Skip to main content
Top
Published in: Sports Medicine 2/2013

01-02-2013 | Review Article

Epigenetics in Sports

Authors: Tobias Ehlert, Perikles Simon, Dirk A. Moser

Published in: Sports Medicine | Issue 2/2013

Login to get access

Abstract

The heritability of specific phenotypical traits relevant for physical performance has been extensively investigated and discussed by experts from various research fields. By deciphering the complete human DNA sequence, the human genome project has provided impressive insights into the genomic landscape. The hope that this information would reveal the origin of phenotypical traits relevant for physical performance or disease risks has proven overly optimistic, and it is still premature to refer to a ‘post-genomic’ era of biological science. Linking genomic regions with functions, phenotypical traits and variation in disease risk is now a major experimental bottleneck. The recent deluge of genome-wide association studies (GWAS) generates extensive lists of sequence variants and genes potentially linked to phenotypical traits, but functional insight is at best sparse. The focus of this review is on the complex mechanisms that modulate gene expression. A large fraction of these mechanisms is integrated into the field of epigenetics, mainly DNA methylation and histone modifications, which lead to persistent effects on the availability of DNA for transcription. With the exceptions of genomic imprinting and very rare cases of epigenetic inheritance, epigenetic modifications are not inherited transgenerationally. Along with their susceptibility to external influences, epigenetic patterns are highly specific to the individual and may represent pivotal control centers predisposing towards higher or lower physical performance capacities. In that context, we specifically review how epigenetics combined with classical genetics could broaden our knowledge of genotype-phenotype interactions. We discuss some of the shortcomings of GWAS and explain how epigenetic influences can mask the outcome of quantitative genetic studies. We consider epigenetic influences, such as genomic imprinting and epigenetic inheritance, as well as the life-long variability of epigenetic modification patterns and their potential impact on phenotype with special emphasis on traits related to physical performance. We suggest that epigenetic effects may also play a considerable role in the determination of athletic potential and these effects will need to be studied using more sophisticated quantitative genetic models. In the future, epigenetic status and its potential influence on athletic performance will have to be considered, explored and validated using well controlled model systems before we can begin to extrapolate new findings to complex and heterogeneous human populations. A combination of the fields of genomics, epigenomics and transcriptomics along with improved bioinformatics tools and precise phenotyping, as well as a precise classification of the test populations is required for future research to better understand the inter-relations of exercise physiology, performance traits and also susceptibility towards diseases. Only this combined input can provide the overall outlook necessary to decode the molecular foundation of physical performance.
Literature
1.
go back to reference Bouchard C, Malina RM. Genetics of physiological fitness and motor performance. Exerc Sport Sci Rev. 1983;11:306–39.PubMedCrossRef Bouchard C, Malina RM. Genetics of physiological fitness and motor performance. Exerc Sport Sci Rev. 1983;11:306–39.PubMedCrossRef
2.
go back to reference Rupert J. The search for genotypes that underlie human performance phenotypes. Comparative biochemistry and physiology—part A. Mol Integr Physiol. 2003;136(1):191–203.CrossRef Rupert J. The search for genotypes that underlie human performance phenotypes. Comparative biochemistry and physiology—part A. Mol Integr Physiol. 2003;136(1):191–203.CrossRef
3.
go back to reference Sharp NC. The human genome and sport, including epigenetics and athleticogenomics: a brief look at a rapidly changing field. J Sports Sci. 2008;26(11):1127–33.PubMedCrossRef Sharp NC. The human genome and sport, including epigenetics and athleticogenomics: a brief look at a rapidly changing field. J Sports Sci. 2008;26(11):1127–33.PubMedCrossRef
4.
go back to reference Bouchard C, Lesage R, Lortie G, et al. Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc. 1986;18(6):639–46.PubMed Bouchard C, Lesage R, Lortie G, et al. Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc. 1986;18(6):639–46.PubMed
5.
go back to reference Maes HH, Beunen GP, Vlietinck RF, et al. Inheritance of physical fitness in 10-yr-old twins and their parents. Med Sci Sports Exerc. 1996;28(12):1479–91.PubMedCrossRef Maes HH, Beunen GP, Vlietinck RF, et al. Inheritance of physical fitness in 10-yr-old twins and their parents. Med Sci Sports Exerc. 1996;28(12):1479–91.PubMedCrossRef
6.
go back to reference Peeters MW, Thomis MA, Beunen GP, et al. Genetics and sports: an overview of the pre-molecular biology era. Med Sport Sci. 2009;54:28–42.PubMedCrossRef Peeters MW, Thomis MA, Beunen GP, et al. Genetics and sports: an overview of the pre-molecular biology era. Med Sport Sci. 2009;54:28–42.PubMedCrossRef
7.
go back to reference Bouchard C, Leon AS, Rao DC, et al. The HERITAGE family study: aims, design, and measurement protocol. Med Sci Sports Exerc. 1995;27(5):721–9.PubMed Bouchard C, Leon AS, Rao DC, et al. The HERITAGE family study: aims, design, and measurement protocol. Med Sci Sports Exerc. 1995;27(5):721–9.PubMed
8.
go back to reference Wilmore JH, Leon AS, Rao DC, et al. Genetics, response to exercise, and risk factors: the HERITAGE Family Study. World Rev Nutr Diet. 1997;81:72–83.PubMedCrossRef Wilmore JH, Leon AS, Rao DC, et al. Genetics, response to exercise, and risk factors: the HERITAGE Family Study. World Rev Nutr Diet. 1997;81:72–83.PubMedCrossRef
9.
go back to reference An P, Perusse L, Rankinen T, et al. Familial aggregation of exercise heart rate and blood pressure in response to 20 weeks of endurance training: the HERITAGE family study. Int J Sports Med. 2003;24(1):57–62.PubMedCrossRef An P, Perusse L, Rankinen T, et al. Familial aggregation of exercise heart rate and blood pressure in response to 20 weeks of endurance training: the HERITAGE family study. Int J Sports Med. 2003;24(1):57–62.PubMedCrossRef
10.
go back to reference Bouchard C, An P, Rice T, et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 1999;87(3):1003–8.PubMed Bouchard C, An P, Rice T, et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 1999;87(3):1003–8.PubMed
11.
go back to reference Schmitt-Ney M, Happ B, Ball RK, et al. Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding beta-casein. Proc Natl Acad Sci USA. 1992;89(7):3130–4.PubMedCrossRef Schmitt-Ney M, Happ B, Ball RK, et al. Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding beta-casein. Proc Natl Acad Sci USA. 1992;89(7):3130–4.PubMedCrossRef
12.
go back to reference Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol. 2007;23(3):297–307.PubMedCrossRef Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol. 2007;23(3):297–307.PubMedCrossRef
13.
14.
go back to reference McNamee MJ, Muller A, van Hilvoorde I, et al. Genetic testing and sports medicine ethics. Sports Med. 2009;39(5):339–44.PubMedCrossRef McNamee MJ, Muller A, van Hilvoorde I, et al. Genetic testing and sports medicine ethics. Sports Med. 2009;39(5):339–44.PubMedCrossRef
15.
go back to reference Lippi G, Solero GP, Guidi G. Athletes genotyping: ethical and legal issues. Int J Sports Med. 2004;25(2):159. author reply 60-1.PubMedCrossRef Lippi G, Solero GP, Guidi G. Athletes genotyping: ethical and legal issues. Int J Sports Med. 2004;25(2):159. author reply 60-1.PubMedCrossRef
16.
go back to reference Bouchard C. Genetics of human obesity: recent results from linkage studies. J Nutr. 1997;127(9):1887S–90S.PubMed Bouchard C. Genetics of human obesity: recent results from linkage studies. J Nutr. 1997;127(9):1887S–90S.PubMed
17.
go back to reference Perusse L, Gagnon J, Province MA, Rao DC, Wilmore JH, Leon AS, et al. Familial aggregation of submaximal aerobic performance in the HERITAGE Family study. Med Sci Sports Exerc. 2001;33(4):597–604.PubMed Perusse L, Gagnon J, Province MA, Rao DC, Wilmore JH, Leon AS, et al. Familial aggregation of submaximal aerobic performance in the HERITAGE Family study. Med Sci Sports Exerc. 2001;33(4):597–604.PubMed
18.
go back to reference Peeters MW, Thomis MA, Maes HH, et al. Genetic and environmental determination of tracking in static strength during adolescence. J Appl Physiol. 2005;99(4):1317–26.PubMedCrossRef Peeters MW, Thomis MA, Maes HH, et al. Genetic and environmental determination of tracking in static strength during adolescence. J Appl Physiol. 2005;99(4):1317–26.PubMedCrossRef
19.
go back to reference Relton CL. Davey Smith G. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol. 2012;41(1):161–76.PubMedCrossRef Relton CL. Davey Smith G. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol. 2012;41(1):161–76.PubMedCrossRef
20.
go back to reference Falconer DS. Introduction to quantitative genetics. 2nd ed. London: Longman; 1981. Falconer DS. Introduction to quantitative genetics. 2nd ed. London: Longman; 1981.
21.
go back to reference Davids K, Baker J. Genes, environment and sport performance: why the nature-nurture dualism is no longer relevant. Sports Med. 2007;37(11):961–80.PubMedCrossRef Davids K, Baker J. Genes, environment and sport performance: why the nature-nurture dualism is no longer relevant. Sports Med. 2007;37(11):961–80.PubMedCrossRef
22.
go back to reference Montgomery HE, Marshall R, Hemingway H, et al. Human gene for physical performance. Nature. 1998;393(6682):221–2.PubMedCrossRef Montgomery HE, Marshall R, Hemingway H, et al. Human gene for physical performance. Nature. 1998;393(6682):221–2.PubMedCrossRef
23.
go back to reference Myerson S, Hemingway H, Budget R, et al. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol. 1999;87(4):1313–6.PubMed Myerson S, Hemingway H, Budget R, et al. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol. 1999;87(4):1313–6.PubMed
24.
go back to reference Rankinen T, Wolfarth B, Simoneau JA, et al. No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol. 2000;88(5):1571–5.PubMed Rankinen T, Wolfarth B, Simoneau JA, et al. No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol. 2000;88(5):1571–5.PubMed
25.
go back to reference Yang N, MacArthur DG, Gulbin JP, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73(3):627–31.PubMedCrossRef Yang N, MacArthur DG, Gulbin JP, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73(3):627–31.PubMedCrossRef
26.
go back to reference Norman B, Esbjornsson M, Rundqvist H, et al. Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes. J Appl Physiol. 2009;106(3):959–65.PubMedCrossRef Norman B, Esbjornsson M, Rundqvist H, et al. Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes. J Appl Physiol. 2009;106(3):959–65.PubMedCrossRef
27.
go back to reference Saunders CJ, September AV, Xenophontos SL, et al. No association of the ACTN3 gene R577X polymorphism with endurance performance in Ironman Triathlons. Ann Hum Genet. 2007;71(Pt 6):777–81.PubMedCrossRef Saunders CJ, September AV, Xenophontos SL, et al. No association of the ACTN3 gene R577X polymorphism with endurance performance in Ironman Triathlons. Ann Hum Genet. 2007;71(Pt 6):777–81.PubMedCrossRef
28.
go back to reference Doring FE, Onur S, Geisen U, et al. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci. 2010;28(12):1355–9.PubMedCrossRef Doring FE, Onur S, Geisen U, et al. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci. 2010;28(12):1355–9.PubMedCrossRef
29.
go back to reference Hanson ED, Ludlow AT, Sheaff AK, et al. ACTN3 genotype does not influence muscle power. Int J Sports Med. 2010;31(11):834–8.PubMedCrossRef Hanson ED, Ludlow AT, Sheaff AK, et al. ACTN3 genotype does not influence muscle power. Int J Sports Med. 2010;31(11):834–8.PubMedCrossRef
30.
go back to reference Puthucheary Z, Skipworth JR, Rawal J, et al. Genetic influences in sport and physical performance. Sports Med. 2011;41(10):845–59.PubMedCrossRef Puthucheary Z, Skipworth JR, Rawal J, et al. Genetic influences in sport and physical performance. Sports Med. 2011;41(10):845–59.PubMedCrossRef
31.
go back to reference Bouchard C. Genetic and molecular aspects of sports performance. Encyclopaedia of sports medicine 18. Chichester: Wiley; 2011.CrossRef Bouchard C. Genetic and molecular aspects of sports performance. Encyclopaedia of sports medicine 18. Chichester: Wiley; 2011.CrossRef
32.
go back to reference Ruiz JR, Gomez-Gallego F, Santiago C, et al. Is there an optimum endurance polygenic profile? J Physiol. 2009;587(Pt 7):1527–34.PubMedCrossRef Ruiz JR, Gomez-Gallego F, Santiago C, et al. Is there an optimum endurance polygenic profile? J Physiol. 2009;587(Pt 7):1527–34.PubMedCrossRef
33.
go back to reference Buxens A, Ruiz JR, Arteta D, et al. Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand J Med Sci Sports. 2011;21(4):570–9.PubMedCrossRef Buxens A, Ruiz JR, Arteta D, et al. Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand J Med Sci Sports. 2011;21(4):570–9.PubMedCrossRef
34.
go back to reference Rankinen T, Perusse L, Rauramaa R, et al. The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exerc. 2001;33(6):855–67.PubMedCrossRef Rankinen T, Perusse L, Rauramaa R, et al. The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exerc. 2001;33(6):855–67.PubMedCrossRef
35.
go back to reference Roth SM, Rankinen T, Hagberg JM, et al. Advances in exercise, fitness, and performance genomics in 2011. Med Sci Sports Exerc. (epub 9 Feb 2012). Roth SM, Rankinen T, Hagberg JM, et al. Advances in exercise, fitness, and performance genomics in 2011. Med Sci Sports Exerc. (epub 9 Feb 2012).
36.
go back to reference Williams AG, Folland JP. Similarity of polygenic profiles limits the potential for elite human physical performance. J Physiol. 2008;586(1):113–21.PubMedCrossRef Williams AG, Folland JP. Similarity of polygenic profiles limits the potential for elite human physical performance. J Physiol. 2008;586(1):113–21.PubMedCrossRef
37.
38.
go back to reference Schroder H. Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J Nutr Biochem. 2007;18(3):149–60.PubMedCrossRef Schroder H. Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J Nutr Biochem. 2007;18(3):149–60.PubMedCrossRef
39.
go back to reference Pratley RE. Gene-environment interactions in the pathogenesis of type 2 diabetes mellitus: lessons learned from the Pima Indians. Proc Nutr Soc. 1998;57(2):175–81.PubMedCrossRef Pratley RE. Gene-environment interactions in the pathogenesis of type 2 diabetes mellitus: lessons learned from the Pima Indians. Proc Nutr Soc. 1998;57(2):175–81.PubMedCrossRef
40.
go back to reference Huang J, Ellinghaus D, Franke A, et al. 1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data. Eur J Hum Genet. (epub 1 Feb 2012). Huang J, Ellinghaus D, Franke A, et al. 1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data. Eur J Hum Genet. (epub 1 Feb 2012).
41.
go back to reference Palmer ND, McDonough CW, Hicks PJ, et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One. 2012;7(1):e29202.PubMedCrossRef Palmer ND, McDonough CW, Hicks PJ, et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One. 2012;7(1):e29202.PubMedCrossRef
42.
go back to reference Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44(1):67–72.CrossRef Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44(1):67–72.CrossRef
43.
go back to reference Kho AN, Hayes MG, Rasmussen-Torvik L, et al. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. J Am Med Inform Assoc. 2012;19(2):212–8.PubMedCrossRef Kho AN, Hayes MG, Rasmussen-Torvik L, et al. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. J Am Med Inform Assoc. 2012;19(2):212–8.PubMedCrossRef
44.
go back to reference Kooner JS, Saleheen D, Sim X, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43(10):984–9.PubMedCrossRef Kooner JS, Saleheen D, Sim X, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43(10):984–9.PubMedCrossRef
45.
go back to reference Cui B, Zhu X, Xu M, et al. A genome-wide association study confirms previously reported loci for type 2 diabetes in Han Chinese. PLoS One. 2011;6(7):e22353.PubMedCrossRef Cui B, Zhu X, Xu M, et al. A genome-wide association study confirms previously reported loci for type 2 diabetes in Han Chinese. PLoS One. 2011;6(7):e22353.PubMedCrossRef
46.
go back to reference Below JE, Gamazon ER, Morrison JV, et al. Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals. Diabetologia. 2011;54(8):2047–55.PubMedCrossRef Below JE, Gamazon ER, Morrison JV, et al. Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals. Diabetologia. 2011;54(8):2047–55.PubMedCrossRef
47.
go back to reference Parra EJ, Below JE, Krithika S, et al. Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia. 2011;54(8):2038–46.PubMedCrossRef Parra EJ, Below JE, Krithika S, et al. Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas. Diabetologia. 2011;54(8):2038–46.PubMedCrossRef
48.
go back to reference Sim X, Ong RT, Suo C, et al. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet. 2011;7(4):e1001363.PubMedCrossRef Sim X, Ong RT, Suo C, et al. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet. 2011;7(4):e1001363.PubMedCrossRef
49.
go back to reference Florez JC. Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. J Clin Endocrinol Metab. 2008;93(12):4633–42.PubMedCrossRef Florez JC. Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. J Clin Endocrinol Metab. 2008;93(12):4633–42.PubMedCrossRef
50.
go back to reference Sottas PE, Robinson N, Fischetto G, et al. Prevalence of blood doping in samples collected from elite track and field athletes. Clin Chem. 2011;57(5):762–9.PubMedCrossRef Sottas PE, Robinson N, Fischetto G, et al. Prevalence of blood doping in samples collected from elite track and field athletes. Clin Chem. 2011;57(5):762–9.PubMedCrossRef
51.
go back to reference Striegel H, Ulrich R, Simon P. Randomized response estimates for doping and illicit drug use in elite athletes. Drug Alcohol Depend. 2010;106(2–3):230–2.PubMedCrossRef Striegel H, Ulrich R, Simon P. Randomized response estimates for doping and illicit drug use in elite athletes. Drug Alcohol Depend. 2010;106(2–3):230–2.PubMedCrossRef
52.
go back to reference Simon P, Striegel H, Aust F, et al. Doping in fitness sports: estimated number of unreported cases and individual probability of doping. Addiction. 2006;101(11):1640–4.PubMedCrossRef Simon P, Striegel H, Aust F, et al. Doping in fitness sports: estimated number of unreported cases and individual probability of doping. Addiction. 2006;101(11):1640–4.PubMedCrossRef
53.
go back to reference Keller P, Vollaard N, Babraj J, et al. Using systems biology to define the essential biological networks responsible for adaptation to endurance exercise training. Biochem Soc Trans. 2007;35(Pt 5):1306–9.PubMed Keller P, Vollaard N, Babraj J, et al. Using systems biology to define the essential biological networks responsible for adaptation to endurance exercise training. Biochem Soc Trans. 2007;35(Pt 5):1306–9.PubMed
54.
go back to reference Brantl S. Antisense-RNA regulation and RNA interference. Biochim Biophys Acta. 2002;1575(1–3):15–25.PubMed Brantl S. Antisense-RNA regulation and RNA interference. Biochim Biophys Acta. 2002;1575(1–3):15–25.PubMed
55.
go back to reference Beiter T, Reich E, Williams RW, et al. Antisense transcription: a critical look in both directions. Cell Mol Life Sci. 2009;66(1):94–112.PubMedCrossRef Beiter T, Reich E, Williams RW, et al. Antisense transcription: a critical look in both directions. Cell Mol Life Sci. 2009;66(1):94–112.PubMedCrossRef
56.
go back to reference Caplen NJ, Mousses S. Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells. Ann NY Acad Sci. 2003;1002:56–62.PubMedCrossRef Caplen NJ, Mousses S. Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells. Ann NY Acad Sci. 2003;1002:56–62.PubMedCrossRef
57.
go back to reference Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.PubMedCrossRef Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.PubMedCrossRef
58.
go back to reference Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129(7):1311–23.PubMedCrossRef Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129(7):1311–23.PubMedCrossRef
59.
go back to reference Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.PubMedCrossRef Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.PubMedCrossRef
60.
go back to reference Guttman M, Donaghey J, Carey BW, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.PubMedCrossRef Guttman M, Donaghey J, Carey BW, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.PubMedCrossRef
61.
go back to reference Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504.PubMedCrossRef Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504.PubMedCrossRef
62.
go back to reference Moser D, Ekawardhani S, Kumsta R, et al. Functional analysis of a potassium-chloride co-transporter 3 (SLC12A6) promoter polymorphism leading to an additional DNA methylation site. Neuropsychopharmacology. 2009;34(2):458–67.PubMedCrossRef Moser D, Ekawardhani S, Kumsta R, et al. Functional analysis of a potassium-chloride co-transporter 3 (SLC12A6) promoter polymorphism leading to an additional DNA methylation site. Neuropsychopharmacology. 2009;34(2):458–67.PubMedCrossRef
63.
go back to reference Gertz J, Varley KE, Reddy TE, et al. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet. 2011;7(8):e1002228.PubMedCrossRef Gertz J, Varley KE, Reddy TE, et al. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet. 2011;7(8):e1002228.PubMedCrossRef
64.
go back to reference Nielsen S, Scheele C, Yfanti C, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010;588(Pt 20):4029–37.PubMedCrossRef Nielsen S, Scheele C, Yfanti C, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010;588(Pt 20):4029–37.PubMedCrossRef
65.
go back to reference Davidsen PK, Gallagher IJ, Hartman JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol. 2011;110(2):309–17.PubMedCrossRef Davidsen PK, Gallagher IJ, Hartman JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol. 2011;110(2):309–17.PubMedCrossRef
67.
go back to reference Wu R, Lin M. Functional mapping: how to map and study the genetic architecture of dynamic complex traits. Nat Rev Genet. 2006;7(3):229–37.PubMedCrossRef Wu R, Lin M. Functional mapping: how to map and study the genetic architecture of dynamic complex traits. Nat Rev Genet. 2006;7(3):229–37.PubMedCrossRef
68.
go back to reference Rakyan VK, Hildmann T, Novik KL, et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2004;2(12):e405.PubMedCrossRef Rakyan VK, Hildmann T, Novik KL, et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2004;2(12):e405.PubMedCrossRef
69.
go back to reference Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38(12):1378–85.PubMedCrossRef Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38(12):1378–85.PubMedCrossRef
70.
71.
go back to reference Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development. 2007;134(22):3959–65.PubMedCrossRef Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development. 2007;134(22):3959–65.PubMedCrossRef
72.
go back to reference Johannes F, Wardenaar R, Colome-Tatche M, et al. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq. Bioinformatics. 2010;26(8):1000–6.PubMedCrossRef Johannes F, Wardenaar R, Colome-Tatche M, et al. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq. Bioinformatics. 2010;26(8):1000–6.PubMedCrossRef
73.
go back to reference Down TA, Rakyan VK, Turner DJ, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008;26(7):779–85.PubMedCrossRef Down TA, Rakyan VK, Turner DJ, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008;26(7):779–85.PubMedCrossRef
74.
go back to reference Rakyan VK, Down TA, Thorne NP, et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 2008;18(9):1518–29.PubMedCrossRef Rakyan VK, Down TA, Thorne NP, et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 2008;18(9):1518–29.PubMedCrossRef
75.
go back to reference Meissner A, Gnirke A, Bell GW, et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33(18):5868–77.PubMedCrossRef Meissner A, Gnirke A, Bell GW, et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33(18):5868–77.PubMedCrossRef
76.
go back to reference Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet. 2008;9(3):179–91.PubMedCrossRef Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet. 2008;9(3):179–91.PubMedCrossRef
77.
go back to reference Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15(5):490–5.PubMedCrossRef Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15(5):490–5.PubMedCrossRef
78.
go back to reference Rakyan VK, Blewitt ME, Druker R, et al. Metastable epialleles in mammals. Trends Genet. 2002;18(7):348–51.PubMedCrossRef Rakyan VK, Blewitt ME, Druker R, et al. Metastable epialleles in mammals. Trends Genet. 2002;18(7):348–51.PubMedCrossRef
79.
80.
go back to reference Ziller MJ, Muller F, Liao J, et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 2011;7(12):e1002389.PubMedCrossRef Ziller MJ, Muller F, Liao J, et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 2011;7(12):e1002389.PubMedCrossRef
81.
go back to reference Rottach A, Leonhardt H, Spada F. DNA methylation-mediated epigenetic control. J Cell Biochem. 2009;108(1):43–51.PubMedCrossRef Rottach A, Leonhardt H, Spada F. DNA methylation-mediated epigenetic control. J Cell Biochem. 2009;108(1):43–51.PubMedCrossRef
82.
go back to reference Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.PubMedCrossRef Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.PubMedCrossRef
83.
go back to reference Meissner A, Mikkelsen TS, Gu H, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454(7205):766–70.PubMed Meissner A, Mikkelsen TS, Gu H, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454(7205):766–70.PubMed
84.
go back to reference Maunakea AK, Nagarajan RP, Bilenky M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.PubMedCrossRef Maunakea AK, Nagarajan RP, Bilenky M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.PubMedCrossRef
85.
go back to reference Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457–66.PubMedCrossRef Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457–66.PubMedCrossRef
86.
87.
go back to reference Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11(9):607–20.PubMedCrossRef Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11(9):607–20.PubMedCrossRef
88.
go back to reference He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–7.PubMedCrossRef He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–7.PubMedCrossRef
89.
go back to reference Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–3.PubMedCrossRef Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–3.PubMedCrossRef
90.
go back to reference Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011;12(1):7–18.PubMedCrossRef Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011;12(1):7–18.PubMedCrossRef
91.
go back to reference Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.PubMedCrossRef Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.PubMedCrossRef
92.
go back to reference Ooi SK, Qiu C, Bernstein E, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. 2007;448(7154):714–7.PubMedCrossRef Ooi SK, Qiu C, Bernstein E, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. 2007;448(7154):714–7.PubMedCrossRef
93.
go back to reference Thomson JP, Skene PJ, Selfridge J, et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010;464(7291):1082–6.PubMedCrossRef Thomson JP, Skene PJ, Selfridge J, et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010;464(7291):1082–6.PubMedCrossRef
94.
go back to reference Blackledge NP, Zhou JC, Tolstorukov MY, et al. CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell. 2010;38(2):179–90.PubMedCrossRef Blackledge NP, Zhou JC, Tolstorukov MY, et al. CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell. 2010;38(2):179–90.PubMedCrossRef
95.
go back to reference Ernst J, Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol. 2010;28(8):817–25.PubMedCrossRef Ernst J, Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol. 2010;28(8):817–25.PubMedCrossRef
96.
go back to reference Heintzman ND, Hon GC, Hawkins RD, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009;459(7243):108–12.PubMedCrossRef Heintzman ND, Hon GC, Hawkins RD, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009;459(7243):108–12.PubMedCrossRef
97.
go back to reference Tilgner H, Nikolaou C, Althammer S, et al. Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol. 2009;16(9):996–1001.PubMedCrossRef Tilgner H, Nikolaou C, Althammer S, et al. Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol. 2009;16(9):996–1001.PubMedCrossRef
98.
go back to reference Luco RF, Pan Q, Tominaga K, et al. Regulation of alternative splicing by histone modifications. Science. 2010;327(5968):996–1000.PubMedCrossRef Luco RF, Pan Q, Tominaga K, et al. Regulation of alternative splicing by histone modifications. Science. 2010;327(5968):996–1000.PubMedCrossRef
99.
go back to reference Rakyan VK, Down TA, Maslau S, et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20(4):434–9.PubMedCrossRef Rakyan VK, Down TA, Maslau S, et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20(4):434–9.PubMedCrossRef
100.
go back to reference Silva AJ, White R. Inheritance of allelic blueprints for methylation patterns. Cell. 1988;54(2):145–52.PubMedCrossRef Silva AJ, White R. Inheritance of allelic blueprints for methylation patterns. Cell. 1988;54(2):145–52.PubMedCrossRef
101.
102.
go back to reference Morgan HD, Santos F, Green K, et al. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14 (Spec No 1):R47–58. Morgan HD, Santos F, Green K, et al. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14 (Spec No 1):R47–58.
103.
go back to reference Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.PubMedCrossRef Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.PubMedCrossRef
104.
go back to reference Farthing CR, Ficz G, Ng RK, et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 2008;4(6):e1000116.PubMedCrossRef Farthing CR, Ficz G, Ng RK, et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 2008;4(6):e1000116.PubMedCrossRef
105.
go back to reference Zwijnenburg PJ, Meijers-Heijboer H, Boomsma DI. Identical but not the same: the value of discordant monozygotic twins in genetic research. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(6):1134–49.PubMed Zwijnenburg PJ, Meijers-Heijboer H, Boomsma DI. Identical but not the same: the value of discordant monozygotic twins in genetic research. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(6):1134–49.PubMed
106.
go back to reference Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. 2005;102(30):10604–9.PubMedCrossRef Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. 2005;102(30):10604–9.PubMedCrossRef
107.
go back to reference Kangaspeska S, Stride B, Metivier R, et al. Transient cyclical methylation of promoter DNA. Nature. 2008;452(7183):112–5.PubMedCrossRef Kangaspeska S, Stride B, Metivier R, et al. Transient cyclical methylation of promoter DNA. Nature. 2008;452(7183):112–5.PubMedCrossRef
108.
go back to reference Relton CL, Davey Smith G. Is epidemiology ready for epigenetics? Int J Epidemiol. 2012;41(1):5–9.PubMedCrossRef Relton CL, Davey Smith G. Is epidemiology ready for epigenetics? Int J Epidemiol. 2012;41(1):5–9.PubMedCrossRef
109.
110.
go back to reference Petronis A. Human morbid genetics revisited: relevance of epigenetics. Trends Genet. 2001;17(3):142–6.PubMedCrossRef Petronis A. Human morbid genetics revisited: relevance of epigenetics. Trends Genet. 2001;17(3):142–6.PubMedCrossRef
111.
go back to reference Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465(7299):721–7.PubMedCrossRef Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465(7299):721–7.PubMedCrossRef
112.
go back to reference Makar KW, Perez-Melgosa M, Shnyreva M, et al. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat Immunol. 2003;4(12):1183–90.PubMedCrossRef Makar KW, Perez-Melgosa M, Shnyreva M, et al. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat Immunol. 2003;4(12):1183–90.PubMedCrossRef
113.
go back to reference Bennett ST, Wilson AJ, Esposito L, et al. Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. The IMDIAB Group. Nat Genet. 1997;17(3):350–2.PubMedCrossRef Bennett ST, Wilson AJ, Esposito L, et al. Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. The IMDIAB Group. Nat Genet. 1997;17(3):350–2.PubMedCrossRef
114.
go back to reference Thamotharan M, Garg M, Oak S, et al. Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring. Am J Physiol Endocrinol Metab. 2007;292(5):E1270–9.PubMedCrossRef Thamotharan M, Garg M, Oak S, et al. Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring. Am J Physiol Endocrinol Metab. 2007;292(5):E1270–9.PubMedCrossRef
115.
go back to reference Gluckman PD, Hanson MA, Buklijas T, et al. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol. 2009;5(7):401–8.PubMedCrossRef Gluckman PD, Hanson MA, Buklijas T, et al. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol. 2009;5(7):401–8.PubMedCrossRef
116.
go back to reference Hollingsworth JW, Maruoka S, Boon K, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest. 2008;118(10):3462–9.PubMed Hollingsworth JW, Maruoka S, Boon K, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest. 2008;118(10):3462–9.PubMed
117.
go back to reference Oh G, Petronis A. Environmental studies of schizophrenia through the prism of epigenetics. Schizophr Bull. 2008;34(6):1122–9.PubMedCrossRef Oh G, Petronis A. Environmental studies of schizophrenia through the prism of epigenetics. Schizophr Bull. 2008;34(6):1122–9.PubMedCrossRef
118.
go back to reference Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.PubMedCrossRef Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.PubMedCrossRef
119.
go back to reference Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847–54.PubMedCrossRef Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847–54.PubMedCrossRef
120.
go back to reference Weaver IC. Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: let’s call the whole thing off. Epigenetics. 2007;2(1):22–8.PubMedCrossRef Weaver IC. Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: let’s call the whole thing off. Epigenetics. 2007;2(1):22–8.PubMedCrossRef
121.
go back to reference Lillycrop KA, Burdge GC. Epigenetic changes in early life and future risk of obesity. Int J Obes (Lond). (epub 15 Jun 2010). Lillycrop KA, Burdge GC. Epigenetic changes in early life and future risk of obesity. Int J Obes (Lond). (epub 15 Jun 2010).
122.
go back to reference Burdge GC, Slater-Jefferies J, Torrens C, et al. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr. 2007;97(3):435–9.PubMedCrossRef Burdge GC, Slater-Jefferies J, Torrens C, et al. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr. 2007;97(3):435–9.PubMedCrossRef
123.
go back to reference Ozanne SE, Hales CN. Lifespan: catch-up growth and obesity in male mice. Nature. 2004;427(6973):411–2.PubMedCrossRef Ozanne SE, Hales CN. Lifespan: catch-up growth and obesity in male mice. Nature. 2004;427(6973):411–2.PubMedCrossRef
124.
go back to reference Levin BE. Epigenetic influences on food intake and physical activity level: review of animal studies. Obesity (Silver Spring). 2008;16(suppl 3):S51–4.PubMedCrossRef Levin BE. Epigenetic influences on food intake and physical activity level: review of animal studies. Obesity (Silver Spring). 2008;16(suppl 3):S51–4.PubMedCrossRef
125.
go back to reference Shelnutt KP, Kauwell GP, Gregory JF 3rd, et al. Methylenetetrahydrofolate reductase 677C--> T polymorphism affects DNA methylation in response to controlled folate intake in young women. J Nutr Biochem. 2004;15(9):554–60.PubMedCrossRef Shelnutt KP, Kauwell GP, Gregory JF 3rd, et al. Methylenetetrahydrofolate reductase 677C--> T polymorphism affects DNA methylation in response to controlled folate intake in young women. J Nutr Biochem. 2004;15(9):554–60.PubMedCrossRef
126.
go back to reference Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA. 2008;105(44):17046–9.PubMedCrossRef Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA. 2008;105(44):17046–9.PubMedCrossRef
127.
go back to reference Rakyan VK, Beck S. Epigenetic variation and inheritance in mammals. Curr Opin Genet Dev. 2006;16(6):573–7.PubMedCrossRef Rakyan VK, Beck S. Epigenetic variation and inheritance in mammals. Curr Opin Genet Dev. 2006;16(6):573–7.PubMedCrossRef
128.
129.
go back to reference Morgan HD, Sutherland HG, Martin DI, et al. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23(3):314–8.PubMedCrossRef Morgan HD, Sutherland HG, Martin DI, et al. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23(3):314–8.PubMedCrossRef
130.
go back to reference Roemer I, Reik W, Dean W, et al. Epigenetic inheritance in the mouse. Curr Biol. 1997;7(4):277–80.PubMedCrossRef Roemer I, Reik W, Dean W, et al. Epigenetic inheritance in the mouse. Curr Biol. 1997;7(4):277–80.PubMedCrossRef
131.
go back to reference Dolinoy DC, Das R, Weidman JR, et al. Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res. 2007;61(5 Pt 2):30R–7R.PubMedCrossRef Dolinoy DC, Das R, Weidman JR, et al. Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res. 2007;61(5 Pt 2):30R–7R.PubMedCrossRef
132.
go back to reference Rakyan VK, Chong S, Champ ME, et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA. 2003;100(5):2538–43.PubMedCrossRef Rakyan VK, Chong S, Champ ME, et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA. 2003;100(5):2538–43.PubMedCrossRef
133.
go back to reference Lane N, Dean W, Erhardt S, et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis. 2003;35(2):88–93.PubMedCrossRef Lane N, Dean W, Erhardt S, et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis. 2003;35(2):88–93.PubMedCrossRef
134.
go back to reference Wolff GL, Kodell RL, Moore SR, et al. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. Faseb J. 1998;12(11):949–57.PubMed Wolff GL, Kodell RL, Moore SR, et al. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. Faseb J. 1998;12(11):949–57.PubMed
135.
go back to reference Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132(8 Suppl):2393S–400S.PubMed Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132(8 Suppl):2393S–400S.PubMed
136.
go back to reference Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–300.PubMedCrossRef Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–300.PubMedCrossRef
137.
go back to reference Waterland RA, Travisano M, Tahiliani KG. Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. Faseb J. 2007;21(12):3380–5.PubMedCrossRef Waterland RA, Travisano M, Tahiliani KG. Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. Faseb J. 2007;21(12):3380–5.PubMedCrossRef
138.
go back to reference Kaminen-Ahola N, Ahola A, Maga M, et al. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet. 2010;6(1):e1000811.PubMedCrossRef Kaminen-Ahola N, Ahola A, Maga M, et al. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet. 2010;6(1):e1000811.PubMedCrossRef
139.
go back to reference Suter CM, Martin DI, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet. 2004;36(5):497–501.PubMedCrossRef Suter CM, Martin DI, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet. 2004;36(5):497–501.PubMedCrossRef
140.
go back to reference Chan TL, Yuen ST, Kong CK, et al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet. 2006;38(10):1178–83.PubMedCrossRef Chan TL, Yuen ST, Kong CK, et al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet. 2006;38(10):1178–83.PubMedCrossRef
141.
go back to reference Chong S, Youngson NA, Whitelaw E. Heritable germline epimutation is not the same as transgenerational epigenetic inheritance. Nat Genet. 2007;39(5):574–5. author reply 5–6.PubMedCrossRef Chong S, Youngson NA, Whitelaw E. Heritable germline epimutation is not the same as transgenerational epigenetic inheritance. Nat Genet. 2007;39(5):574–5. author reply 5–6.PubMedCrossRef
142.
go back to reference Hitchins MP, Wong JJ, Suthers G, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med. 2007;356(7):697–705.PubMedCrossRef Hitchins MP, Wong JJ, Suthers G, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med. 2007;356(7):697–705.PubMedCrossRef
143.
go back to reference Horsthemke B. Heritable germline epimutations in humans. Nat Genet. 2007;39(5):573–4. author reply 5–6.PubMedCrossRef Horsthemke B. Heritable germline epimutations in humans. Nat Genet. 2007;39(5):573–4. author reply 5–6.PubMedCrossRef
144.
go back to reference Suter CM, Martin DI. Inherited epimutation or a haplotypic basis for the propensity to silence? Nat Genet. 2007;39(5):573. author reply 6.PubMedCrossRef Suter CM, Martin DI. Inherited epimutation or a haplotypic basis for the propensity to silence? Nat Genet. 2007;39(5):573. author reply 6.PubMedCrossRef
145.
go back to reference Pembrey ME, Bygren LO, Kaati G, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14(2):159–66.PubMedCrossRef Pembrey ME, Bygren LO, Kaati G, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14(2):159–66.PubMedCrossRef
146.
go back to reference Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet. 2002;10(11):682–8.PubMedCrossRef Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet. 2002;10(11):682–8.PubMedCrossRef
147.
go back to reference Wood AJ, Oakey RJ. Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet. 2006;2(11):e147.PubMedCrossRef Wood AJ, Oakey RJ. Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet. 2006;2(11):e147.PubMedCrossRef
148.
go back to reference Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32.PubMedCrossRef Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32.PubMedCrossRef
149.
go back to reference Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10(8):475–8.PubMedCrossRef Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10(8):475–8.PubMedCrossRef
150.
152.
go back to reference Reik W, Walter J. Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nat Genet. 2001;27(3):255–6.PubMedCrossRef Reik W, Walter J. Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nat Genet. 2001;27(3):255–6.PubMedCrossRef
153.
go back to reference Smith FM, Garfield AS, Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res. 2006;113(1–4):279–91.PubMedCrossRef Smith FM, Garfield AS, Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res. 2006;113(1–4):279–91.PubMedCrossRef
154.
go back to reference Delaval K, Wagschal A, Feil R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays. 2006;28(5):453–9.PubMedCrossRef Delaval K, Wagschal A, Feil R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays. 2006;28(5):453–9.PubMedCrossRef
156.
go back to reference Plagge A, Isles AR, Gordon E, et al. Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol Cell Biol. 2005;25(8):3019–26.PubMedCrossRef Plagge A, Isles AR, Gordon E, et al. Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol Cell Biol. 2005;25(8):3019–26.PubMedCrossRef
157.
go back to reference Davies W, Isles A, Smith R, et al. Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nat Genet. 2005;37(6):625–9.PubMedCrossRef Davies W, Isles A, Smith R, et al. Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nat Genet. 2005;37(6):625–9.PubMedCrossRef
158.
go back to reference Potthoff MJ, Wu H, Arnold MA, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest. 2007;117(9):2459–67.PubMedCrossRef Potthoff MJ, Wu H, Arnold MA, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest. 2007;117(9):2459–67.PubMedCrossRef
159.
go back to reference Pandorf CE, Haddad F, Wright C, et al. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading. Am J Physiol Cell Physiol. 2009;297(1):C6–16.PubMedCrossRef Pandorf CE, Haddad F, Wright C, et al. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading. Am J Physiol Cell Physiol. 2009;297(1):C6–16.PubMedCrossRef
160.
go back to reference McGee SL, Fairlie E, Garnham AP, et al. Exercise-induced histone modifications in human skeletal muscle. J Physiol. 2009;587(Pt 24):5951–8.PubMedCrossRef McGee SL, Fairlie E, Garnham AP, et al. Exercise-induced histone modifications in human skeletal muscle. J Physiol. 2009;587(Pt 24):5951–8.PubMedCrossRef
161.
go back to reference McKinsey TA, Zhang CL, Lu J, et al. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408(6808):106–11.PubMedCrossRef McKinsey TA, Zhang CL, Lu J, et al. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408(6808):106–11.PubMedCrossRef
162.
go back to reference Guasconi V, Puri PL. Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration. Trends Cell Biol. 2009;19(6):286–94.PubMedCrossRef Guasconi V, Puri PL. Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration. Trends Cell Biol. 2009;19(6):286–94.PubMedCrossRef
163.
go back to reference Terruzzi I, Senesi P, Montesano A, et al. Genetic polymorphisms of the enzymes involved in DNA methylation and synthesis in elite athletes. Physiol Genomics. 2011;43(16):965–73.PubMedCrossRef Terruzzi I, Senesi P, Montesano A, et al. Genetic polymorphisms of the enzymes involved in DNA methylation and synthesis in elite athletes. Physiol Genomics. 2011;43(16):965–73.PubMedCrossRef
164.
go back to reference Barres R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11.PubMedCrossRef Barres R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11.PubMedCrossRef
165.
go back to reference Collins A, Hill LE, Chandramohan Y, et al. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLoS One. 2009;4(1):e4330.PubMedCrossRef Collins A, Hill LE, Chandramohan Y, et al. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLoS One. 2009;4(1):e4330.PubMedCrossRef
166.
go back to reference Chia DJ, Young JJ, Mertens AR. Distinct alterations in chromatin organization of the two IGF-I promoters precede growth hormone-induced activation of IGF-I gene transcription. Mol Endocrinol. 2010;24(4):779–89.PubMedCrossRef Chia DJ, Young JJ, Mertens AR. Distinct alterations in chromatin organization of the two IGF-I promoters precede growth hormone-induced activation of IGF-I gene transcription. Mol Endocrinol. 2010;24(4):779–89.PubMedCrossRef
167.
go back to reference Schwarzenbach H. Impact of physical activity and doping on epigenetic gene regulation. Drug Test Anal. 14 Jun 2011. Schwarzenbach H. Impact of physical activity and doping on epigenetic gene regulation. Drug Test Anal. 14 Jun 2011.
168.
169.
go back to reference Herman H, Lu M, Anggraini M, et al. Trans allele methylation and paramutation-like effects in mice. Nat Genet. 2003;34(2):199–202.PubMedCrossRef Herman H, Lu M, Anggraini M, et al. Trans allele methylation and paramutation-like effects in mice. Nat Genet. 2003;34(2):199–202.PubMedCrossRef
170.
go back to reference Anway MD, Cupp AS, Uzumcu M, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.PubMedCrossRef Anway MD, Cupp AS, Uzumcu M, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.PubMedCrossRef
171.
go back to reference Rando OJ, Verstrepen KJ. Timescales of genetic and epigenetic inheritance. Cell. 2007;128(4):655–68.PubMedCrossRef Rando OJ, Verstrepen KJ. Timescales of genetic and epigenetic inheritance. Cell. 2007;128(4):655–68.PubMedCrossRef
172.
go back to reference Johannes F, Colot V, Jansen RC. Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet. 2008;9(11):883–90.PubMedCrossRef Johannes F, Colot V, Jansen RC. Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet. 2008;9(11):883–90.PubMedCrossRef
173.
go back to reference Richards EJ. Inherited epigenetic variation: revisiting soft inheritance. Nat Rev Genet. 2006;7(5):395–401.PubMedCrossRef Richards EJ. Inherited epigenetic variation: revisiting soft inheritance. Nat Rev Genet. 2006;7(5):395–401.PubMedCrossRef
174.
go back to reference Bossdorf O, Richards CL, Pigliucci M. Epigenetics for ecologists. Ecol Lett. 2008;11(2):106–15.PubMed Bossdorf O, Richards CL, Pigliucci M. Epigenetics for ecologists. Ecol Lett. 2008;11(2):106–15.PubMed
176.
go back to reference Macarthur DG, North KN. Genes and human elite athletic performance. Hum Genet. 2005;116(5):331–9.PubMedCrossRef Macarthur DG, North KN. Genes and human elite athletic performance. Hum Genet. 2005;116(5):331–9.PubMedCrossRef
177.
go back to reference Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.PubMed Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.PubMed
178.
go back to reference Nakajima K, Takeoka M, Mori M, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010;31(9):671–5.PubMedCrossRef Nakajima K, Takeoka M, Mori M, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010;31(9):671–5.PubMedCrossRef
179.
go back to reference Flanagan JM, Popendikyte V, Pozdniakovaite N, et al. Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet. 2006;79(1):67–84.PubMedCrossRef Flanagan JM, Popendikyte V, Pozdniakovaite N, et al. Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet. 2006;79(1):67–84.PubMedCrossRef
180.
go back to reference Gerrits A, Li Y, Tesson BM, Bystrykh LV, Weersing E, Ausema A, et al. Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Genet. 2009;5(10):e1000692.PubMedCrossRef Gerrits A, Li Y, Tesson BM, Bystrykh LV, Weersing E, Ausema A, et al. Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Genet. 2009;5(10):e1000692.PubMedCrossRef
181.
go back to reference International_Human_Genome_Sequencing_Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004 Oct 21;431(7011):931–45. International_Human_Genome_Sequencing_Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004 Oct 21;431(7011):931–45.
182.
go back to reference Mendel JG. Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn. 1866, Bd. IV:3–47. Mendel JG. Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn. 1866, Bd. IV:3–47.
183.
go back to reference Beadle GW, Tatum EL. Genetic control of biochemical reactions in neurospora. Proc Natl Acad Sci USA. 1941;27(11):499–506.PubMedCrossRef Beadle GW, Tatum EL. Genetic control of biochemical reactions in neurospora. Proc Natl Acad Sci USA. 1941;27(11):499–506.PubMedCrossRef
184.
go back to reference Gerstein MB, Bruce C, Rozowsky JS, et al. What is a gene, post-ENCODE? History and updated definition. Genome Res. 2007;17(6):669–81.PubMedCrossRef Gerstein MB, Bruce C, Rozowsky JS, et al. What is a gene, post-ENCODE? History and updated definition. Genome Res. 2007;17(6):669–81.PubMedCrossRef
185.
go back to reference Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.PubMedCrossRef Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.PubMedCrossRef
186.
go back to reference Morris KV, Santoso S, Turner AM, et al. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 2008;4(11):e1000258.PubMedCrossRef Morris KV, Santoso S, Turner AM, et al. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 2008;4(11):e1000258.PubMedCrossRef
187.
go back to reference Nagano T, Mitchell JA, Sanz LA, et al. The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322(5908):1717–20.PubMedCrossRef Nagano T, Mitchell JA, Sanz LA, et al. The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322(5908):1717–20.PubMedCrossRef
188.
go back to reference Martianov I, Ramadass A. Serra Barros A, et al. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 2007;445(7128):666–70.PubMedCrossRef Martianov I, Ramadass A. Serra Barros A, et al. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 2007;445(7128):666–70.PubMedCrossRef
189.
go back to reference Ohno M, Fukagawa T, Lee JS, et al. Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma. 2002;111(3):201–13.PubMedCrossRef Ohno M, Fukagawa T, Lee JS, et al. Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma. 2002;111(3):201–13.PubMedCrossRef
190.
go back to reference Mariner PD, Walters RD, Espinoza CA, et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell. 2008;29(4):499–509.PubMedCrossRef Mariner PD, Walters RD, Espinoza CA, et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell. 2008;29(4):499–509.PubMedCrossRef
191.
go back to reference Ogawa Y, Sun BK, Lee JT. Intersection of the RNA interference and X-inactivation pathways. Science. 2008;320(5881):1336–41.PubMedCrossRef Ogawa Y, Sun BK, Lee JT. Intersection of the RNA interference and X-inactivation pathways. Science. 2008;320(5881):1336–41.PubMedCrossRef
192.
go back to reference He Y, Vogelstein B, Velculescu VE, et al. The antisense transcriptomes of human cells. Science. 2008;322(5909):1855–7.PubMedCrossRef He Y, Vogelstein B, Velculescu VE, et al. The antisense transcriptomes of human cells. Science. 2008;322(5909):1855–7.PubMedCrossRef
193.
go back to reference Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5(1):16–8.PubMedCrossRef Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5(1):16–8.PubMedCrossRef
194.
go back to reference Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55(4):641–58.PubMedCrossRef Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55(4):641–58.PubMedCrossRef
196.
go back to reference Lucia A, Moran M, Zihong H, et al. Elite athletes: are the genes the champions? Int J Sports Physiol Perform. 2010;5(1):98–102.PubMed Lucia A, Moran M, Zihong H, et al. Elite athletes: are the genes the champions? Int J Sports Physiol Perform. 2010;5(1):98–102.PubMed
Metadata
Title
Epigenetics in Sports
Authors
Tobias Ehlert
Perikles Simon
Dirk A. Moser
Publication date
01-02-2013
Publisher
Springer International Publishing AG
Published in
Sports Medicine / Issue 2/2013
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-012-0012-y

Other articles of this Issue 2/2013

Sports Medicine 2/2013 Go to the issue

Review Article

Exercise Addiction