Skip to main content
Top
Published in: Neuroradiology 11/2003

01-11-2003 | Diagnostic Neuroradiology

Enhancing accuracy of magnetic resonance image fusion by defining a volume of interest

Authors: B. M. Hoelper, F. Soldner, R. Lachner, R. Behr

Published in: Neuroradiology | Issue 11/2003

Login to get access

Abstract

We compared the registration accuracy for corresponding anatomical landmarks in two MR images after fusing the complete volume (CV) and a defined volume of interest (VOI) of both MRI data sets. We carried out contrast-enhanced T1-weighted gradient-echo and T2-weighted fast spin-echo MRI (matrix 256×256) in 39 cases. The CV and a defined VOI data set were each fused using prototype software. We measured and analysed the distance between 25 anatomical landmarks in predefined areas identified at levels L1–L5 corresponding to defined axial sections. Fusion technique, landmark areas and level of fusion were further processed using a feed-forward neural network to calculate the difference which can be expected based on the measurements. We identified 975 landmarks for both T1- and T2-weighted images and found a significant difference in registration accuracy (P<0.01) for all landmarks between CV (1.6±1.2 mm) and VOI (0.7±1.0 mm). From cranial (L1) to caudal (L5), mean deviations were: L1 CV 1.5 mm, VOI 0.5 mm; L2 CV 1.8 mm, VOI 0.4 mm; L3 CV 1.7 mm, VOI 0.4 mm; L4 CV 1.6 mm, VOI 0.6 mm; and L5 CV 1.6 mm, VOI 1.6 mm. Neural network analysis predicted a higher accuracy for VOI (0.05–0.15 mm) than for CV fusion (0.9–1.6 mm). Deviations due to magnetic susceptibility changes between air and tissue seen on gradient-echo images can decrease fusion accuracy. Our VOI fusion technique improves image fusion accuracy to <0.5 mm by excluding areas with marked susceptibility changes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mongioj V, Brusa A, Loi G, et al (1999) Accuracy evaluation of fusion of CT, MR, and spect images using commercially available software packages (SRS PLATO and IFS). Int J Radiat Oncol Biol Phys 43: 227–234CrossRefPubMed Mongioj V, Brusa A, Loi G, et al (1999) Accuracy evaluation of fusion of CT, MR, and spect images using commercially available software packages (SRS PLATO and IFS). Int J Radiat Oncol Biol Phys 43: 227–234CrossRefPubMed
2.
go back to reference Julow J, Major T, Emri M, et al (2000) The application of image fusion in stereotactic brachytherapy of brain tumours. Acta Neurochir 142: 1253–1258CrossRef Julow J, Major T, Emri M, et al (2000) The application of image fusion in stereotactic brachytherapy of brain tumours. Acta Neurochir 142: 1253–1258CrossRef
3.
go back to reference Braun V, Dempf S,Tomczak R, et al (2001) Multimodal cranial neuronavigation: direct integration of functional magnetic resonance imaging and positron emission tomography data: technical note. Neurosurgery 48: 1178–1181PubMed Braun V, Dempf S,Tomczak R, et al (2001) Multimodal cranial neuronavigation: direct integration of functional magnetic resonance imaging and positron emission tomography data: technical note. Neurosurgery 48: 1178–1181PubMed
4.
go back to reference Alexander E 3rd, Kooy KM, van Herk M, et al (1995) Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy. J Neurosurg 83: 271–276PubMed Alexander E 3rd, Kooy KM, van Herk M, et al (1995) Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy. J Neurosurg 83: 271–276PubMed
5.
go back to reference Barillot C, Lemoine D, Le Briquer L, et al (1993) Data fusion in medical imaging: merging multimodal and multipatient images, identification of structures and 3D display aspects. Eur J Radiol 17: 22–27PubMed Barillot C, Lemoine D, Le Briquer L, et al (1993) Data fusion in medical imaging: merging multimodal and multipatient images, identification of structures and 3D display aspects. Eur J Radiol 17: 22–27PubMed
6.
go back to reference Mutic S, Dempsey JF, Bosch WR, et al (2001) Multimodality image registration quality assurance for conformal three-dimensional treatment planning. Int J Radiat Oncol Biol Phys 51: 255–260CrossRefPubMed Mutic S, Dempsey JF, Bosch WR, et al (2001) Multimodality image registration quality assurance for conformal three-dimensional treatment planning. Int J Radiat Oncol Biol Phys 51: 255–260CrossRefPubMed
7.
go back to reference Hemler PF, Napel S, Sumanaweera TS, et al (1995) Registration error quantification of a surface-based multimodality image fusion system. Med Phys 22: 1049–1056CrossRefPubMed Hemler PF, Napel S, Sumanaweera TS, et al (1995) Registration error quantification of a surface-based multimodality image fusion system. Med Phys 22: 1049–1056CrossRefPubMed
8.
go back to reference Studholme C, Hill DLG, Hawkes DJ (1996) Automated 3D registration of MR and CT images of the head. Med Image Anal 1: 163–175CrossRefPubMed Studholme C, Hill DLG, Hawkes DJ (1996) Automated 3D registration of MR and CT images of the head. Med Image Anal 1: 163–175CrossRefPubMed
9.
go back to reference Wells WM, Viola P, Atsumi H, et al (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1: 35–51PubMed Wells WM, Viola P, Atsumi H, et al (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1: 35–51PubMed
10.
go back to reference Moche M, Busse H, Dannenberg C, et al (2001) Fusion von MRT-, fMRT- und intraoperativen MRT-Daten. Radiologe 41: 993–1000CrossRefPubMed Moche M, Busse H, Dannenberg C, et al (2001) Fusion von MRT-, fMRT- und intraoperativen MRT-Daten. Radiologe 41: 993–1000CrossRefPubMed
11.
go back to reference Rohlfing T, West JB, Beier J, et al (2000) Registration of functional and anatomical MRI: accuracy assessment and application in navigated neurosurgery. Comput Aided Surg 5: 414–425CrossRefPubMed Rohlfing T, West JB, Beier J, et al (2000) Registration of functional and anatomical MRI: accuracy assessment and application in navigated neurosurgery. Comput Aided Surg 5: 414–425CrossRefPubMed
12.
go back to reference Viergever MA, Maintz JB, Stokking R (1997) Integration of functional and anatomical brain images. Biophys Chem 68: 207–219CrossRefPubMed Viergever MA, Maintz JB, Stokking R (1997) Integration of functional and anatomical brain images. Biophys Chem 68: 207–219CrossRefPubMed
13.
go back to reference Noz ME, Maguire GQ Jr, Zeleznik MP, et al (2001) A versatile functional-anatomic image fusion method for volume data sets. J Med Syst 25: 297–307PubMed Noz ME, Maguire GQ Jr, Zeleznik MP, et al (2001) A versatile functional-anatomic image fusion method for volume data sets. J Med Syst 25: 297–307PubMed
14.
go back to reference Meyer CR, Boes JL, Kim B, et al (1997) Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations. Med Image Anal 1: 195–206CrossRefPubMed Meyer CR, Boes JL, Kim B, et al (1997) Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations. Med Image Anal 1: 195–206CrossRefPubMed
15.
go back to reference Yu C, Petrovich Z, Apuzzo ML, et al (2001) An image fusion study of the geometric accuracy of magnetic resonance imaging with the Leksell stereotactic localization system. J Appl Clin Med Phys 2: 42–50CrossRefPubMed Yu C, Petrovich Z, Apuzzo ML, et al (2001) An image fusion study of the geometric accuracy of magnetic resonance imaging with the Leksell stereotactic localization system. J Appl Clin Med Phys 2: 42–50CrossRefPubMed
16.
go back to reference Oehler MC, Schmalbrock P, Chakeres D, et al (1995) Magnetic susceptibility artifacts on high-resolution MR of the temporal bone. AJNR 16: 1135–1143 Oehler MC, Schmalbrock P, Chakeres D, et al (1995) Magnetic susceptibility artifacts on high-resolution MR of the temporal bone. AJNR 16: 1135–1143
17.
go back to reference Sakurai K, Fujita N, Harada K, et al (1992) Magnetic susceptibility artifact in spin-echo MR imaging of the pituitary gland. AJNR 13: 1301–1308 Sakurai K, Fujita N, Harada K, et al (1992) Magnetic susceptibility artifact in spin-echo MR imaging of the pituitary gland. AJNR 13: 1301–1308
18.
go back to reference Port JD, Pomper MG (2000) Quantification and minimization of magnetic susceptibility artifacts on GRE images. J Comput Assist Tomogr 24: 958–964CrossRefPubMed Port JD, Pomper MG (2000) Quantification and minimization of magnetic susceptibility artifacts on GRE images. J Comput Assist Tomogr 24: 958–964CrossRefPubMed
19.
go back to reference Ojemann JG, Akbudak E, Snyder AZ, et al (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6: 156–167CrossRefPubMed Ojemann JG, Akbudak E, Snyder AZ, et al (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6: 156–167CrossRefPubMed
20.
go back to reference Cho ZH, Ro YM (1992) Reduction of susceptibility artifact in gradient-echo imaging. Magn Reson Med 23: 193–200PubMed Cho ZH, Ro YM (1992) Reduction of susceptibility artifact in gradient-echo imaging. Magn Reson Med 23: 193–200PubMed
Metadata
Title
Enhancing accuracy of magnetic resonance image fusion by defining a volume of interest
Authors
B. M. Hoelper
F. Soldner
R. Lachner
R. Behr
Publication date
01-11-2003
Publisher
Springer-Verlag
Published in
Neuroradiology / Issue 11/2003
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-003-1071-4

Other articles of this Issue 11/2003

Neuroradiology 11/2003 Go to the issue