 2021.09. 02.458722. Grant CE, Bailey TL. XSTREME: comprehensive motif analysis of biological sequence datasets. BioRxiv. 2021.09. 02.458722.
46.
go back to reference Sheffield NC, Bock C. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. Bioinformatics. 2016;32(4):587–9.PubMedCrossRef Sheffield NC, Bock C. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. Bioinformatics. 2016;32(4):587–9.PubMedCrossRef
47.
go back to reference Sheffield NC, Thurman RE, Song L, Safi A, Stamatoyannopoulos JA, Lenhard B, et al. Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. Genome Res. 2013;23(5):777–88.PubMedPubMedCentralCrossRef Sheffield NC, Thurman RE, Song L, Safi A, Stamatoyannopoulos JA, Lenhard B, et al. Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. Genome Res. 2013;23(5):777–88.PubMedPubMedCentralCrossRef
48.
go back to reference Richmond RC, Simpkin AJ, Woodward G, Gaunt TR, Lyttleton O, McArdle WL, et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet. 2015;24(8):2201–17.PubMedCrossRef Richmond RC, Simpkin AJ, Woodward G, Gaunt TR, Lyttleton O, McArdle WL, et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet. 2015;24(8):2201–17.PubMedCrossRef
49.
go back to reference Bakulski KM, Feinberg JI, Andrews SV, Yang J, Brown S, L McKenney S, et al. DNA methylation of cord blood cell types: applications for mixed cell birth studies. Epigenetics. 2016;11(5):354–62.PubMedPubMedCentralCrossRef Bakulski KM, Feinberg JI, Andrews SV, Yang J, Brown S, L McKenney S, et al. DNA methylation of cord blood cell types: applications for mixed cell birth studies. Epigenetics. 2016;11(5):354–62.PubMedPubMedCentralCrossRef
50.
go back to reference Suderman M, Simpkin A, Sharp G, Gaunt T, Lyttleton O, McArdle W, et al. Sex-associated autosomal DNA methylation differences are wide-spread and stable throughout childhood. Biorxiv. 2017:118265. Suderman M, Simpkin A, Sharp G, Gaunt T, Lyttleton O, McArdle W, et al. Sex-associated autosomal DNA methylation differences are wide-spread and stable throughout childhood. Biorxiv. 2017:118265.
51.
go back to reference Lee KWK, Richmond R, Hu P, French L, Shin J, Bourdon C, et al. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect. 2014;123(2):193–9.PubMedPubMedCentralCrossRef Lee KWK, Richmond R, Hu P, French L, Shin J, Bourdon C, et al. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect. 2014;123(2):193–9.PubMedPubMedCentralCrossRef
52.
go back to reference Wiklund P, Karhunen V, Richmond RC, Parmar P, Rodriguez A, De Silva M, et al. DNA methylation links prenatal smoking exposure to later life health outcomes in offspring. Clin Epigenetics. 2019;11(1):97.PubMedPubMedCentralCrossRef Wiklund P, Karhunen V, Richmond RC, Parmar P, Rodriguez A, De Silva M, et al. DNA methylation links prenatal smoking exposure to later life health outcomes in offspring. Clin Epigenetics. 2019;11(1):97.PubMedPubMedCentralCrossRef
53.
go back to reference Kupers LK, Xu X, Jankipersadsing SA, Vaez A, la Bastide-van GS, Scholtens S, et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol. 2015;44(4):1224–37.PubMedPubMedCentralCrossRef Kupers LK, Xu X, Jankipersadsing SA, Vaez A, la Bastide-van GS, Scholtens S, et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol. 2015;44(4):1224–37.PubMedPubMedCentralCrossRef
54.
go back to reference van Walraven C, Hart RG. Leave ’em alone - why continuous variables should be analyzed as such. Neuroepidemiology. 2008;30(3):138–9.PubMedCrossRef van Walraven C, Hart RG. Leave ’em alone - why continuous variables should be analyzed as such. Neuroepidemiology. 2008;30(3):138–9.PubMedCrossRef
55.
go back to reference Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc. 1984;79(387):516–24.CrossRef Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc. 1984;79(387):516–24.CrossRef
56.
go back to reference Drake AJ, Walker BR. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol. 2004;180(1):1–16.PubMedCrossRef Drake AJ, Walker BR. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol. 2004;180(1):1–16.PubMedCrossRef
57.
go back to reference Buck JM, Sanders KN, Wageman CR, Knopik VS, Stitzel JA, O’Neill HC. Developmental nicotine exposure precipitates multigenerational maternal transmission of nicotine preference and ADHD-like behavioral, rhythmometric, neuropharmacological, and epigenetic anomalies in adolescent mice. Neuropharmacology. 2019;149:66–82.PubMedPubMedCentralCrossRef Buck JM, Sanders KN, Wageman CR, Knopik VS, Stitzel JA, O’Neill HC. Developmental nicotine exposure precipitates multigenerational maternal transmission of nicotine preference and ADHD-like behavioral, rhythmometric, neuropharmacological, and epigenetic anomalies in adolescent mice. Neuropharmacology. 2019;149:66–82.PubMedPubMedCentralCrossRef
58.
go back to reference Serpeloni F, Radtke K, de Assis SG, Henning F, Nätt D, Elbert T. Grandmaternal stress during pregnancy and DNA methylation of the third generation: an epigenome-wide association study. Transl Psychiatry. 2017;7(8): e1202.PubMedPubMedCentralCrossRef Serpeloni F, Radtke K, de Assis SG, Henning F, Nätt D, Elbert T. Grandmaternal stress during pregnancy and DNA methylation of the third generation: an epigenome-wide association study. Transl Psychiatry. 2017;7(8): e1202.PubMedPubMedCentralCrossRef
59.
go back to reference Yang C, Li C, Wang Q, Chung D, Zhao H. Implications of pleiotropy: challenges and opportunities for mining Big Data in biomedicine. Front Genet. 2015;6:229.PubMedPubMedCentralCrossRef Yang C, Li C, Wang Q, Chung D, Zhao H. Implications of pleiotropy: challenges and opportunities for mining Big Data in biomedicine. Front Genet. 2015;6:229.PubMedPubMedCentralCrossRef
61.
go back to reference Vattikuti S, Guo J, Chow CC. Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet. 2012;8(3): e1002637.PubMedPubMedCentralCrossRef Vattikuti S, Guo J, Chow CC. Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet. 2012;8(3): e1002637.PubMedPubMedCentralCrossRef
62.
go back to reference Shah S, Bonder MJ, Marioni RE, Zhu Z, McRae AF, Zhernakova A, et al. Improving phenotypic prediction by combining genetic and epigenetic associations. Am J Hum Genet. 2015;97(1):75–85.PubMedPubMedCentralCrossRef Shah S, Bonder MJ, Marioni RE, Zhu Z, McRae AF, Zhernakova A, et al. Improving phenotypic prediction by combining genetic and epigenetic associations. Am J Hum Genet. 2015;97(1):75–85.PubMedPubMedCentralCrossRef
63.
go back to reference Cerutti J, Lussier AA, Zhu Y, Liu J, Dunn EC. Associations between indicators of socioeconomic position and DNA methylation: a scoping review. Clin Epigenetics. 2021;13(1):221.PubMedPubMedCentralCrossRef Cerutti J, Lussier AA, Zhu Y, Liu J, Dunn EC. Associations between indicators of socioeconomic position and DNA methylation: a scoping review. Clin Epigenetics. 2021;13(1):221.PubMedPubMedCentralCrossRef
64.
go back to reference Azar N, Booij L. DNA methylation as a mediator in the association between prenatal maternal stress and child mental health outcomes: Current state of knowledge. J Affect Disord. 2022;319:142–63.PubMedCrossRef Azar N, Booij L. DNA methylation as a mediator in the association between prenatal maternal stress and child mental health outcomes: Current state of knowledge. J Affect Disord. 2022;319:142–63.PubMedCrossRef
65.
go back to reference Laubach ZM, Perng W, Cardenas A, Rifas-Shiman SL, Oken E, DeMeo D, et al. Socioeconomic status and DNA methylation from birth through mid-childhood: a prospective study in Project Viva. Epigenomics. 2019;11(12):1413–27.PubMedPubMedCentralCrossRef Laubach ZM, Perng W, Cardenas A, Rifas-Shiman SL, Oken E, DeMeo D, et al. Socioeconomic status and DNA methylation from birth through mid-childhood: a prospective study in Project Viva. Epigenomics. 2019;11(12):1413–27.PubMedPubMedCentralCrossRef
66.
go back to reference Santos HP, Bhattacharya A, Martin EM, Addo K, Psioda M, Smeester L, et al. Epigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status. Epigenetics. 2019;14(8):751–65.PubMedPubMedCentralCrossRef Santos HP, Bhattacharya A, Martin EM, Addo K, Psioda M, Smeester L, et al. Epigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status. Epigenetics. 2019;14(8):751–65.PubMedPubMedCentralCrossRef
67.
go back to reference Provenzi L, Grumi S, Altieri L, Bensi G, Bertazzoli E, Biasucci G, et al. Prenatal maternal stress during the COVID-19 pandemic and infant regulatory capacity at 3 months: a longitudinal study. Dev Psychopathol. 2023;35(1):35–43.PubMedCrossRef Provenzi L, Grumi S, Altieri L, Bensi G, Bertazzoli E, Biasucci G, et al. Prenatal maternal stress during the COVID-19 pandemic and infant regulatory capacity at 3 months: a longitudinal study. Dev Psychopathol. 2023;35(1):35–43.PubMedCrossRef
68.
go back to reference Polinski KJ, Putnick DL, Robinson SL, Schliep KC, Silver RM, Guan W, et al. Periconception and prenatal exposure to maternal perceived stress and cord blood DNA methylation. Epigenetics Insights. 2022;15:25168657221082044.PubMedPubMedCentralCrossRef Polinski KJ, Putnick DL, Robinson SL, Schliep KC, Silver RM, Guan W, et al. Periconception and prenatal exposure to maternal perceived stress and cord blood DNA methylation. Epigenetics Insights. 2022;15:25168657221082044.PubMedPubMedCentralCrossRef
69.
go back to reference Schrott R, Song A, Ladd-Acosta C. Epigenetics as a biomarker for early-life environmental exposure. Curr Environ Health Rep. 2022;9(4):604–24.PubMedCrossRef Schrott R, Song A, Ladd-Acosta C. Epigenetics as a biomarker for early-life environmental exposure. Curr Environ Health Rep. 2022;9(4):604–24.PubMedCrossRef
70.
go back to reference Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining explanations: an overview of interpretability of machine learning. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). Turin; 2018. p. 80–9. Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining explanations: an overview of interpretability of machine learning. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). Turin; 2018. p. 80–9.
71.
go back to reference Li G, Liu Y, Zhang Y, Kubo N, Yu M, Fang R, et al. Joint profiling of DNA methylation and chromatin architecture in single cells. Nat Methods. 2019;16(10):991–3.PubMedPubMedCentralCrossRef Li G, Liu Y, Zhang Y, Kubo N, Yu M, Fang R, et al. Joint profiling of DNA methylation and chromatin architecture in single cells. Nat Methods. 2019;16(10):991–3.PubMedPubMedCentralCrossRef
72.
go back to reference Xue Y, Yang Y, Tian H, Quan H, Liu S, Zhang L, et al. Computational characterization of domain-segregated 3D chromatin structure and segmented DNA methylation status in carcinogenesis. Mol Oncol. 2022;16(3):699–716.PubMedCrossRef Xue Y, Yang Y, Tian H, Quan H, Liu S, Zhang L, et al. Computational characterization of domain-segregated 3D chromatin structure and segmented DNA methylation status in carcinogenesis. Mol Oncol. 2022;16(3):699–716.PubMedCrossRef
73.
go back to reference Liu S, Zhang L, Quan H, Tian H, Meng L, Yang L, et al. From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective. Nucleic Acids Res. 2018;46(18):9367–83.PubMedPubMedCentralCrossRef Liu S, Zhang L, Quan H, Tian H, Meng L, Yang L, et al. From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective. Nucleic Acids Res. 2018;46(18):9367–83.PubMedPubMedCentralCrossRef
74.
go back to reference Zhang L, Xie WJ, Liu S, Meng L, Gu C, Gao YQ. DNA methylation landscape reflects the spatial organization of chromatin in different cells. Biophys J. 2017;113(7):1395–404.PubMedPubMedCentralCrossRef Zhang L, Xie WJ, Liu S, Meng L, Gu C, Gao YQ. DNA methylation landscape reflects the spatial organization of chromatin in different cells. Biophys J. 2017;113(7):1395–404.PubMedPubMedCentralCrossRef
75.
76.
go back to reference Xu H, Zhang S, Yi X, Plewczynski D, Li MJ. Exploring 3D chromatin contacts in gene regulation: The evolution of approaches for the identification of functional enhancer-promoter interaction. Comput Struct Biotechnol J. 2020;18:58–570.CrossRef Xu H, Zhang S, Yi X, Plewczynski D, Li MJ. Exploring 3D chromatin contacts in gene regulation: The evolution of approaches for the identification of functional enhancer-promoter interaction. Comput Struct Biotechnol J. 2020;18:58–570.CrossRef
77.
go back to reference Bacalini MG, Boattini A, Gentilini D, Giampieri E, Pirazzini C, Giuliani C, et al. A meta-analysis on age-associated changes in blood DNA methylation: results from an original analysis pipeline for Infinium 450k data. Aging. 2015;7(2):97–109.PubMedPubMedCentralCrossRef Bacalini MG, Boattini A, Gentilini D, Giampieri E, Pirazzini C, Giuliani C, et al. A meta-analysis on age-associated changes in blood DNA methylation: results from an original analysis pipeline for Infinium 450k data. Aging. 2015;7(2):97–109.PubMedPubMedCentralCrossRef
79.
go back to reference Dhanasekaran K, Kumari S, Kanduri C. Noncoding RNAs in chromatin organization and transcription regulation: an epigenetic view. Subcell Biochem. 2013;61:343–72.PubMedCrossRef Dhanasekaran K, Kumari S, Kanduri C. Noncoding RNAs in chromatin organization and transcription regulation: an epigenetic view. Subcell Biochem. 2013;61:343–72.PubMedCrossRef
80.
go back to reference Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics & chromatin. 2015;8:57–4 eCollection 2015.CrossRef Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics & chromatin. 2015;8:57–4 eCollection 2015.CrossRef
82.
go back to reference Ju D, Hui D, Hammond DA, Wonkam A, Tishkoff SA. Importance of including non-European populations in large human genetic studies to enhance precision medicine. Annu Rev Biomed Data Sci. 2022;5(1):321–39.PubMedPubMedCentralCrossRef Ju D, Hui D, Hammond DA, Wonkam A, Tishkoff SA. Importance of including non-European populations in large human genetic studies to enhance precision medicine. Annu Rev Biomed Data Sci. 2022;5(1):321–39.PubMedPubMedCentralCrossRef
83.
go back to reference Ragland DR. Dichotomizing continuous outcome variables: dependence of the magnitude of association and statistical power on the cutpoint. Epidemiology. 1992;3(5):434–40.PubMedCrossRef Ragland DR. Dichotomizing continuous outcome variables: dependence of the magnitude of association and statistical power on the cutpoint. Epidemiology. 1992;3(5):434–40.PubMedCrossRef
84.
go back to reference Homberg JR, Lesch KP. Looking on the bright side of serotonin transporter gene variation. Biol Psychiatry. 2011;69(6):513–9.PubMedCrossRef Homberg JR, Lesch KP. Looking on the bright side of serotonin transporter gene variation. Biol Psychiatry. 2011;69(6):513–9.PubMedCrossRef
85.
go back to reference Stunnenberg HG, Abrignani S, Adams D, de Almeida M, Altucci L, Amin V, et al. The International Human Epigenome Consortium: a blueprint for scientific collaboration and discovery. Cell. 2016;167(5):1145–9.PubMedCrossRef Stunnenberg HG, Abrignani S, Adams D, de Almeida M, Altucci L, Amin V, et al. The International Human Epigenome Consortium: a blueprint for scientific collaboration and discovery. Cell. 2016;167(5):1145–9.PubMedCrossRef
86.
go back to reference Roadmap EC, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317.CrossRef Roadmap EC, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317.CrossRef
87.
go back to reference Van Eyndhoven S. Tensor-based Blind Source Separation for Structured EEG-fMRI Data Fusion. 2020. Van Eyndhoven S. Tensor-based Blind Source Separation for Structured EEG-fMRI Data Fusion. 2020.
88.
go back to reference Mekruksavanich S, Jitpattanakul A. Biometric user identification based on human activity recognition using wearable sensors: an experiment using deep learning models. Electronics. 2021;10(3):308.CrossRef Mekruksavanich S, Jitpattanakul A. Biometric user identification based on human activity recognition using wearable sensors: an experiment using deep learning models. Electronics. 2021;10(3):308.CrossRef
89.
go back to reference Nohara Y, Matsumoto K, Soejima H, Nakashima N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput Methods Programs Biomed. 2022;214: 106584.PubMedCrossRef Nohara Y, Matsumoto K, Soejima H, Nakashima N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput Methods Programs Biomed. 2022;214: 106584.PubMedCrossRef
90.
go back to reference Rauschert S, Melton PE, Heiskala A, Karhunen V, Burdge G, Craig JM, et al. Machine learning-based DNA methylation score for fetal exposure to maternal smoking: development and validation in samples collected from adolescents and adults. Environ Health Perspect. 2020;128(9): 097003.PubMedPubMedCentralCrossRef Rauschert S, Melton PE, Heiskala A, Karhunen V, Burdge G, Craig JM, et al. Machine learning-based DNA methylation score for fetal exposure to maternal smoking: development and validation in samples collected from adolescents and adults. Environ Health Perspect. 2020;128(9): 097003.PubMedPubMedCentralCrossRef
91.
go back to reference Uher R. The implications of gene-environment interactions in depression: will cause inform cure? Mol Psychiatry. 2008;13(12):1070–8.PubMedCrossRef Uher R. The implications of gene-environment interactions in depression: will cause inform cure? Mol Psychiatry. 2008;13(12):1070–8.PubMedCrossRef
92.
go back to reference Xu Y, Wu M, Ma S. Multidimensional molecular measurements–environment interaction analysis for disease outcomes. Biometrics. 2022;78(4):1542–54.PubMedCrossRef Xu Y, Wu M, Ma S. Multidimensional molecular measurements–environment interaction analysis for disease outcomes. Biometrics. 2022;78(4):1542–54.PubMedCrossRef
93.
go back to reference Mordaunt CE, Mouat JS, Schmidt RJ, LaSalle JM. Comethyl: a network-based methylome approach to investigate the multivariate nature of health and disease. Briefings in bioinformatics. 2022;23(2):bbab554.PubMedPubMedCentralCrossRef Mordaunt CE, Mouat JS, Schmidt RJ, LaSalle JM. Comethyl: a network-based methylome approach to investigate the multivariate nature of health and disease. Briefings in bioinformatics. 2022;23(2):bbab554.PubMedPubMedCentralCrossRef
94.
go back to reference Villar J, Cheikh Ismail L, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet (London, England). 2014;384(9946):857–68.PubMedCrossRef Villar J, Cheikh Ismail L, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet (London, England). 2014;384(9946):857–68.PubMedCrossRef
95.
go back to reference Selvin S. Statistical power and sample-size calculations. Statistical analyses of epidemiologic data. 1996;2:95–100. Selvin S. Statistical power and sample-size calculations. Statistical analyses of epidemiologic data. 1996;2:95–100.
96.
go back to reference Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC genomics. 2013;14:293.PubMedPubMedCentralCrossRef Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC genomics. 2013;14:293.PubMedPubMedCentralCrossRef
97.
go back to reference Touleimat N, Tost J. Complete pipeline for Infinium((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4(3):325–41.PubMedCrossRef Touleimat N, Tost J. Complete pipeline for Infinium((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4(3):325–41.PubMedCrossRef
98.
go back to reference Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics : official journal of the DNA Methylation Society. 2013;8(2):203–9.CrossRef Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics : official journal of the DNA Methylation Society. 2013;8(2):203–9.CrossRef
99.
go back to reference Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8(1):6.PubMedPubMedCentralCrossRef Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8(1):6.PubMedPubMedCentralCrossRef
100.
go back to reference Zhi D, Aslibekyan S, Irvin MR, Claas SA, Borecki IB, Ordovas JM, et al. SNPs located at CpG sites modulate genome-epigenome interaction. Epigenetics. 2013;8(8):802–6.PubMedPubMedCentralCrossRef Zhi D, Aslibekyan S, Irvin MR, Claas SA, Borecki IB, Ordovas JM, et al. SNPs located at CpG sites modulate genome-epigenome interaction. Epigenetics. 2013;8(8):802–6.PubMedPubMedCentralCrossRef
101.
go back to reference Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017;45(4): e22.PubMed Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017;45(4): e22.PubMed
102.
go back to reference Zhou D, Li Z, Yu D, Wan L, Zhu Y, Lai M, et al. Polymorphisms involving gain or loss of CpG sites are significantly enriched in trait-associated SNPs. Oncotarget. 2015;6(37):39995–40004.PubMedPubMedCentralCrossRef Zhou D, Li Z, Yu D, Wan L, Zhu Y, Lai M, et al. Polymorphisms involving gain or loss of CpG sites are significantly enriched in trait-associated SNPs. Oncotarget. 2015;6(37):39995–40004.PubMedPubMedCentralCrossRef
103.
go back to reference Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. elife. 2013;2:e00523.PubMedPubMedCentralCrossRef Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. elife. 2013;2:e00523.PubMedPubMedCentralCrossRef
104.
go back to reference Lappalainen T, Greally JM. Associating cellular epigenetic models with human phenotypes. Nat Rev Genet. 2017;18(7):441.PubMedCrossRef Lappalainen T, Greally JM. Associating cellular epigenetic models with human phenotypes. Nat Rev Genet. 2017;18(7):441.PubMedCrossRef
105.
go back to reference Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G, Lyttleton O, et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol. 2016;17(1):1–14.CrossRef Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G, Lyttleton O, et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol. 2016;17(1):1–14.CrossRef
106.
go back to reference Teh AL, Pan H, Chen L, Ong M-L, Dogra S, Wong J, et al. The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res. 2014;24(7):1064–74.PubMedPubMedCentralCrossRef Teh AL, Pan H, Chen L, Ong M-L, Dogra S, Wong J, et al. The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res. 2014;24(7):1064–74.PubMedPubMedCentralCrossRef
107.
go back to reference Barfield RT, Almli LM, Kilaru V, Smith AK, Mercer KB, Duncan R, et al. Accounting for population stratification in DNA methylation studies. Genet Epidemiol. 2014;38(3):231–41.PubMedPubMedCentralCrossRef Barfield RT, Almli LM, Kilaru V, Smith AK, Mercer KB, Duncan R, et al. Accounting for population stratification in DNA methylation studies. Genet Epidemiol. 2014;38(3):231–41.PubMedPubMedCentralCrossRef
108.
go back to reference Shang L, Zhao W, Wang YZ, Li Z, Choi JJ, Kho M, et al. meQTL mapping in the GENOA study reveals genetic determinants of DNA methylation in African Americans. Nat Commun. 2023;14(1):2711.PubMedPubMedCentralCrossRef Shang L, Zhao W, Wang YZ, Li Z, Choi JJ, Kho M, et al. meQTL mapping in the GENOA study reveals genetic determinants of DNA methylation in African Americans. Nat Commun. 2023;14(1):2711.PubMedPubMedCentralCrossRef
109.
go back to reference Gunasekara CJ, MacKay H, Scott CA, Li S, Laritsky E, Baker MS, et al. Systemic interindividual epigenetic variation in humans is associated with transposable elements and under strong genetic control. Genome Biol. 2023;24(1):2.PubMedPubMedCentralCrossRef Gunasekara CJ, MacKay H, Scott CA, Li S, Laritsky E, Baker MS, et al. Systemic interindividual epigenetic variation in humans is associated with transposable elements and under strong genetic control. Genome Biol. 2023;24(1):2.PubMedPubMedCentralCrossRef
110.
go back to reference Edgar RD, Jones MJ, Robinson WP, Kobor MS. An empirically driven data reduction method on the human 450K methylation array to remove tissue specific non-variable CpGs. Clin Epigenetics. 2017;9(1):1–8.CrossRef Edgar RD, Jones MJ, Robinson WP, Kobor MS. An empirically driven data reduction method on the human 450K methylation array to remove tissue specific non-variable CpGs. Clin Epigenetics. 2017;9(1):1–8.CrossRef
111.
go back to reference Esposito EA, Jones MJ, Doom JR, MacIsaac JL, Gunnar MR, Kobor MS. Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Dev Psychopathol. 2016;28(4 Pt 2):1385.PubMedPubMedCentralCrossRef Esposito EA, Jones MJ, Doom JR, MacIsaac JL, Gunnar MR, Kobor MS. Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Dev Psychopathol. 2016;28(4 Pt 2):1385.PubMedPubMedCentralCrossRef
112.
go back to reference Derakhshan M, Kessler NJ, Ishida M, Demetriou C, Brucato N, Moore GE, et al. Tissue- and ethnicity-independent hypervariable DNA methylation states show evidence of establishment in the early human embryo. Nucleic Acids Res. 2022;50(12):6735–52.PubMedPubMedCentralCrossRef Derakhshan M, Kessler NJ, Ishida M, Demetriou C, Brucato N, Moore GE, et al. Tissue- and ethnicity-independent hypervariable DNA methylation states show evidence of establishment in the early human embryo. Nucleic Acids Res. 2022;50(12):6735–52.PubMedPubMedCentralCrossRef
113.
go back to reference Renard E, Absil PA. Comparison of location-scale and matrix factorization batch effect removal methods on gene expression datasets. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City; 2017. p. 1530–7. Renard E, Absil PA. Comparison of location-scale and matrix factorization batch effect removal methods on gene expression datasets. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City; 2017. p. 1530–7.
114.
go back to reference Min JL, Hemani G, Davey Smith G, Relton C, Suderman M. Meffil: efficient normalization and analysis of very large DNA methylation datasets. Bioinformatics. 2018;34(23):3983–9.PubMedPubMedCentralCrossRef Min JL, Hemani G, Davey Smith G, Relton C, Suderman M. Meffil: efficient normalization and analysis of very large DNA methylation datasets. Bioinformatics. 2018;34(23):3983–9.PubMedPubMedCentralCrossRef
115.
go back to reference Timms JA, Relton CL, Sharp GC, Rankin J, Strathdee G, McKay JA. Exploring a potential mechanistic role of DNA methylation in the relationship between in utero and post-natal environmental exposures and risk of childhood acute lymphoblastic leukaemia. Int J Cancer. 2019;145(11):2933–43.PubMedPubMedCentralCrossRef Timms JA, Relton CL, Sharp GC, Rankin J, Strathdee G, McKay JA. Exploring a potential mechanistic role of DNA methylation in the relationship between in utero and post-natal environmental exposures and risk of childhood acute lymphoblastic leukaemia. Int J Cancer. 2019;145(11):2933–43.PubMedPubMedCentralCrossRef
116.
go back to reference Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics (Oxford, England). 2014;30(10):1431–9.PubMed Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics (Oxford, England). 2014;30(10):1431–9.PubMed
117.
go back to reference Rahmani E, Zaitlen N, Baran Y, Eng C, Hu D, Galanter J, et al. Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies. Nat Methods. 2016;13(5):443–5.PubMedPubMedCentralCrossRef Rahmani E, Zaitlen N, Baran Y, Eng C, Hu D, Galanter J, et al. Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies. Nat Methods. 2016;13(5):443–5.PubMedPubMedCentralCrossRef
118.
go back to reference Bonder MJ, Kasela S, Kals M, Tamm R, Lokk K, Barragan I, et al. Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC genomics. 2014;15:860.PubMedPubMedCentralCrossRef Bonder MJ, Kasela S, Kals M, Tamm R, Lokk K, Barragan I, et al. Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC genomics. 2014;15:860.PubMedPubMedCentralCrossRef
119.
go back to reference Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9.PubMedPubMedCentralCrossRef Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9.PubMedPubMedCentralCrossRef
120.
go back to reference Sharp GC, Arathimos R, Reese SE, Page CM, Felix J, Kupers LK, et al. Maternal alcohol consumption and offspring DNA methylation: findings from six general population-based birth cohorts. Epigenomics. 2018;10(1):27–42.PubMedCrossRef Sharp GC, Arathimos R, Reese SE, Page CM, Felix J, Kupers LK, et al. Maternal alcohol consumption and offspring DNA methylation: findings from six general population-based birth cohorts. Epigenomics. 2018;10(1):27–42.PubMedCrossRef
121.
go back to reference Kassambara A. Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra. Sthda; 2017. Kassambara A. Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra. Sthda; 2017.
122.
go back to reference Mevik BH, Cederkvist HR. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR). J Chemom. 2004;18(9):422–9.CrossRef Mevik BH, Cederkvist HR. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR). J Chemom. 2004;18(9):422–9.CrossRef
123.
go back to reference Cao-Lei L, Elgbeili G, Szyf M, Laplante DP, King S. Differential genome-wide DNA methylation patterns in childhood obesity. BMC Res Notes. 2019;12(1):174.PubMedPubMedCentralCrossRef Cao-Lei L, Elgbeili G, Szyf M, Laplante DP, King S. Differential genome-wide DNA methylation patterns in childhood obesity. BMC Res Notes. 2019;12(1):174.PubMedPubMedCentralCrossRef
124.
go back to reference Liquet B, de Micheaux PL, Hejblum BP, Thiebaut R. Group and sparse group partial least square approaches applied in genomics context. Bioinformatics (Oxford, England). 2016;32(1):35–42.PubMed Liquet B, de Micheaux PL, Hejblum BP, Thiebaut R. Group and sparse group partial least square approaches applied in genomics context. Bioinformatics (Oxford, England). 2016;32(1):35–42.PubMed
126.
go back to reference Hore V, Viñuela A, Buil A, Knight J, McCarthy MI, Small K, et al. Tensor decomposition for multiple-tissue gene expression experiments. Nat Genet. 2016;48:1094.PubMedPubMedCentralCrossRef Hore V, Viñuela A, Buil A, Knight J, McCarthy MI, Small K, et al. Tensor decomposition for multiple-tissue gene expression experiments. Nat Genet. 2016;48:1094.PubMedPubMedCentralCrossRef
127.
go back to reference Karimpour-Fard A, Epperson LE, Hunter LE. A survey of computational tools for downstream analysis of proteomic and other omic datasets. Hum Genomics. 2015;9(1):28.PubMedPubMedCentralCrossRef Karimpour-Fard A, Epperson LE, Hunter LE. A survey of computational tools for downstream analysis of proteomic and other omic datasets. Hum Genomics. 2015;9(1):28.PubMedPubMedCentralCrossRef
128.
go back to reference Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection methods for random forests and omics data sets. Brief Bioinform. 2019;20(2):492–503.PubMedCrossRef Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection methods for random forests and omics data sets. Brief Bioinform. 2019;20(2):492–503.PubMedCrossRef
130.
go back to reference Lunetta KL, Hayward LB, Segal J, Van Eerdewegh P. Screening large-scale association study data: exploiting interactions using random forests. BMC Genet. 2004;5(1):32.PubMedPubMedCentralCrossRef Lunetta KL, Hayward LB, Segal J, Van Eerdewegh P. Screening large-scale association study data: exploiting interactions using random forests. BMC Genet. 2004;5(1):32.PubMedPubMedCentralCrossRef
131.
go back to reference Winham SJ, Colby CL, Freimuth RR, Wang X, De Andrade M, Huebner M, et al. SNP interaction detection with random forests in high-dimensional genetic data. BMC Bioinformatics. 2012;13(1):164.PubMedPubMedCentralCrossRef Winham SJ, Colby CL, Freimuth RR, Wang X, De Andrade M, Huebner M, et al. SNP interaction detection with random forests in high-dimensional genetic data. BMC Bioinformatics. 2012;13(1):164.PubMedPubMedCentralCrossRef
132.
133.
go back to reference Li J, Tran M, Siwabessy J. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness. PLoS ONE. 2016;11(2):e0149089.PubMedPubMedCentralCrossRef Li J, Tran M, Siwabessy J. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness. PLoS ONE. 2016;11(2):e0149089.PubMedPubMedCentralCrossRef
134.
go back to reference van der Meer D, Hoekstra PJ, Van Donkelaar M, Bralten J, Oosterlaan J, Heslenfeld D, et al. Predicting attention-deficit/hyperactivity disorder severity from psychosocial stress and stress-response genes: a random forest regression approach. Transl Psychiatry. 2017;7(6):e1145.PubMedPubMedCentralCrossRef van der Meer D, Hoekstra PJ, Van Donkelaar M, Bralten J, Oosterlaan J, Heslenfeld D, et al. Predicting attention-deficit/hyperactivity disorder severity from psychosocial stress and stress-response genes: a random forest regression approach. Transl Psychiatry. 2017;7(6):e1145.PubMedPubMedCentralCrossRef
135.
go back to reference Ishwaran H, Kogalur UB, Kogalur MUB. Package ‘randomForestSRC’. Version. 2023. Ishwaran H, Kogalur UB, Kogalur MUB. Package ‘randomForestSRC’. Version. 2023.
136.
go back to reference Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7(2):147–77.PubMedCrossRef Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7(2):147–77.PubMedCrossRef
137.
go back to reference Clark EM, Ness A, Tobias JH. Social Position Affects Bone Mass in Childhood Through Opposing Actions on Height and Weight. J Bone Miner Res. 2005;20(12):2082–9.PubMedCrossRef Clark EM, Ness A, Tobias JH. Social Position Affects Bone Mass in Childhood Through Opposing Actions on Height and Weight. J Bone Miner Res. 2005;20(12):2082–9.PubMedCrossRef
138.
go back to reference Alfano R, Guida F, Galobardes B, Chadeau-Hyam M, Delpierre C, Ghantous A, et al. Socioeconomic position during pregnancy and DNA methylation signatures at three stages across early life: epigenome-wide association studies in the ALSPAC birth cohort. Int J Epidemiol. 2019;48(1):30–44.PubMedCrossRef Alfano R, Guida F, Galobardes B, Chadeau-Hyam M, Delpierre C, Ghantous A, et al. Socioeconomic position during pregnancy and DNA methylation signatures at three stages across early life: epigenome-wide association studies in the ALSPAC birth cohort. Int J Epidemiol. 2019;48(1):30–44.PubMedCrossRef
139.
go back to reference Howe LD, Tilling K, Galobardes B, Smith GD, Ness AR, Lawlor DA. Socioeconomic disparities in trajectories of adiposity across childhood. International journal of pediatric obesity : IJPO : an official journal of the International Association for the Study of Obesity. 2011;6(2–2):144.CrossRef Howe LD, Tilling K, Galobardes B, Smith GD, Ness AR, Lawlor DA. Socioeconomic disparities in trajectories of adiposity across childhood. International journal of pediatric obesity : IJPO : an official journal of the International Association for the Study of Obesity. 2011;6(2–2):144.CrossRef
140.
go back to reference Howe LD, Tilling K, Galobardes B, Smith GD, Gunnell D, Lawlor DA. Socioeconomic differences in childhood growth trajectories: at what age do height inequalities emerge? J Epidemiol Community Health. 2012;66(2):143–8.PubMedCrossRef Howe LD, Tilling K, Galobardes B, Smith GD, Gunnell D, Lawlor DA. Socioeconomic differences in childhood growth trajectories: at what age do height inequalities emerge? J Epidemiol Community Health. 2012;66(2):143–8.PubMedCrossRef
141.
go back to reference Agha G, Hajj H, Rifas-Shiman SL, Just AC, Hivert M-F, Burris HH, et al. Birth weight-for-gestational age is associated with DNA methylation at birth and in childhood. Clin Epigenetics. 2016;8(1):118.PubMedPubMedCentralCrossRef Agha G, Hajj H, Rifas-Shiman SL, Just AC, Hivert M-F, Burris HH, et al. Birth weight-for-gestational age is associated with DNA methylation at birth and in childhood. Clin Epigenetics. 2016;8(1):118.PubMedPubMedCentralCrossRef
142.
go back to reference Gel B, Díez-Villanueva A, Serra E, Buschbeck M, Peinado MA, Malinverni R. regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests. Bioinformatics. 2015;32(2):289–91.PubMedPubMedCentralCrossRef Gel B, Díez-Villanueva A, Serra E, Buschbeck M, Peinado MA, Malinverni R. regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests. Bioinformatics. 2015;32(2):289–91.PubMedPubMedCentralCrossRef
143.
go back to reference Iles-Caven Y, Golding J, Gregory S, Emond A, Taylor CM. Data relating to early child development in the Avon Longitudinal Study of Parents and Children (ALSPAC), their relationship with prenatal blood mercury and stratification by fish consumption. Data Brief. 2016;9:112–22.PubMedPubMedCentralCrossRef Iles-Caven Y, Golding J, Gregory S, Emond A, Taylor CM. Data relating to early child development in the Avon Longitudinal Study of Parents and Children (ALSPAC), their relationship with prenatal blood mercury and stratification by fish consumption. Data Brief. 2016;9:112–22.PubMedPubMedCentralCrossRef
144.
go back to reference Booth JN, Tomporowski PD, Boyle JME, Ness AR, Joinson C, Leary SD, et al. Obesity impairs academic attainment in adolescence: findings from ALSPAC, a UK cohort. Int J Obes. 2014;38(10):1335–42.CrossRef Booth JN, Tomporowski PD, Boyle JME, Ness AR, Joinson C, Leary SD, et al. Obesity impairs academic attainment in adolescence: findings from ALSPAC, a UK cohort. Int J Obes. 2014;38(10):1335–42.CrossRef
145.
go back to reference Taylor CM, Kordas K, Golding J, Emond AM. Data relating to prenatal lead exposure and child IQ at 4 and 8 years old in the Avon Longitudinal Study of Parents and Children. Neurotoxicology. 2017;62:224–30.PubMedPubMedCentralCrossRef Taylor CM, Kordas K, Golding J, Emond AM. Data relating to prenatal lead exposure and child IQ at 4 and 8 years old in the Avon Longitudinal Study of Parents and Children. Neurotoxicology. 2017;62:224–30.PubMedPubMedCentralCrossRef
146.
go back to reference Ecker S, Chen L, Pancaldi V, Bagger FO, Fernández JM, Carrillo de Santa Pau E, et al. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types. Genome Biol. 2017;18(1):18.PubMedPubMedCentralCrossRef Ecker S, Chen L, Pancaldi V, Bagger FO, Fernández JM, Carrillo de Santa Pau E, et al. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types. Genome Biol. 2017;18(1):18.PubMedPubMedCentralCrossRef
147.
go back to reference Xu X, Su S, Barnes VA, De Miguel C, Pollock J, Ownby D, et al. A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics. 2013;8(5):522–33.PubMedPubMedCentralCrossRef Xu X, Su S, Barnes VA, De Miguel C, Pollock J, Ownby D, et al. A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics. 2013;8(5):522–33.PubMedPubMedCentralCrossRef
148.
go back to reference Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et al. Epigenetic Signatures of Cigarette Smoking. CirculationCardiovascular genetics. 2016;9(5):436–47.CrossRef Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et al. Epigenetic Signatures of Cigarette Smoking. CirculationCardiovascular genetics. 2016;9(5):436–47.CrossRef
149.
go back to reference Suderman M, Staley JR, French R, Arathimos R, Simpkin A, Tilling K. dmrff: identifying differentially methylated regions efficiently with power and control. bioRxiv. 2018:508556. Suderman M, Staley JR, French R, Arathimos R, Simpkin A, Tilling K. dmrff: identifying differentially methylated regions efficiently with power and control. bioRxiv. 2018:508556.
Metadata
Title
A novel approach to risk exposure and epigenetics—the use of multidimensional context to gain insights into the early origins of cardiometabolic and neurocognitive health
Authors
Jane W. Y. Ng
Janine F. Felix
David M. Olson
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Epigenetics
Published in
BMC Medicine / Issue 1/2023
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-023-03168-z

Other articles of this Issue 1/2023

BMC Medicine 1/2023 Go to the issue