Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2013

Open Access 01-12-2013 | Research

Enhancing sorafenib-mediated sensitization to gemcitabine in experimental pancreatic cancer through EMAP II

Authors: Niranjan Awasthi, Changhua Zhang, Stefan Hinz, Margaret A Schwarz, Roderich E Schwarz

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2013

Login to get access

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human malignancies and tends to be relatively resistant to conventional therapies. Activated Ras oncogene mutations are found in up to 90% of PDAC, leading to activation of the Ras/Raf/MEK/ERK signaling pathway. Sorafenib is a multikinase inhibitor of the Ras/Raf/MEK/ERK pathway and of tumor angiogenesis. Endothelial monocyte activating polypeptide II (EMAP) enhances gemcitabine effects in PDAC. Antitumor activity of sorafenib was evaluated in combination with gemcitabine (Gem) and the antiangiogenic agent EMAP in experimental PDAC.

Methods

Cell proliferation and protein expression were analyzed by WST-1 assay and Western blotting. Animal survival studies were performed in murine PDAC xenografts.

Results

Sorafenib decreased phospho-MEK, phospho-ERK1/2, phospho-p70S6K and phospho-4EBP-1 expression in PDAC cells. Sorafenib inhibited in vitro proliferation of all four PDAC cell lines tested. Additive effects on cell proliferation inhibition were observed in the gemcitabine-sorafenib combination in PDAC cells, and in combinations of sorafenib or EMAP with gemcitabine in endothelial (HUVEC) and fibroblast (WI-38) cells. Sorafenib, alone or in combination with gemcitabine and EMAP, induced apoptosis in HUVECs and WI-38 cells as observed via increased expression of cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and caspase-3 proteins. Compared to controls (median survival: 22 days), animal survival increased after Gem therapy (29 days) but not in sorafenib (23 days) or EMAP therapy alone (25 days). Further increases in survival occurred in combination therapy groups Gem+sorafenib (30 days, p=0.004), Gem+EMAP (33 days, p=0.002), and Gem+sorafenib+EMAP (36 days, p=0.004), but not after the sorafenib+EMAP combination (24 days).

Conclusions

These findings demonstrate that the addition of a polymechanistic antiangiogenic agent such as EMAP can enhance the combination treatment effects of sorafenib and cytotoxic PDAC therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61 (2): 69-90. 10.3322/caac.20107.CrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61 (2): 69-90. 10.3322/caac.20107.CrossRef
2.
go back to reference Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997, 15 (6): 2403-2413. Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997, 15 (6): 2403-2413.
3.
go back to reference Saif MW: Pancreatic cancer: highlights from the 42nd annual meeting of the American Society of Clinical Oncology, 2006. JOP. 2006, 7 (4): 337-348. Saif MW: Pancreatic cancer: highlights from the 42nd annual meeting of the American Society of Clinical Oncology, 2006. JOP. 2006, 7 (4): 337-348.
4.
go back to reference Reni M, Cordio S, Milandri C, Passoni P, Bonetto E, Oliani C, Luppi G, Nicoletti R, Galli L, Bordonaro R: Gemcitabine versus cisplatin, epirubicin, fluorouracil, and gemcitabine in advanced pancreatic cancer: a randomised controlled multicentre phase III trial. Lancet Oncol. 2005, 6 (6): 369-376. 10.1016/S1470-2045(05)70175-3.CrossRef Reni M, Cordio S, Milandri C, Passoni P, Bonetto E, Oliani C, Luppi G, Nicoletti R, Galli L, Bordonaro R: Gemcitabine versus cisplatin, epirubicin, fluorouracil, and gemcitabine in advanced pancreatic cancer: a randomised controlled multicentre phase III trial. Lancet Oncol. 2005, 6 (6): 369-376. 10.1016/S1470-2045(05)70175-3.CrossRef
5.
go back to reference Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardiere C: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011, 364 (19): 1817-1825. 10.1056/NEJMoa1011923.CrossRef Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardiere C: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011, 364 (19): 1817-1825. 10.1056/NEJMoa1011923.CrossRef
6.
go back to reference Bardeesy N, DePinho RA: Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002, 2 (12): 897-909. 10.1038/nrc949.CrossRef Bardeesy N, DePinho RA: Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002, 2 (12): 897-909. 10.1038/nrc949.CrossRef
7.
go back to reference Jaffee EM, Hruban RH, Canto M, Kern SE: Focus on pancreas cancer. Cancer Cell. 2002, 2 (1): 25-28. 10.1016/S1535-6108(02)00093-4.CrossRef Jaffee EM, Hruban RH, Canto M, Kern SE: Focus on pancreas cancer. Cancer Cell. 2002, 2 (1): 25-28. 10.1016/S1535-6108(02)00093-4.CrossRef
8.
go back to reference Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J: Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012, 491 (7424): 399-405. 10.1038/nature11547.CrossRef Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J: Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012, 491 (7424): 399-405. 10.1038/nature11547.CrossRef
9.
go back to reference Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64 (19): 7099-7109. 10.1158/0008-5472.CAN-04-1443.CrossRef Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64 (19): 7099-7109. 10.1158/0008-5472.CAN-04-1443.CrossRef
10.
go back to reference Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S: Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006, 5 (10): 835-844. 10.1038/nrd2130.CrossRef Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S: Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006, 5 (10): 835-844. 10.1038/nrd2130.CrossRef
11.
go back to reference Yu C, Bruzek LM, Meng XW, Gores GJ, Carter CA, Kaufmann SH, Adjei AA: The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene. 2005, 24 (46): 6861-6869. 10.1038/sj.onc.1208841.CrossRef Yu C, Bruzek LM, Meng XW, Gores GJ, Carter CA, Kaufmann SH, Adjei AA: The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene. 2005, 24 (46): 6861-6869. 10.1038/sj.onc.1208841.CrossRef
12.
go back to reference Strumberg D: Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc). 2005, 41 (12): 773-784. 10.1358/dot.2005.41.12.937959.CrossRef Strumberg D: Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc). 2005, 41 (12): 773-784. 10.1358/dot.2005.41.12.937959.CrossRef
13.
go back to reference Siu LL, Awada A, Takimoto CH, Piccart M, Schwartz B, Giannaris T, Lathia C, Petrenciuc O, Moore MJ: Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res. 2006, 12 (1): 144-151. 10.1158/1078-0432.CCR-05-1571.CrossRef Siu LL, Awada A, Takimoto CH, Piccart M, Schwartz B, Giannaris T, Lathia C, Petrenciuc O, Moore MJ: Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res. 2006, 12 (1): 144-151. 10.1158/1078-0432.CCR-05-1571.CrossRef
14.
go back to reference Kindler HL, Wroblewski K, Wallace JA, Hall MJ, Locker G, Nattam S, Agamah E, Stadler WM, Vokes EE: Gemcitabine plus sorafenib in patients with advanced pancreatic cancer: a phase II trial of the University of Chicago Phase II Consortium. Invest New Drugs. 2012, 30 (1): 382-386. 10.1007/s10637-010-9526-z.CrossRef Kindler HL, Wroblewski K, Wallace JA, Hall MJ, Locker G, Nattam S, Agamah E, Stadler WM, Vokes EE: Gemcitabine plus sorafenib in patients with advanced pancreatic cancer: a phase II trial of the University of Chicago Phase II Consortium. Invest New Drugs. 2012, 30 (1): 382-386. 10.1007/s10637-010-9526-z.CrossRef
15.
go back to reference Ko AH, Dito E, Schillinger B, Venook AP, Xu Z, Bergsland EK, Wong D, Scott J, Hwang J, Tempero MA: A phase II study evaluating bevacizumab in combination with fixed-dose rate gemcitabine and low-dose cisplatin for metastatic pancreatic cancer: is an anti-VEGF strategy still applicable?. Invest New Drugs. 2008, 26 (5): 463-471. 10.1007/s10637-008-9127-2.CrossRef Ko AH, Dito E, Schillinger B, Venook AP, Xu Z, Bergsland EK, Wong D, Scott J, Hwang J, Tempero MA: A phase II study evaluating bevacizumab in combination with fixed-dose rate gemcitabine and low-dose cisplatin for metastatic pancreatic cancer: is an anti-VEGF strategy still applicable?. Invest New Drugs. 2008, 26 (5): 463-471. 10.1007/s10637-008-9127-2.CrossRef
16.
go back to reference Kindler HL, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, Innocenti F, Mulcahy MF, O'Reilly E, Wozniak TF: Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol. 2010, 28 (22): 3617-3622. 10.1200/JCO.2010.28.1386.CrossRef Kindler HL, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, Innocenti F, Mulcahy MF, O'Reilly E, Wozniak TF: Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol. 2010, 28 (22): 3617-3622. 10.1200/JCO.2010.28.1386.CrossRef
17.
go back to reference Bramhall SR, Schulz J, Nemunaitis J, Brown PD, Baillet M, Buckels JA: A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br J Cancer. 2002, 87 (2): 161-167. 10.1038/sj.bjc.6600446.CrossRef Bramhall SR, Schulz J, Nemunaitis J, Brown PD, Baillet M, Buckels JA: A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br J Cancer. 2002, 87 (2): 161-167. 10.1038/sj.bjc.6600446.CrossRef
18.
go back to reference Dragovich T, Burris H, Loehrer P, Von Hoff DD, Chow S, Stratton S, Green S, Obregon Y, Alvarez I, Gordon M: Gemcitabine plus celecoxib in patients with advanced or metastatic pancreatic adenocarcinoma: results of a phase II trial. Am J Clin Oncol. 2008, 31 (2): 157-162. 10.1097/COC.0b013e31815878c9.CrossRef Dragovich T, Burris H, Loehrer P, Von Hoff DD, Chow S, Stratton S, Green S, Obregon Y, Alvarez I, Gordon M: Gemcitabine plus celecoxib in patients with advanced or metastatic pancreatic adenocarcinoma: results of a phase II trial. Am J Clin Oncol. 2008, 31 (2): 157-162. 10.1097/COC.0b013e31815878c9.CrossRef
19.
go back to reference Assifi MM, Hines OJ: Anti-angiogenic agents in pancreatic cancer: a review. Anticancer Agents Med Chem. 2011, 11 (5): 464-469. 10.2174/187152011795677463.CrossRef Assifi MM, Hines OJ: Anti-angiogenic agents in pancreatic cancer: a review. Anticancer Agents Med Chem. 2011, 11 (5): 464-469. 10.2174/187152011795677463.CrossRef
20.
go back to reference Longo R, Cacciamani F, Naso G, Gasparini G: Pancreatic cancer: from molecular signature to target therapy. Crit Rev Oncol Hematol. 2008, 68 (3): 197-211. 10.1016/j.critrevonc.2008.03.003.CrossRef Longo R, Cacciamani F, Naso G, Gasparini G: Pancreatic cancer: from molecular signature to target therapy. Crit Rev Oncol Hematol. 2008, 68 (3): 197-211. 10.1016/j.critrevonc.2008.03.003.CrossRef
21.
go back to reference Schwarz RE, Awasthi N, Konduri S, Cafasso D, Schwarz MA: EMAP II-based antiangiogenic-antiendothelial in vivo combination therapy of pancreatic cancer. Ann Surg Oncol. 2010, 17 (5): 1442-1452. 10.1245/s10434-009-0879-5.CrossRef Schwarz RE, Awasthi N, Konduri S, Cafasso D, Schwarz MA: EMAP II-based antiangiogenic-antiendothelial in vivo combination therapy of pancreatic cancer. Ann Surg Oncol. 2010, 17 (5): 1442-1452. 10.1245/s10434-009-0879-5.CrossRef
22.
go back to reference Awasthi N, Zhang C, Ruan W, Schwarz MA, Schwarz RE: Evaluation of poly-mechanistic antiangiogenic combinations to enhance cytotoxic therapy response in pancreatic cancer. PLoS One. 2012, 7 (6): e38477-10.1371/journal.pone.0038477.CrossRef Awasthi N, Zhang C, Ruan W, Schwarz MA, Schwarz RE: Evaluation of poly-mechanistic antiangiogenic combinations to enhance cytotoxic therapy response in pancreatic cancer. PLoS One. 2012, 7 (6): e38477-10.1371/journal.pone.0038477.CrossRef
23.
go back to reference Schwarz MA, Kandel J, Brett J, Li J, Hayward J, Schwarz RE, Chappey O, Wautier JL, Chabot J, Lo Gerfo P: Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells. J Exp Med. 1999, 190 (3): 341-354. 10.1084/jem.190.3.341.CrossRef Schwarz MA, Kandel J, Brett J, Li J, Hayward J, Schwarz RE, Chappey O, Wautier JL, Chabot J, Lo Gerfo P: Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells. J Exp Med. 1999, 190 (3): 341-354. 10.1084/jem.190.3.341.CrossRef
24.
go back to reference Berger AC, Alexander HR, Tang G, Wu PS, Hewitt SM, Turner E, Kruger E, Figg WD, Grove A, Kohn E: Endothelial monocyte activating polypeptide II induces endothelial cell apoptosis and may inhibit tumor angiogenesis. Microvasc Res. 2000, 60 (1): 70-80. 10.1006/mvre.2000.2249.CrossRef Berger AC, Alexander HR, Tang G, Wu PS, Hewitt SM, Turner E, Kruger E, Figg WD, Grove A, Kohn E: Endothelial monocyte activating polypeptide II induces endothelial cell apoptosis and may inhibit tumor angiogenesis. Microvasc Res. 2000, 60 (1): 70-80. 10.1006/mvre.2000.2249.CrossRef
25.
go back to reference Schwarz RE, Awasthi N, Konduri S, Caldwell L, Cafasso D, Schwarz MA: Antitumor effects of EMAP II against pancreatic cancer through inhibition of fibronectin-dependent proliferation. Cancer Biol Ther. 2010, 9 (8): 632-639. 10.4161/cbt.9.8.11265.CrossRef Schwarz RE, Awasthi N, Konduri S, Caldwell L, Cafasso D, Schwarz MA: Antitumor effects of EMAP II against pancreatic cancer through inhibition of fibronectin-dependent proliferation. Cancer Biol Ther. 2010, 9 (8): 632-639. 10.4161/cbt.9.8.11265.CrossRef
26.
go back to reference Schwarz RE, Schwarz MA: In vivo therapy of local tumor progression by targeting vascular endothelium with EMAP-II. J Surg Res. 2004, 120 (1): 64-72. 10.1016/j.jss.2003.10.005.CrossRef Schwarz RE, Schwarz MA: In vivo therapy of local tumor progression by targeting vascular endothelium with EMAP-II. J Surg Res. 2004, 120 (1): 64-72. 10.1016/j.jss.2003.10.005.CrossRef
27.
go back to reference Awasthi N, Schwarz MA, Verma V, Cappiello C, Schwarz RE: Endothelial monocyte activating polypeptide II interferes with VEGF-induced proangiogenic signaling. Lab Invest. 2009, 89 (1): 38-46. 10.1038/labinvest.2008.106.CrossRef Awasthi N, Schwarz MA, Verma V, Cappiello C, Schwarz RE: Endothelial monocyte activating polypeptide II interferes with VEGF-induced proangiogenic signaling. Lab Invest. 2009, 89 (1): 38-46. 10.1038/labinvest.2008.106.CrossRef
28.
go back to reference Schwarz MA, Zheng H, Liu J, Corbett S, Schwarz RE: Endothelial-monocyte activating polypeptide II alters fibronectin based endothelial cell adhesion and matrix assembly via alpha5 beta1 integrin. Exp Cell Res. 2005, 311 (2): 229-239. 10.1016/j.yexcr.2005.09.008.CrossRef Schwarz MA, Zheng H, Liu J, Corbett S, Schwarz RE: Endothelial-monocyte activating polypeptide II alters fibronectin based endothelial cell adhesion and matrix assembly via alpha5 beta1 integrin. Exp Cell Res. 2005, 311 (2): 229-239. 10.1016/j.yexcr.2005.09.008.CrossRef
29.
go back to reference Schwarz RE, Konduri S, Awasthi N, Cafasso D, Schwarz MA: An antiendothelial combination therapy strategy to increase survival in experimental pancreatic cancer. Surgery. 2009, 146 (2): 241-249. 10.1016/j.surg.2009.04.015.CrossRef Schwarz RE, Konduri S, Awasthi N, Cafasso D, Schwarz MA: An antiendothelial combination therapy strategy to increase survival in experimental pancreatic cancer. Surgery. 2009, 146 (2): 241-249. 10.1016/j.surg.2009.04.015.CrossRef
30.
go back to reference Awasthi N, Schwarz MA, Schwarz RE: Enhancing cytotoxic agent activity in experimental pancreatic cancer through EMAP II combination therapy. Cancer Chemother Pharmacol. 2011, 68 (3): 571-582. 10.1007/s00280-010-1514-7.CrossRef Awasthi N, Schwarz MA, Schwarz RE: Enhancing cytotoxic agent activity in experimental pancreatic cancer through EMAP II combination therapy. Cancer Chemother Pharmacol. 2011, 68 (3): 571-582. 10.1007/s00280-010-1514-7.CrossRef
31.
go back to reference Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D: Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev. 2000, 95 (1–2): 123-132.CrossRef Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D: Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev. 2000, 95 (1–2): 123-132.CrossRef
32.
go back to reference Schwarz RE, McCarty TM, Peralta EA, Diamond DJ, Ellenhorn JD: An orthotopic in vivo model of human pancreatic cancer. Surgery. 1999, 126 (3): 562-567. 10.1016/S0039-6060(99)70099-1.CrossRef Schwarz RE, McCarty TM, Peralta EA, Diamond DJ, Ellenhorn JD: An orthotopic in vivo model of human pancreatic cancer. Surgery. 1999, 126 (3): 562-567. 10.1016/S0039-6060(99)70099-1.CrossRef
33.
go back to reference She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, Solit DB, Rosen N: 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010, 18 (1): 39-51. 10.1016/j.ccr.2010.05.023.CrossRef She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, Solit DB, Rosen N: 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010, 18 (1): 39-51. 10.1016/j.ccr.2010.05.023.CrossRef
34.
go back to reference Hayes AJ, Li LY, Lippman ME: Anti-vascular therapy: a new approach to cancer treatment. West J Med. 2000, 172 (1): 39-42. 10.1136/ewjm.172.1.39.CrossRef Hayes AJ, Li LY, Lippman ME: Anti-vascular therapy: a new approach to cancer treatment. West J Med. 2000, 172 (1): 39-42. 10.1136/ewjm.172.1.39.CrossRef
35.
go back to reference Kalluri R, Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer. 2006, 6 (5): 392-401. 10.1038/nrc1877.CrossRef Kalluri R, Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer. 2006, 6 (5): 392-401. 10.1038/nrc1877.CrossRef
36.
go back to reference Pellegata NS, Sessa F, Renault B, Bonato M, Leone BE, Solcia E, Ranzani GN: K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res. 1994, 54 (6): 1556-1560. Pellegata NS, Sessa F, Renault B, Bonato M, Leone BE, Solcia E, Ranzani GN: K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res. 1994, 54 (6): 1556-1560.
37.
go back to reference Oikawa T, Hitomi J, Kono A, Kaneko E, Yamaguchi K: Frequent expression of genes for receptor tyrosine kinases and their ligands in human pancreatic cancer cells. Int J Pancreatol. 1995, 18 (1): 15-23. Oikawa T, Hitomi J, Kono A, Kaneko E, Yamaguchi K: Frequent expression of genes for receptor tyrosine kinases and their ligands in human pancreatic cancer cells. Int J Pancreatol. 1995, 18 (1): 15-23.
38.
go back to reference Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M, Matsuno S, Lemoine NR: Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res. 2005, 11 (8): 3094-3101. 10.1158/1078-0432.CCR-04-1785.CrossRef Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M, Matsuno S, Lemoine NR: Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res. 2005, 11 (8): 3094-3101. 10.1158/1078-0432.CCR-04-1785.CrossRef
39.
go back to reference Awasthi N, Kirane A, Schwarz MA, Toombs JE, Brekken RA, Schwarz RE: Smac mimetic-derived augmentation of chemotherapeutic response in experimental pancreatic cancer. BMC Cancer. 2011, 11: 15-10.1186/1471-2407-11-15.CrossRef Awasthi N, Kirane A, Schwarz MA, Toombs JE, Brekken RA, Schwarz RE: Smac mimetic-derived augmentation of chemotherapeutic response in experimental pancreatic cancer. BMC Cancer. 2011, 11: 15-10.1186/1471-2407-11-15.CrossRef
40.
go back to reference Awasthi N, Yen PL, Schwarz MA, Schwarz RE: The efficacy of a novel, dual PI3K/mTOR inhibitor NVP-BEZ235 to enhance chemotherapy and antiangiogenic response in pancreatic cancer. J Cell Biochem. 2012, 113 (3): 784-791. 10.1002/jcb.23405.CrossRef Awasthi N, Yen PL, Schwarz MA, Schwarz RE: The efficacy of a novel, dual PI3K/mTOR inhibitor NVP-BEZ235 to enhance chemotherapy and antiangiogenic response in pancreatic cancer. J Cell Biochem. 2012, 113 (3): 784-791. 10.1002/jcb.23405.CrossRef
41.
go back to reference Cabebe E, Fisher GA: Clinical trials of VEGF receptor tyrosine kinase inhibitors in pancreatic cancer. Expert Opin Investig Drugs. 2007, 16 (4): 467-476. 10.1517/13543784.16.4.467.CrossRef Cabebe E, Fisher GA: Clinical trials of VEGF receptor tyrosine kinase inhibitors in pancreatic cancer. Expert Opin Investig Drugs. 2007, 16 (4): 467-476. 10.1517/13543784.16.4.467.CrossRef
42.
go back to reference Brunner TB, Hahn SM, Gupta AK, Muschel RJ, McKenna WG, Bernhard EJ: Farnesyltransferase inhibitors: an overview of the results of preclinical and clinical investigations. Cancer Res. 2003, 63 (18): 5656-5668. Brunner TB, Hahn SM, Gupta AK, Muschel RJ, McKenna WG, Bernhard EJ: Farnesyltransferase inhibitors: an overview of the results of preclinical and clinical investigations. Cancer Res. 2003, 63 (18): 5656-5668.
43.
go back to reference Ulivi P, Arienti C, Amadori D, Fabbri F, Carloni S, Tesei A, Vannini I, Silvestrini R, Zoli W: Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. J Cell Physiol. 2009, 220 (1): 214-221. 10.1002/jcp.21753.CrossRef Ulivi P, Arienti C, Amadori D, Fabbri F, Carloni S, Tesei A, Vannini I, Silvestrini R, Zoli W: Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. J Cell Physiol. 2009, 220 (1): 214-221. 10.1002/jcp.21753.CrossRef
44.
go back to reference van Malenstein H, Dekervel J, Verslype C, Van Cutsem E, Windmolders P, Nevens F, van Pelt J: Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett. 2013, 329 (1): 74-83. 10.1016/j.canlet.2012.10.021.CrossRef van Malenstein H, Dekervel J, Verslype C, Van Cutsem E, Windmolders P, Nevens F, van Pelt J: Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett. 2013, 329 (1): 74-83. 10.1016/j.canlet.2012.10.021.CrossRef
Metadata
Title
Enhancing sorafenib-mediated sensitization to gemcitabine in experimental pancreatic cancer through EMAP II
Authors
Niranjan Awasthi
Changhua Zhang
Stefan Hinz
Margaret A Schwarz
Roderich E Schwarz
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2013
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-32-12

Other articles of this Issue 1/2013

Journal of Experimental & Clinical Cancer Research 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine