Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Short report

EP2-PKA signaling is suppressed by triptolide in lipopolysaccharide-induced microglia activation

Authors: Ting Zhang, Xiaoli Gong, Guanzheng Hu, Xiaomin Wang

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Background

Microglia are key players for the inflammatory responses in the central nervous system. Suppression of microglial activation and the resulting production of proinflammatory molecules are considered a promising strategy to alleviate the progression of neurodegenerative disorders. Triptolide was demonstrated as a potent anti-inflammatory compound both in vitro and in vivo. The present study explored potential signal pathways of triptolide in the lipopolysaccharide (LPS)-induced inflammatory response using primary rat microglial cells.

Findings

Microglial cells were pretreated with triptolide and stimulated with LPS. To investigate the anti-inflammatory effect of triptolide, we used Griess reagent and Western blot for NO release and iNOS expression, respectively. Moreover, we applied microglia-conditioned medium to neuronal cells and used the MTS assay to test cell viability. We found that triptolide inhibited LPS-induced NO and iNOS synthesis in microglial cells, which in turn protected neurons. To evaluate the involvement of the EP2 pathway, we used real-time PCR and Western blot to determine EP2 expression. We found that LPS induced a large increase in EP2 expression in microglia, and triptolide almost completely inhibited LPS-induced EP2 expression. Using the selective EP2 agonist butaprost and the EP2 antagonist AH6809, we determined that triptolide inhibited LPS-stimulated NO production in microglia mainly through the EP2 pathway. Additionally, by further treating triptolide-treated microglia with the downstream PKA-specific activator 6-Bnz-cAMP or the Epac-specific activator 8-pCPT-2-O-Me-cAMP, we found that 6-Bnz-cAMP but not 8-pCPT-2-O-Me-cAMP increased NO production in triptolide-LPS treated microglia. These results indicate that the EP2-PKA pathway is very important for triptolide’s effects.

Conclusions

Triptolide inhibits LPS-stimulated NO production in microglia via a signaling mechanism involving EP2 and PKA. This finding may help establish the pharmacological function of triptolide in neurodegenerative disorders. Moreover, the observation of inflammatory EP2 signaling in primary microglia provides important evidence that EP2 regulates innate immunity in the central nervous system.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther. 2003;304(1):1–7.CrossRefPubMed Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther. 2003;304(1):1–7.CrossRefPubMed
2.
go back to reference Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, et al. Inflammation in neurodegenerative diseases - an update. Immunology. 2013;142(2):151–66.CrossRef Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, et al. Inflammation in neurodegenerative diseases - an update. Immunology. 2013;142(2):151–66.CrossRef
3.
go back to reference Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci. 2007;8(10):766–75.CrossRefPubMed Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci. 2007;8(10):766–75.CrossRefPubMed
4.
go back to reference Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med. 2006;38(4):333–47.CrossRefPubMed Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med. 2006;38(4):333–47.CrossRefPubMed
5.
go back to reference Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol. 2009;85(3):352–70.CrossRefPubMed Tambuyzer BR, Ponsaerts P, Nouwen EJ. Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol. 2009;85(3):352–70.CrossRefPubMed
6.
go back to reference Iadecola C, Niwa K, Nogawa S, Zhao X, Nagayama M, Araki E, et al. Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc Natl Acad Sci USA. 2001;98(3):1294–9.CrossRefPubMedCentralPubMed Iadecola C, Niwa K, Nogawa S, Zhao X, Nagayama M, Araki E, et al. Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc Natl Acad Sci USA. 2001;98(3):1294–9.CrossRefPubMedCentralPubMed
7.
go back to reference Serrano GE, Lelutiu N, Rojas A, Cochi S, Shaw R, Makinson CD, et al. Ablation of cyclooxygenase-2 in forebrain neurons is neuroprotective and dampens brain inflammation after status epilepticus. J Neurosci. 2011;31(42):14850–60.CrossRefPubMedCentralPubMed Serrano GE, Lelutiu N, Rojas A, Cochi S, Shaw R, Makinson CD, et al. Ablation of cyclooxygenase-2 in forebrain neurons is neuroprotective and dampens brain inflammation after status epilepticus. J Neurosci. 2011;31(42):14850–60.CrossRefPubMedCentralPubMed
8.
go back to reference Grosser T, Yu Y, Fitzgerald GA. Emotion recollected in tranquility: lessons learned from the COX-2 saga. Annu Rev Med. 2010;61:17–33.CrossRefPubMed Grosser T, Yu Y, Fitzgerald GA. Emotion recollected in tranquility: lessons learned from the COX-2 saga. Annu Rev Med. 2010;61:17–33.CrossRefPubMed
9.
go back to reference Jiang J, Dingledine R. Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends Pharmacol Sci. 2013;34(7):413–23.CrossRefPubMed Jiang J, Dingledine R. Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends Pharmacol Sci. 2013;34(7):413–23.CrossRefPubMed
10.
go back to reference Shie FS, Montine KS, Breyer RM, Montine TJ. Microglial EP2 is critical to neurotoxicity from activated cerebral innate immunity. Glia. 2005;52(1):70–7.CrossRefPubMed Shie FS, Montine KS, Breyer RM, Montine TJ. Microglial EP2 is critical to neurotoxicity from activated cerebral innate immunity. Glia. 2005;52(1):70–7.CrossRefPubMed
11.
go back to reference Lu L, Li F, Wang X. Novel anti-inflammatory and neuroprotective agents for Parkinson’s disease. CNS Neurol Disord Drug Targets. 2010;9(2):232–40.CrossRefPubMed Lu L, Li F, Wang X. Novel anti-inflammatory and neuroprotective agents for Parkinson’s disease. CNS Neurol Disord Drug Targets. 2010;9(2):232–40.CrossRefPubMed
12.
go back to reference Wang X, Liang XB, Li FQ, Zhou HF, Liu XY, Wang JJ, et al. Therapeutic strategies for Parkinson’s disease: the ancient meets the future–traditional Chinese herbal medicine, electroacupuncture, gene therapy and stem cells. Neurochem Res. 2008;33(10):1956–63.CrossRefPubMed Wang X, Liang XB, Li FQ, Zhou HF, Liu XY, Wang JJ, et al. Therapeutic strategies for Parkinson’s disease: the ancient meets the future–traditional Chinese herbal medicine, electroacupuncture, gene therapy and stem cells. Neurochem Res. 2008;33(10):1956–63.CrossRefPubMed
13.
go back to reference Zhou HF, Liu XY, Niu DB, Li FQ, He QH, Wang XM. Triptolide protects dopaminergic neurons from inflammation-mediated damage induced by lipopolysaccharide intranigral injection. Neurobiol Dis. 2005;18(3):441–9.CrossRefPubMed Zhou HF, Liu XY, Niu DB, Li FQ, He QH, Wang XM. Triptolide protects dopaminergic neurons from inflammation-mediated damage induced by lipopolysaccharide intranigral injection. Neurobiol Dis. 2005;18(3):441–9.CrossRefPubMed
14.
go back to reference Gong Y, Xue B, Jiao J, Jing L, Wang X. Triptolide inhibits COX-2 expression and PGE2 release by suppressing the activity of NF-kappaB and JNK in LPS-treated microglia. J Neurochem. 2008;107(3):779–88.CrossRefPubMed Gong Y, Xue B, Jiao J, Jing L, Wang X. Triptolide inhibits COX-2 expression and PGE2 release by suppressing the activity of NF-kappaB and JNK in LPS-treated microglia. J Neurochem. 2008;107(3):779–88.CrossRefPubMed
15.
go back to reference Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999;43(3):521–31.CrossRefPubMed Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999;43(3):521–31.CrossRefPubMed
16.
go back to reference Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–36.CrossRefPubMed Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–36.CrossRefPubMed
17.
go back to reference Singh S, Das T, Ravindran A, Chaturvedi RK, Shukla Y, Agarwal AK, et al. Involvement of nitric oxide in neurodegeneration: a study on the experimental models of Parkinson’s disease. Redox Rep. 2005;10(2):103–9.CrossRefPubMed Singh S, Das T, Ravindran A, Chaturvedi RK, Shukla Y, Agarwal AK, et al. Involvement of nitric oxide in neurodegeneration: a study on the experimental models of Parkinson’s disease. Redox Rep. 2005;10(2):103–9.CrossRefPubMed
18.
go back to reference Fiebich BL, Lieb K, Engels S, Heinrich M. Inhibition of LPS-induced p42/44 MAP kinase activation and iNOS/NO synthesis by parthenolide in rat primary microglial cells. J Neuroimmunol. 2002;132(1–2):18–24.CrossRefPubMed Fiebich BL, Lieb K, Engels S, Heinrich M. Inhibition of LPS-induced p42/44 MAP kinase activation and iNOS/NO synthesis by parthenolide in rat primary microglial cells. J Neuroimmunol. 2002;132(1–2):18–24.CrossRefPubMed
19.
go back to reference Lau FC, Bielinski DF, Joseph JA. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J Neurosci Res. 2007;85(5):1010–7. doi:10.1002/jnr.21205.CrossRefPubMed Lau FC, Bielinski DF, Joseph JA. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J Neurosci Res. 2007;85(5):1010–7. doi:10.1002/jnr.21205.CrossRefPubMed
20.
go back to reference Lieb K, Engels S, Fiebich BL. Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochem Int. 2003;42(2):131–7.CrossRefPubMed Lieb K, Engels S, Fiebich BL. Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochem Int. 2003;42(2):131–7.CrossRefPubMed
21.
go back to reference Pangestuti R, Bak SS, Kim SK. Attenuation of pro-inflammatory mediators in LPS-stimulated BV2 microglia by chitooligosaccharides via the MAPK signaling pathway. Int J Biol Macromol. 2011;49(4):599–606. doi:10.1016/j.ijbiomac.2011.06.014.CrossRefPubMed Pangestuti R, Bak SS, Kim SK. Attenuation of pro-inflammatory mediators in LPS-stimulated BV2 microglia by chitooligosaccharides via the MAPK signaling pathway. Int J Biol Macromol. 2011;49(4):599–606. doi:10.1016/j.ijbiomac.2011.06.014.CrossRefPubMed
22.
go back to reference Ryu J, Pyo H, Jou I, Joe E. Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. J Biol Chem. 2000;275(39):29955–9. doi:10.1074/jbc.M001220200.CrossRefPubMed Ryu J, Pyo H, Jou I, Joe E. Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. J Biol Chem. 2000;275(39):29955–9. doi:10.1074/jbc.M001220200.CrossRefPubMed
23.
go back to reference Lu Y, Zhang Y, Li L, Feng X, Ding S, Zheng W, et al. TAB1: a target of triptolide in macrophages. Chem Biol. 2014;21(2):246–56.CrossRefPubMed Lu Y, Zhang Y, Li L, Feng X, Ding S, Zheng W, et al. TAB1: a target of triptolide in macrophages. Chem Biol. 2014;21(2):246–56.CrossRefPubMed
24.
go back to reference Colton CA, Gilbert DL. Production of superoxide anions by a CNS macrophage, the microglia. FEBS letters. 1987;223(2):284–8.CrossRefPubMed Colton CA, Gilbert DL. Production of superoxide anions by a CNS macrophage, the microglia. FEBS letters. 1987;223(2):284–8.CrossRefPubMed
25.
go back to reference Klegeris A, McGeer PL. Rat brain microglia and peritoneal macrophages show similar responses to respiratory burst stimulants. J Neuroimmunol. 1994;53(1):83–90.CrossRefPubMed Klegeris A, McGeer PL. Rat brain microglia and peritoneal macrophages show similar responses to respiratory burst stimulants. J Neuroimmunol. 1994;53(1):83–90.CrossRefPubMed
26.
go back to reference Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992;587(2):250–6.CrossRefPubMed Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992;587(2):250–6.CrossRefPubMed
27.
go back to reference Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992;149(8):2736–41.PubMed Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992;149(8):2736–41.PubMed
28.
go back to reference Goodwin JL, Uemura E, Cunnick JE. Microglial release of nitric oxide by the synergistic action of beta-amyloid and IFN-gamma. Brain Res. 1995;692(1–2):207–14.CrossRefPubMed Goodwin JL, Uemura E, Cunnick JE. Microglial release of nitric oxide by the synergistic action of beta-amyloid and IFN-gamma. Brain Res. 1995;692(1–2):207–14.CrossRefPubMed
29.
go back to reference Meda L, Cassatella MA, Szendrei GI, Otvos Jr L, Baron P, Villalba M, et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature. 1995;374(6523):647–50. doi:10.1038/374647a0.CrossRefPubMed Meda L, Cassatella MA, Szendrei GI, Otvos Jr L, Baron P, Villalba M, et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature. 1995;374(6523):647–50. doi:10.1038/374647a0.CrossRefPubMed
30.
go back to reference Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Canc Res. 1978;38(11 Pt 1):3751–7. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Canc Res. 1978;38(11 Pt 1):3751–7.
31.
go back to reference Farooqui SM. Induction of adenylate cyclase sensitive dopamine D2-receptors in retinoic acid induced differentiated human neuroblastoma SHSY-5Y cells. Life Sci. 1994;55(24):1887–93.CrossRefPubMed Farooqui SM. Induction of adenylate cyclase sensitive dopamine D2-receptors in retinoic acid induced differentiated human neuroblastoma SHSY-5Y cells. Life Sci. 1994;55(24):1887–93.CrossRefPubMed
32.
go back to reference Liu RP, Zou M, Wang JY, Zhu JJ, Lai JM, Zhou LL, et al. Paroxetine ameliorates lipopolysaccharide-induced microglia activation via differential regulation of MAPK signaling. J Neuroinflammation. 2014;11:47. doi:10.1186/1742-2094-11-47.CrossRefPubMedCentralPubMed Liu RP, Zou M, Wang JY, Zhu JJ, Lai JM, Zhou LL, et al. Paroxetine ameliorates lipopolysaccharide-induced microglia activation via differential regulation of MAPK signaling. J Neuroinflammation. 2014;11:47. doi:10.1186/1742-2094-11-47.CrossRefPubMedCentralPubMed
33.
go back to reference Munch G, Gasic-Milenkovic J, Dukic-Stefanovic S, Kuhla B, Heinrich K, Riederer P, et al. Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells. Exp Brain Res. 2003;150(1):1–8. doi:10.1007/s00221-003-1389-5.PubMed Munch G, Gasic-Milenkovic J, Dukic-Stefanovic S, Kuhla B, Heinrich K, Riederer P, et al. Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells. Exp Brain Res. 2003;150(1):1–8. doi:10.1007/s00221-003-1389-5.PubMed
34.
go back to reference Tseng YT, Hsu YY, Shih YT, Lo YC. Paeonol attenuates microglia-mediated inflammation and oxidative stress-induced neurotoxicity in rat primary microglia and cortical neurons. Shock. 2012;37(3):312–8. doi:10.1097/SHK.0b013e31823fe939.CrossRefPubMed Tseng YT, Hsu YY, Shih YT, Lo YC. Paeonol attenuates microglia-mediated inflammation and oxidative stress-induced neurotoxicity in rat primary microglia and cortical neurons. Shock. 2012;37(3):312–8. doi:10.1097/SHK.0b013e31823fe939.CrossRefPubMed
35.
go back to reference Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992;298(2):446–51.CrossRefPubMed Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992;298(2):446–51.CrossRefPubMed
36.
37.
go back to reference Tajima T, Murata T, Aritake K, Urade Y, Michishita M, Matsuoka T, et al. EP2 and EP4 receptors on muscularis resident macrophages mediate LPS-induced intestinal dysmotility via iNOSupregulation through cAMP/ERK signals. Am J Physiol Gastrointest Liver Physiol. 2012;302(5):G524–34. doi:10.1152/ajpgi.00264.2011.CrossRefPubMedCentralPubMed Tajima T, Murata T, Aritake K, Urade Y, Michishita M, Matsuoka T, et al. EP2 and EP4 receptors on muscularis resident macrophages mediate LPS-induced intestinal dysmotility via iNOSupregulation through cAMP/ERK signals. Am J Physiol Gastrointest Liver Physiol. 2012;302(5):G524–34. doi:10.1152/ajpgi.00264.2011.CrossRefPubMedCentralPubMed
38.
go back to reference Noda M, Kariura Y, Pannasch U, Nishikawa K, Wang L, Seike T, et al. Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J Neurochem. 2007;101(2):397–410.CrossRefPubMed Noda M, Kariura Y, Pannasch U, Nishikawa K, Wang L, Seike T, et al. Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J Neurochem. 2007;101(2):397–410.CrossRefPubMed
39.
go back to reference Johansson JU, Pradhan S, Lokteva LA, Woodling NS, Ko N, Brown HD, et al. Suppression of inflammation with conditional deletion of the prostaglandin E2 EP2 receptor in macrophages and brain microglia. J Neurosci. 2013;33(40):16016–32. doi:10.1523/JNEUROSCI. 2203-13.2013.CrossRefPubMedCentralPubMed Johansson JU, Pradhan S, Lokteva LA, Woodling NS, Ko N, Brown HD, et al. Suppression of inflammation with conditional deletion of the prostaglandin E2 EP2 receptor in macrophages and brain microglia. J Neurosci. 2013;33(40):16016–32. doi:10.1523/JNEUROSCI. 2203-13.2013.CrossRefPubMedCentralPubMed
40.
go back to reference Aronoff DM, Carstens JK, Chen GH, Toews GB, Peters-Golden M. Short communication: differences between macrophages and dendritic cells in the cyclic AMP-dependent regulation of lipopolysaccharide-induced cytokine and chemokine synthesis. J Interferon Cytokine Res. 2006;26(11):827–33.CrossRefPubMed Aronoff DM, Carstens JK, Chen GH, Toews GB, Peters-Golden M. Short communication: differences between macrophages and dendritic cells in the cyclic AMP-dependent regulation of lipopolysaccharide-induced cytokine and chemokine synthesis. J Interferon Cytokine Res. 2006;26(11):827–33.CrossRefPubMed
41.
go back to reference Kim SH, Serezani CH, Okunishi K, Zaslona Z, Aronoff DM, Peters-Golden M. Distinct protein kinase A anchoring proteins direct prostaglandin E2 modulation of toll-like receptor signaling in alveolar macrophages. J Biol Chem. 2011;286(11):8875–83.CrossRefPubMedCentralPubMed Kim SH, Serezani CH, Okunishi K, Zaslona Z, Aronoff DM, Peters-Golden M. Distinct protein kinase A anchoring proteins direct prostaglandin E2 modulation of toll-like receptor signaling in alveolar macrophages. J Biol Chem. 2011;286(11):8875–83.CrossRefPubMedCentralPubMed
42.
go back to reference Titov DV, Gilman B, He QL, Bhat S, Low WK, Dang Y, et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol. 2011;7(3):182–8.CrossRefPubMedCentralPubMed Titov DV, Gilman B, He QL, Bhat S, Low WK, Dang Y, et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol. 2011;7(3):182–8.CrossRefPubMedCentralPubMed
Metadata
Title
EP2-PKA signaling is suppressed by triptolide in lipopolysaccharide-induced microglia activation
Authors
Ting Zhang
Xiaoli Gong
Guanzheng Hu
Xiaomin Wang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0275-y

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue