Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Enhanced efficacy of photodynamic therapy by inhibiting ABCG2 in colon cancers

Authors: Ju Hee Kim, Jae Myung Park, Yoon Jin Roh, In-Wook Kim, Tayyaba Hasan, Myung-Gyu Choi

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Photodynamic therapy (PDT) contains a photosensitizing process, which includes cellular uptake of photosensitizer and delivery of light to the target. ATP-binding cassette subfamily G2 (ABCG2) regulates endogenous protoporphyrin levels. In human colon cancers, it is not fully examined the role of ABCG2 in porphyrin-based photodynamic therapy.

Methods

SW480 and HT29 cells were selected because they showed low and high ABCG2 expression levels, respectively. Pyropheophorbid-a (PPa) was used as a photosensitizer. Cells were exposed to a 670 nm diod laser. Cell viability and necrosi apoptosis was examined. Production level of singlet oxygen was detected with the photomultiplier-tube s/ -based singlet oxygen detection system.

Results

SW480 cells, which expressed lower level of ABCG2, showed the higher uptake of PPa than HT-29 cells. The uptake level of PPa was significantly correlated with the decreased cell viability after PDT. Pretreatment with a ABCG2 inhibitor, Ko-143, significantly enhanced the PDT efficacy in HT29 cells compared to vehicle-pretreated cells. To confirm the ABCG2 effect on PDT, we established ABCG2 over-expressing stable cells in SW480 cells (SW480/ABCG2). Furthermore, SW480/ABCG2 cells showed significantly decreased PDT effect compared to the control cells. The increased or decreased cell survival was significantly correlated with the production level of singlet oxygen after PDT.

Conclusion

ABCG2 plays an important role in determining the PDT efficacy by controlling the photosensitizer efflux rate. This implies the control of ABCG2 expression may be a potential solution to enhance photosensitivity.
Literature
1.
go back to reference Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.CrossRefPubMed Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.CrossRefPubMed
3.
go back to reference Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1–21.CrossRefPubMed Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1–21.CrossRefPubMed
4.
go back to reference Choudhary S, Nouri K, Elsaie ML. Photodynamic therapy in dermatology: a review. Lasers Med Sci. 2009;24(6):971–80.CrossRefPubMed Choudhary S, Nouri K, Elsaie ML. Photodynamic therapy in dermatology: a review. Lasers Med Sci. 2009;24(6):971–80.CrossRefPubMed
5.
go back to reference Tang PM, Liu XZ, Zhang DM, Fong WP, Fung KP. Pheophorbide a based photodynamic therapy induces apoptosis via mitochondrial-mediated pathway in human uterine carcinosarcoma. Cancer Biol Ther. 2009;8(6):533–9.CrossRefPubMed Tang PM, Liu XZ, Zhang DM, Fong WP, Fung KP. Pheophorbide a based photodynamic therapy induces apoptosis via mitochondrial-mediated pathway in human uterine carcinosarcoma. Cancer Biol Ther. 2009;8(6):533–9.CrossRefPubMed
6.
go back to reference Chan JY, Tang PM, Hon PM, Au SW, Tsui SK, Waye MM, et al. Pheophorbide a, a major antitumor component purified from Scutellaria barbata, induces apoptosis in human hepatocellular carcinoma cells. Planta Med. 2006;72(1):28–33.CrossRefPubMed Chan JY, Tang PM, Hon PM, Au SW, Tsui SK, Waye MM, et al. Pheophorbide a, a major antitumor component purified from Scutellaria barbata, induces apoptosis in human hepatocellular carcinoma cells. Planta Med. 2006;72(1):28–33.CrossRefPubMed
7.
go back to reference Yin X, Zhou J, Jie C, Xing D, Zhang Y. Anticancer activity and mechanism of Scutellaria barbata extract on human lung cancer cell line A549. Life Sci. 2004;75(18):2233–44.CrossRefPubMed Yin X, Zhou J, Jie C, Xing D, Zhang Y. Anticancer activity and mechanism of Scutellaria barbata extract on human lung cancer cell line A549. Life Sci. 2004;75(18):2233–44.CrossRefPubMed
8.
go back to reference Nakamura Y, Murakami A, Koshimizu K, Ohigashi H. Inhibitory effect of pheophorbide a, a chlorophyll-related compound, on skin tumor promotion in ICR mouse. Cancer Lett. 1996;108(2):247–55.CrossRefPubMed Nakamura Y, Murakami A, Koshimizu K, Ohigashi H. Inhibitory effect of pheophorbide a, a chlorophyll-related compound, on skin tumor promotion in ICR mouse. Cancer Lett. 1996;108(2):247–55.CrossRefPubMed
9.
go back to reference Lee WY, Lim DS, Ko SH, Park YJ, Ryu KS, Ahn MY, et al. Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J Photochem Photobiol B. 2004;75(3):119–26.CrossRefPubMed Lee WY, Lim DS, Ko SH, Park YJ, Ryu KS, Ahn MY, et al. Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J Photochem Photobiol B. 2004;75(3):119–26.CrossRefPubMed
10.
go back to reference Hajri A, Wack S, Meyer C, Smith MK, Leberquier C, Kedinger M, et al. In vitro and in vivo efficacy of photofrin and pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells. Photochem Photobiol. 2002;75(2):140–8.CrossRefPubMed Hajri A, Wack S, Meyer C, Smith MK, Leberquier C, Kedinger M, et al. In vitro and in vivo efficacy of photofrin and pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells. Photochem Photobiol. 2002;75(2):140–8.CrossRefPubMed
11.
go back to reference Jin ZH, Miyoshi N, Ishiguro K, Umemura S, Kawabata K, Yumita N, et al. Combination effect of photodynamic and sonodynamic therapy on experimental skin squamous cell carcinoma in C3H/HeN mice. J Dermatol. 2000;27(5):294–306.CrossRefPubMed Jin ZH, Miyoshi N, Ishiguro K, Umemura S, Kawabata K, Yumita N, et al. Combination effect of photodynamic and sonodynamic therapy on experimental skin squamous cell carcinoma in C3H/HeN mice. J Dermatol. 2000;27(5):294–306.CrossRefPubMed
12.
go back to reference Robey RW, Steadman K, Polgar O, Bates SE. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther. 2005;4(2):187–94.CrossRefPubMed Robey RW, Steadman K, Polgar O, Bates SE. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther. 2005;4(2):187–94.CrossRefPubMed
13.
go back to reference Ishikawa T, Nakagawa H, Hagiya Y, Nonoguchi N, Miyatake S, Kuroiwa T. Key Role of Human ABC Transporter ABCG2 in Photodynamic Therapy and Photodynamic Diagnosis. Adv pharmacol Sci. 2010;2010:587306.PubMedPubMedCentral Ishikawa T, Nakagawa H, Hagiya Y, Nonoguchi N, Miyatake S, Kuroiwa T. Key Role of Human ABC Transporter ABCG2 in Photodynamic Therapy and Photodynamic Diagnosis. Adv pharmacol Sci. 2010;2010:587306.PubMedPubMedCentral
14.
go back to reference Krishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114(3):345–58.CrossRefPubMed Krishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114(3):345–58.CrossRefPubMed
15.
go back to reference Wakabayashi K, Tamura A, Saito H, Onishi Y, Ishikawa T. Human ABC transporter ABCG2 in xenobiotic protection and redox biology. Drug Metab Rev. 2006;38(3):371–91.CrossRefPubMed Wakabayashi K, Tamura A, Saito H, Onishi Y, Ishikawa T. Human ABC transporter ABCG2 in xenobiotic protection and redox biology. Drug Metab Rev. 2006;38(3):371–91.CrossRefPubMed
16.
go back to reference Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A. 2002;99(24):15649–54.CrossRefPubMedPubMedCentral Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A. 2002;99(24):15649–54.CrossRefPubMedPubMedCentral
17.
go back to reference Wang X, Xia B, Liang Y, Peng L, Wang Z, Zhuo J, et al. Membranous ABCG2 expression in colorectal cancer independently correlates with shortened patient survival. Cancer Biomark. 2013;13(2):81–8.PubMed Wang X, Xia B, Liang Y, Peng L, Wang Z, Zhuo J, et al. Membranous ABCG2 expression in colorectal cancer independently correlates with shortened patient survival. Cancer Biomark. 2013;13(2):81–8.PubMed
18.
go back to reference Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther. 2002;1(6):417–25.PubMed Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther. 2002;1(6):417–25.PubMed
19.
go back to reference Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376(6535):37–43.CrossRefPubMed Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376(6535):37–43.CrossRefPubMed
20.
go back to reference Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 2005;12 Suppl 2:1509–18.CrossRefPubMed Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 2005;12 Suppl 2:1509–18.CrossRefPubMed
21.
go back to reference Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.CrossRefPubMed Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.CrossRefPubMed
22.
go back to reference Yamazaki R, Nishiyama Y, Furuta T, Hatano H, Igarashi Y, Asakawa N, et al. Novel acrylonitrile derivatives, YHO-13177 and YHO-13351, reverse BCRP/ABCG2-mediated drug resistance in vitro and in vivo. Mol Cancer Ther. 2011;10(7):1252–63.CrossRefPubMed Yamazaki R, Nishiyama Y, Furuta T, Hatano H, Igarashi Y, Asakawa N, et al. Novel acrylonitrile derivatives, YHO-13177 and YHO-13351, reverse BCRP/ABCG2-mediated drug resistance in vitro and in vivo. Mol Cancer Ther. 2011;10(7):1252–63.CrossRefPubMed
24.
go back to reference Sackova V, Kulikova L, Mikes J, Kleban J, Fedorocko P. Hypericin-mediated photocytotoxic effect on HT-29 adenocarcinoma cells is reduced by light fractionation with longer dark pause between two unequal light doses. Photochem Photobiol. 2005;81(6):1411–6.CrossRefPubMed Sackova V, Kulikova L, Mikes J, Kleban J, Fedorocko P. Hypericin-mediated photocytotoxic effect on HT-29 adenocarcinoma cells is reduced by light fractionation with longer dark pause between two unequal light doses. Photochem Photobiol. 2005;81(6):1411–6.CrossRefPubMed
25.
go back to reference Choi BH, Ryoo IG, Kang HC, Kwak MK. The sensitivity of cancer cells to pheophorbide a-based photodynamic therapy is enhanced by Nrf2 silencing. PLoS One. 2014;9(9), e107158.CrossRefPubMedPubMedCentral Choi BH, Ryoo IG, Kang HC, Kwak MK. The sensitivity of cancer cells to pheophorbide a-based photodynamic therapy is enhanced by Nrf2 silencing. PLoS One. 2014;9(9), e107158.CrossRefPubMedPubMedCentral
26.
go back to reference Jendzelovsky R, Mikes J, Koval J, Soucek K, Prochazkova J, Kello M, et al. Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells. Photochem Photobiol Sci. 2009;8(12):1716–23.CrossRefPubMed Jendzelovsky R, Mikes J, Koval J, Soucek K, Prochazkova J, Kello M, et al. Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells. Photochem Photobiol Sci. 2009;8(12):1716–23.CrossRefPubMed
27.
go back to reference Jung KA, Choi BH, Kwak MK. The c-MET/PI3K signaling is associated with cancer resistance to doxorubicin and photodynamic therapy by elevating BCRP/ABCG2 expression. Mol Pharmacol. 2015;87(3):465–76.CrossRefPubMed Jung KA, Choi BH, Kwak MK. The c-MET/PI3K signaling is associated with cancer resistance to doxorubicin and photodynamic therapy by elevating BCRP/ABCG2 expression. Mol Pharmacol. 2015;87(3):465–76.CrossRefPubMed
Metadata
Title
Enhanced efficacy of photodynamic therapy by inhibiting ABCG2 in colon cancers
Authors
Ju Hee Kim
Jae Myung Park
Yoon Jin Roh
In-Wook Kim
Tayyaba Hasan
Myung-Gyu Choi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1514-4

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine