Skip to main content
Top
Published in: Critical Care 1/2015

Open Access 01-12-2015 | Commentary

Epigenetic changes during sepsis: on your marks!

Authors: Aurélien Bataille, Pierre Galichon, Marie-Julia Ziliotis, Iman Sadia, Alexandre Hertig

Published in: Critical Care | Issue 1/2015

Login to get access

Abstract

Epigenetics is the study of how cells, organs, and even individuals utilize their genes over specific periods of time, and under specific environmental constraints. Very importantly, epigenetics is now expanding into the field of medicine and hence should provide new information for the development of drugs. Bomsztyk and colleagues have detected major epigenetic changes occurring in several organs as early as 6 h after the onset of a mouse model of multiple organ dysfunction syndrome induced by Staphylococcus aureus lung injury. Decrease in mRNA of key genes involved in endothelial function was found to be associated with (and potentially explained by) a decrease in permissive histone marks, while repressive marks were unchanged. We discuss here the limitations of a whole-organ as opposed to a cell-specific approach, the nature of the controls that were chosen, and the pitfalls of histone modifications as a cause of the eventual phenotype. While the use of ‘epidrugs’ is definitely welcome in the clinic, how and when they will be used in sepsis-related multiple organ dysfunction will require further experimental studies.
Literature
1.
go back to reference Bomsztyk K, Mar D, An D, Sharifian R, Mikula M, Gharib SA, et al. Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction. Crit Care. 2015;19:225.CrossRef Bomsztyk K, Mar D, An D, Sharifian R, Mikula M, Gharib SA, et al. Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction. Crit Care. 2015;19:225.CrossRef
3.
go back to reference Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRef Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRef
4.
go back to reference Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14:2534–43.CrossRef Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14:2534–43.CrossRef
5.
go back to reference Legouis D, Bataille A, Hertig A, Vandermeersch S, Simon N, Rondeau E, et al. Ex vivo analysis of renal proximal tubular cells. BMC Cell Biol. 2015;16:12.CrossRef Legouis D, Bataille A, Hertig A, Vandermeersch S, Simon N, Rondeau E, et al. Ex vivo analysis of renal proximal tubular cells. BMC Cell Biol. 2015;16:12.CrossRef
6.
go back to reference Zhong T, Qing QJ, Yang Y, Zou WY, Ye Z, Yan JQ, et al. Repression of contexual fear memory induced by isoflurane is accompanied by reduction in histone acetylation and rescued by sodium butyrate. Br J Anaesth. 2014;113:634–43.CrossRef Zhong T, Qing QJ, Yang Y, Zou WY, Ye Z, Yan JQ, et al. Repression of contexual fear memory induced by isoflurane is accompanied by reduction in histone acetylation and rescued by sodium butyrate. Br J Anaesth. 2014;113:634–43.CrossRef
7.
go back to reference Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW. Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem. 2001;276:11199–203.CrossRef Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW. Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem. 2001;276:11199–203.CrossRef
8.
go back to reference Ostrowski SR, Haase N, Müller RB, Møller MH, Pott FC, Perner A, et al. Association between biomarkers of endothelial injury and hypocoagulability in patients with severe sepsis: a prospective study. Crit Care. 2015;19:191.CrossRef Ostrowski SR, Haase N, Müller RB, Møller MH, Pott FC, Perner A, et al. Association between biomarkers of endothelial injury and hypocoagulability in patients with severe sepsis: a prospective study. Crit Care. 2015;19:191.CrossRef
9.
go back to reference Skibsted S, Jones AE, Puskarich MA, Arnold R, Sherwin R, Trzeciak S, et al. Biomarkers of endothelial cell activation in early sepsis. Shock. 2013;39:427–32.CrossRef Skibsted S, Jones AE, Puskarich MA, Arnold R, Sherwin R, Trzeciak S, et al. Biomarkers of endothelial cell activation in early sepsis. Shock. 2013;39:427–32.CrossRef
10.
go back to reference Fink MP. Bench-to-bedside review: Cytopathic hypoxia. Crit Care. 2002;6:491–9.CrossRef Fink MP. Bench-to-bedside review: Cytopathic hypoxia. Crit Care. 2002;6:491–9.CrossRef
Metadata
Title
Epigenetic changes during sepsis: on your marks!
Authors
Aurélien Bataille
Pierre Galichon
Marie-Julia Ziliotis
Iman Sadia
Alexandre Hertig
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2015
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-1068-5

Other articles of this Issue 1/2015

Critical Care 1/2015 Go to the issue