Skip to main content
Top
Published in: Diagnostic Pathology 1/2014

Open Access 01-12-2014 | Research

Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells

Authors: Shijie Zhang, Lei Wang, Hongchun Liu, Guoqiang Zhao, Liang Ming

Published in: Diagnostic Pathology | Issue 1/2014

Login to get access

Abstract

Objective

Myricetin, a common dietary flavonoid is widely distributed in fruits and vegetables, and is used as a health food supplement based on its immune function, anti-oxidation, anti-tumor, and anti-inflammatory properties. The aim of this study was to investigate the effects of myricetin on combination with radiotherapy enhance radiosensitivity of lung cancer A549 and H1299 cells.

Methods

A549 cells and H1299 cells were exposed to X-ray with or without myricetin treatment. Colony formation assays, CCK-8 assay, flow cytometry and Caspase-3 level detection were used to evaluate the radiosensitization activity of myricetin on cell proliferation and apoptosis in vitro. Nude mouse tumor xenograft model was built to assessed radiosensitization effect of myricetin in vivo.

Results

Compared with the exposed group without myricetin treatment, the groups treated with myricetin showed significantly suppressed cell surviving fraction and proliferation, increased the cell apoptosis and increased Caspase-3 protein expression after X-ray exposure in vitro. And in vivo assay, growth speed of tumor xenografts was significantly decreased in irradiated mice treated with myricetin.

Conclusions

The study demonstrated both in vitro and in vivo evidence that combination of myricetin with radiotherapy can enhance tumor radiosensitivity of pulmonary carcinoma A549 and H1299 cells, and myricetin could be a potential radiosensitizer for lung cancer therapy.

Virtual slides

Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.PubMedCrossRef
2.
go back to reference Nygren P, Glimelius B: The Swedish Council on Technology Assessment in Health Care (SBU) report on Cancer Chemotherapy–Project objectives, the working process, key definitions and general aspects on cancer trial methodology and interpretation. Acta Oncol. 2001, 40: 155-165. 10.1080/02841860151116187.PubMedCrossRef Nygren P, Glimelius B: The Swedish Council on Technology Assessment in Health Care (SBU) report on Cancer Chemotherapy–Project objectives, the working process, key definitions and general aspects on cancer trial methodology and interpretation. Acta Oncol. 2001, 40: 155-165. 10.1080/02841860151116187.PubMedCrossRef
3.
go back to reference Bischoff P, Altmeyer A, Dumont F: Radiosensitising agents for the radiotherapy of cancer: advances in traditional and hypoxia targeted radiosensitisers. Expert Opin Ther Pat. 2009, 19: 643-662. 10.1517/13543770902824172.PubMedCrossRef Bischoff P, Altmeyer A, Dumont F: Radiosensitising agents for the radiotherapy of cancer: advances in traditional and hypoxia targeted radiosensitisers. Expert Opin Ther Pat. 2009, 19: 643-662. 10.1517/13543770902824172.PubMedCrossRef
4.
go back to reference Takehito S: Factors determining radioresistance of tumors. Kokubyo Gakkai Zasshi. 2003, 70: 162-168. 10.5357/koubyou.70.162.PubMedCrossRef Takehito S: Factors determining radioresistance of tumors. Kokubyo Gakkai Zasshi. 2003, 70: 162-168. 10.5357/koubyou.70.162.PubMedCrossRef
5.
go back to reference Impicciatore G, Sancilio S, Miscia S, Di Pietro R: Nutlins and ionizing radiation in cancer therapy. Curr Pharm Des. 2010, 16: 1427-1442. 10.2174/138161210791033932.PubMedCrossRef Impicciatore G, Sancilio S, Miscia S, Di Pietro R: Nutlins and ionizing radiation in cancer therapy. Curr Pharm Des. 2010, 16: 1427-1442. 10.2174/138161210791033932.PubMedCrossRef
6.
go back to reference Raleigh DR, Haas-Kogan DA: Molecular targets and mechanisms of radiosensitization using DNA damage response pathways. Future Oncol. 2013, 9: 219-233. 10.2217/fon.12.185.PubMedPubMedCentralCrossRef Raleigh DR, Haas-Kogan DA: Molecular targets and mechanisms of radiosensitization using DNA damage response pathways. Future Oncol. 2013, 9: 219-233. 10.2217/fon.12.185.PubMedPubMedCentralCrossRef
7.
go back to reference Ree AH, Bratland A, Nome RV, Stokke T, Fodstad O, Andersson Y: Inhibitory targeting of checkpoint kinase signaling overrides radiation-induced cell cycle gene regulation: a therapeutic strategy in tumor cell radiosensitization?. Radiother Oncol. 2004, 72: 305-310. 10.1016/j.radonc.2004.07.002.PubMedCrossRef Ree AH, Bratland A, Nome RV, Stokke T, Fodstad O, Andersson Y: Inhibitory targeting of checkpoint kinase signaling overrides radiation-induced cell cycle gene regulation: a therapeutic strategy in tumor cell radiosensitization?. Radiother Oncol. 2004, 72: 305-310. 10.1016/j.radonc.2004.07.002.PubMedCrossRef
8.
go back to reference Kastan MB: Molecular determinants of sensitivity to antitumor agents. Biochim Biophys Acta. 1999, 1424: 37-42. Kastan MB: Molecular determinants of sensitivity to antitumor agents. Biochim Biophys Acta. 1999, 1424: 37-42.
9.
go back to reference Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT: Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999, 59: 4375-4382.PubMed Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT: Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999, 59: 4375-4382.PubMed
10.
go back to reference Golding SE, Rosenberg E, Adams BR, Wignarajah S, Beckta JM, O’Connor MJ, Valerie K: Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle. 2012, 11: 1167-1173. 10.4161/cc.11.6.19576.PubMedPubMedCentralCrossRef Golding SE, Rosenberg E, Adams BR, Wignarajah S, Beckta JM, O’Connor MJ, Valerie K: Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle. 2012, 11: 1167-1173. 10.4161/cc.11.6.19576.PubMedPubMedCentralCrossRef
11.
go back to reference De Wever O, Sobczak-Thépot J, Vercoutter-Edouart AS, Michalski JC, Ouelaa-Benslama R, Stupack DG, Bracke M, Wang JY, Gespach C, Emami S: Priming and potentiation of DNA damage response by fibronectin in human colon cancer cells and tumor-derived myofibroblasts. Int J Oncol. 2011, 39: 393-400.PubMed De Wever O, Sobczak-Thépot J, Vercoutter-Edouart AS, Michalski JC, Ouelaa-Benslama R, Stupack DG, Bracke M, Wang JY, Gespach C, Emami S: Priming and potentiation of DNA damage response by fibronectin in human colon cancer cells and tumor-derived myofibroblasts. Int J Oncol. 2011, 39: 393-400.PubMed
12.
go back to reference Kabakov AE, Kudryavtsev VA, Gabai VL: Hsp90 inhibitors as promising agents for radiotherapy. J Mol Med. 2010, 88: 241-247. 10.1007/s00109-009-0562-0.PubMedCrossRef Kabakov AE, Kudryavtsev VA, Gabai VL: Hsp90 inhibitors as promising agents for radiotherapy. J Mol Med. 2010, 88: 241-247. 10.1007/s00109-009-0562-0.PubMedCrossRef
13.
go back to reference Illum H: Current status of radiosensitizing agents for the management of rectal cancer. Crit Rev Oncog. 2012, 17: 345-359. 10.1615/CritRevOncog.v17.i4.40.PubMedCrossRef Illum H: Current status of radiosensitizing agents for the management of rectal cancer. Crit Rev Oncog. 2012, 17: 345-359. 10.1615/CritRevOncog.v17.i4.40.PubMedCrossRef
14.
go back to reference Ong KC, Khoo HE: Biological effects of myricetin. Gen Pharmacol. 1997, 29: 121-126. 10.1016/S0306-3623(96)00421-1.PubMedCrossRef Ong KC, Khoo HE: Biological effects of myricetin. Gen Pharmacol. 1997, 29: 121-126. 10.1016/S0306-3623(96)00421-1.PubMedCrossRef
15.
go back to reference Ross JA, Kasum CM: Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002, 22: 19-34. 10.1146/annurev.nutr.22.111401.144957.PubMedCrossRef Ross JA, Kasum CM: Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002, 22: 19-34. 10.1146/annurev.nutr.22.111401.144957.PubMedCrossRef
16.
go back to reference Weng CJ, Yen GC: Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev. 2012, 31: 323-351. 10.1007/s10555-012-9347-y.PubMedCrossRef Weng CJ, Yen GC: Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev. 2012, 31: 323-351. 10.1007/s10555-012-9347-y.PubMedCrossRef
17.
go back to reference Sun F, Zheng XY, Ye J, Wu TT, Wang J, Chen W: Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer. 2012, 64: 599-606. 10.1080/01635581.2012.665564.PubMedCrossRef Sun F, Zheng XY, Ye J, Wu TT, Wang J, Chen W: Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer. 2012, 64: 599-606. 10.1080/01635581.2012.665564.PubMedCrossRef
18.
go back to reference Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo YS, Bode AM, Bowden GT, Lee HJ, Dong Z: Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res. 2008, 68: 6021-6029. 10.1158/0008-5472.CAN-08-0899.PubMedCrossRef Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo YS, Bode AM, Bowden GT, Lee HJ, Dong Z: Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res. 2008, 68: 6021-6029. 10.1158/0008-5472.CAN-08-0899.PubMedCrossRef
19.
go back to reference Fahlman BM, Krol ES: UVA and UVB radiation-induced oxidation products of quercetin. J Photochem Photobiol B. 2009, 97: 123-131. 10.1016/j.jphotobiol.2009.08.009.PubMedCrossRef Fahlman BM, Krol ES: UVA and UVB radiation-induced oxidation products of quercetin. J Photochem Photobiol B. 2009, 97: 123-131. 10.1016/j.jphotobiol.2009.08.009.PubMedCrossRef
20.
go back to reference Fahlman BM, Krol ES: Inhibition of UVA and UVB radiation-induced lipid oxidation by quercetin. J Agric Food Chem. 2009, 57: 5301-5305. 10.1021/jf900344d.PubMedCrossRef Fahlman BM, Krol ES: Inhibition of UVA and UVB radiation-induced lipid oxidation by quercetin. J Agric Food Chem. 2009, 57: 5301-5305. 10.1021/jf900344d.PubMedCrossRef
21.
go back to reference Benković V, Kopjar N, Horvat Knezevic A, Dikić D, Basić I, Ramić S, Viculin T, Knezević F, Orolić N: Evaluation of radioprotective effects of propolis and quercetin on human white blood cells in vitro. Biol Pharm Bull. 2008, 31: 1778-1785. 10.1248/bpb.31.1778.PubMedCrossRef Benković V, Kopjar N, Horvat Knezevic A, Dikić D, Basić I, Ramić S, Viculin T, Knezević F, Orolić N: Evaluation of radioprotective effects of propolis and quercetin on human white blood cells in vitro. Biol Pharm Bull. 2008, 31: 1778-1785. 10.1248/bpb.31.1778.PubMedCrossRef
22.
go back to reference Lin C, Yu Y, Zhao HG, Yang A, Yan H, Cui Y: Combination of quercetin with radiotherapy enhances tumor radiosensitivity in vitro and in vivo. Radiother Oncol. 2012, 104: 395-400. 10.1016/j.radonc.2011.10.023.PubMedCrossRef Lin C, Yu Y, Zhao HG, Yang A, Yan H, Cui Y: Combination of quercetin with radiotherapy enhances tumor radiosensitivity in vitro and in vivo. Radiother Oncol. 2012, 104: 395-400. 10.1016/j.radonc.2011.10.023.PubMedCrossRef
23.
go back to reference Beljan Perak R, Durdov MG, Capkun V, Ivcevic V, Pavlovic A, Soljic V, Peric M: IMP3 can predict aggressive behaviour of lung adenocarcinoma. Diagn Pathol. 2012, 7: 165-10.1186/1746-1596-7-165.PubMedPubMedCentralCrossRef Beljan Perak R, Durdov MG, Capkun V, Ivcevic V, Pavlovic A, Soljic V, Peric M: IMP3 can predict aggressive behaviour of lung adenocarcinoma. Diagn Pathol. 2012, 7: 165-10.1186/1746-1596-7-165.PubMedPubMedCentralCrossRef
24.
go back to reference Baumann M, Stamatis G, Thomas M: Therapy of localized non-small cell lung cancer (take home messages). Lung Cancer. 2001, 33: S47-S49.PubMedCrossRef Baumann M, Stamatis G, Thomas M: Therapy of localized non-small cell lung cancer (take home messages). Lung Cancer. 2001, 33: S47-S49.PubMedCrossRef
25.
go back to reference Gressen EL, Curran WJ: Hyperfractionated radiotherapy for lung cancer. Curr Oncol Rep. 2000, 2: 71-75. 10.1007/s11912-000-0013-0.PubMedCrossRef Gressen EL, Curran WJ: Hyperfractionated radiotherapy for lung cancer. Curr Oncol Rep. 2000, 2: 71-75. 10.1007/s11912-000-0013-0.PubMedCrossRef
26.
go back to reference Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR: Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem. 1999, 47: 2274-2279. 10.1021/jf9811065.PubMedCrossRef Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR: Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem. 1999, 47: 2274-2279. 10.1021/jf9811065.PubMedCrossRef
27.
go back to reference Khamidullina EA, Gromova AS, Lutsky VI, Owen NL: Natural products from medicinal plants: non-alkaloidal natural constituents of the Thalictrum species. Nat Prod Rep. 2006, 23: 117-129. 10.1039/b504014k.PubMedCrossRef Khamidullina EA, Gromova AS, Lutsky VI, Owen NL: Natural products from medicinal plants: non-alkaloidal natural constituents of the Thalictrum species. Nat Prod Rep. 2006, 23: 117-129. 10.1039/b504014k.PubMedCrossRef
28.
go back to reference Chang RL, Huang MT, Wood AW, Wong CQ, Newmark HL, Yagi H, Sayer JM, Jerina DM, Conney AH: Effect of ellagic acid and hydroxylated flavonoids on the tumorigenicity of benzo[a]pyrene and (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10- tetrahydrobenzo[a] pyrene on mouse skin and in the newborn mouse. Carcinogenesis. 1985, 6: 1127-1133. 10.1093/carcin/6.8.1127.PubMedCrossRef Chang RL, Huang MT, Wood AW, Wong CQ, Newmark HL, Yagi H, Sayer JM, Jerina DM, Conney AH: Effect of ellagic acid and hydroxylated flavonoids on the tumorigenicity of benzo[a]pyrene and (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10- tetrahydrobenzo[a] pyrene on mouse skin and in the newborn mouse. Carcinogenesis. 1985, 6: 1127-1133. 10.1093/carcin/6.8.1127.PubMedCrossRef
29.
go back to reference Das M, Khan WA, Asokan P, Bickers DR, Mukhtar H: Inhibition of polycyclic aromatic hydrocarbon-DNA adduct formation in epidermis and lungs of SENCAR mice by naturally occurring plant phenols. Cancer Res. 1987, 47: 767-773.PubMed Das M, Khan WA, Asokan P, Bickers DR, Mukhtar H: Inhibition of polycyclic aromatic hydrocarbon-DNA adduct formation in epidermis and lungs of SENCAR mice by naturally occurring plant phenols. Cancer Res. 1987, 47: 767-773.PubMed
30.
go back to reference Pustisek N, Situm M: UV-radiation, apoptosis and skin. Coll Antropol. 2011, Suppl 2: 339-341. Pustisek N, Situm M: UV-radiation, apoptosis and skin. Coll Antropol. 2011, Suppl 2: 339-341.
31.
go back to reference Lee CL, Blum JM, Kirsch DG: Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl Cancer Res. 2013, 2: 412-421.PubMedPubMedCentral Lee CL, Blum JM, Kirsch DG: Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl Cancer Res. 2013, 2: 412-421.PubMedPubMedCentral
33.
go back to reference Grosse J, Grimm D, Westphal K, Ulbrich C, Moosbauer J, Pohl F, Koelbl O, Infanger M, Eilles C, Schoenberger J: Radiolabeled annexin V for imaging apoptosis in radiated human follicular thyroid carcinomas–is an individualized protocol necessary?. Nucl Med Biol. 2009, 36: 89-98. 10.1016/j.nucmedbio.2008.10.004.PubMedCrossRef Grosse J, Grimm D, Westphal K, Ulbrich C, Moosbauer J, Pohl F, Koelbl O, Infanger M, Eilles C, Schoenberger J: Radiolabeled annexin V for imaging apoptosis in radiated human follicular thyroid carcinomas–is an individualized protocol necessary?. Nucl Med Biol. 2009, 36: 89-98. 10.1016/j.nucmedbio.2008.10.004.PubMedCrossRef
34.
go back to reference Shinomiya N: New concepts in radiation-induced apoptosis: ‘premitotic apoptosis’ and ‘postmitotic apoptosis’. J Cell Mol Med. 2001, 5: 240-253. 10.1111/j.1582-4934.2001.tb00158.x.PubMedCrossRef Shinomiya N: New concepts in radiation-induced apoptosis: ‘premitotic apoptosis’ and ‘postmitotic apoptosis’. J Cell Mol Med. 2001, 5: 240-253. 10.1111/j.1582-4934.2001.tb00158.x.PubMedCrossRef
35.
go back to reference Yuan S, Qiao T, Chen W: CpG oligodeoxynucleotide 1826 enhances the Lewis lung cancer response to radiotherapy in murine tumor. Cancer Biother Radiopharm. 2011, 26: 203-238. 10.1089/cbr.2010.0871.PubMedCrossRef Yuan S, Qiao T, Chen W: CpG oligodeoxynucleotide 1826 enhances the Lewis lung cancer response to radiotherapy in murine tumor. Cancer Biother Radiopharm. 2011, 26: 203-238. 10.1089/cbr.2010.0871.PubMedCrossRef
Metadata
Title
Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells
Authors
Shijie Zhang
Lei Wang
Hongchun Liu
Guoqiang Zhao
Liang Ming
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2014
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/1746-1596-9-68

Other articles of this Issue 1/2014

Diagnostic Pathology 1/2014 Go to the issue