Skip to main content
Top
Published in: Diabetologia 5/2012

01-05-2012 | Article

Enhanced beta cell proliferation in mice overexpressing a constitutively active form of Akt and one allele of p21 Cip

Authors: M. Blandino-Rosano, E. U. Alejandro, A. Sathyamurthy, J. O. Scheys, B. Gregg, A. Y. Chen, L. Rachdi, A. Weiss, D. J. Barker, A. P. Gould, L. Elghazi, E. Bernal-Mizrachi

Published in: Diabetologia | Issue 5/2012

Login to get access

Abstract

Aims/hypothesis

The ability of pancreatic beta cells to proliferate is critical both for normal tissue maintenance and in conditions where there is an increased demand for insulin. Protein kinase B (Akt) plays a major role in promoting proliferation in many cell types, including the insulin-producing beta cells. We have previously reported that mice overexpressing a constitutively active form of Akt (caAkt Tg ) show enhanced beta cell proliferation that is associated with increased protein levels of cyclin D1, cyclin D2 and cyclin-dependent kinase inhibitor 1A (p21Cip). In the present study, we sought to assess the mechanisms responsible for augmented p21Cip levels in caAkt Tg mice and test the role of p21Cip in the proliferative responses induced by activation of Akt signalling.

Methods

To gain a greater understanding of the relationship between Akt and p21Cip, we evaluated the mechanisms involved in the modulation of p21Cip by Akt and the in vivo role of reduced p21Cip in proliferative responses induced by Akt.

Results

Our experiments showed that Akt signalling regulates p21 Cip transcription and protein stability. caAkt Tg /p21 Cip+/− mice exhibited fasting and fed hypoglycaemia as well as hyperinsulinaemia when compared with caAkt Tg mice. Glucose tolerance tests revealed improved glucose tolerance in caAkt Tg /p21 Cip+/− mice compared with caAkt Tg . These changes resulted from increased proliferation, survival and beta cell mass in caAkt Tg /p21 Cip+/− compared with caAkt Tg mice.

Conclusions/interpretation

Our data indicate that increased p21Cip levels in caAkt Tg mice act as a compensatory brake, protecting beta cells from unrestrained proliferation. These studies imply that p21Cip could play important roles in the adaptive responses of beta cells to proliferate in conditions such as in insulin resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46PubMedCrossRef Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46PubMedCrossRef
2.
go back to reference Lu Y, Herrera PL, Guo Y et al (2004) Pancreatic-specific inactivation of IGF-I gene causes enlarged pancreatic islets and significant resistance to diabetes. Diabetes 53:3131–3141PubMedCrossRef Lu Y, Herrera PL, Guo Y et al (2004) Pancreatic-specific inactivation of IGF-I gene causes enlarged pancreatic islets and significant resistance to diabetes. Diabetes 53:3131–3141PubMedCrossRef
3.
go back to reference Ueki K, Okada T, Hu J et al (2006) Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. Nat Genet 38:583–588PubMedCrossRef Ueki K, Okada T, Hu J et al (2006) Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. Nat Genet 38:583–588PubMedCrossRef
4.
go back to reference Okada T, Liew CW, Hu J et al (2007) Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci USA 104:8977–8982PubMedCrossRef Okada T, Liew CW, Hu J et al (2007) Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci USA 104:8977–8982PubMedCrossRef
5.
go back to reference Hugl SR, White MF, Rhodes CJ (1998) Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem 273:17771–17779PubMedCrossRef Hugl SR, White MF, Rhodes CJ (1998) Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem 273:17771–17779PubMedCrossRef
6.
go back to reference Withers DJ, Gutierrez JS, Towery H et al (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904PubMedCrossRef Withers DJ, Gutierrez JS, Towery H et al (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904PubMedCrossRef
7.
go back to reference Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF (1999) Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet 23:32–40PubMed Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF (1999) Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet 23:32–40PubMed
8.
go back to reference Hennige AM, Burks DJ, Ozcan U et al (2003) Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 112:1521–1532PubMed Hennige AM, Burks DJ, Ozcan U et al (2003) Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 112:1521–1532PubMed
9.
go back to reference Lingohr MK, Buettner R, Rhodes CJ (2002) Pancreatic beta-cell growth and survival—a role in obesity-linked type 2 diabetes? Trends Mol Med 8:375–384PubMedCrossRef Lingohr MK, Buettner R, Rhodes CJ (2002) Pancreatic beta-cell growth and survival—a role in obesity-linked type 2 diabetes? Trends Mol Med 8:375–384PubMedCrossRef
10.
go back to reference Lingohr MK, Dickson LM, Wrede CE, McCuaig JF, Myers MG, Rhodes CJ (2003) IRS-3 inhibits IRS-2-mediated signaling in pancreatic beta-cells. Mol Cell Endocrinol 204:85–99PubMedCrossRef Lingohr MK, Dickson LM, Wrede CE, McCuaig JF, Myers MG, Rhodes CJ (2003) IRS-3 inhibits IRS-2-mediated signaling in pancreatic beta-cells. Mol Cell Endocrinol 204:85–99PubMedCrossRef
11.
go back to reference Tuttle RL, Gill NS, Pugh W et al (2001) Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat Med 7:1133–1137PubMedCrossRef Tuttle RL, Gill NS, Pugh W et al (2001) Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat Med 7:1133–1137PubMedCrossRef
12.
go back to reference Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108:1631–1638PubMed Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108:1631–1638PubMed
13.
go back to reference Garofalo RS, Orena SJ, Rafidi K et al (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest 112:197–208PubMed Garofalo RS, Orena SJ, Rafidi K et al (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest 112:197–208PubMed
14.
go back to reference Cho H, Mu J, Kim JK et al (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292:1728–1731PubMedCrossRef Cho H, Mu J, Kim JK et al (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292:1728–1731PubMedCrossRef
15.
go back to reference Fatrai S, Elghazi L, Balcazar N et al (2006) Akt induces β-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55:318–325PubMedCrossRef Fatrai S, Elghazi L, Balcazar N et al (2006) Akt induces β-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55:318–325PubMedCrossRef
16.
go back to reference Rane SG, Dubus P, Mettus RV et al (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22:44–52PubMedCrossRef Rane SG, Dubus P, Mettus RV et al (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22:44–52PubMedCrossRef
17.
go back to reference Tsutsui T, Hesabi B, Moons DS et al (1999) Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol 19:7011–7019PubMed Tsutsui T, Hesabi B, Moons DS et al (1999) Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol 19:7011–7019PubMed
18.
go back to reference Malumbres M, Sotillo R, Santamaria D et al (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118:493–504PubMedCrossRef Malumbres M, Sotillo R, Santamaria D et al (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118:493–504PubMedCrossRef
19.
go back to reference Kushner JA, Ciemerych MA, Sicinska E et al (2005) Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol Cell Biol 25:3752–3762PubMedCrossRef Kushner JA, Ciemerych MA, Sicinska E et al (2005) Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol Cell Biol 25:3752–3762PubMedCrossRef
20.
go back to reference Chang F, McCubrey JA (2001) P21(Cip1) induced by Raf is associated with increased Cdk4 activity in hematopoietic cells. Oncogene 20:4354–4364PubMedCrossRef Chang F, McCubrey JA (2001) P21(Cip1) induced by Raf is associated with increased Cdk4 activity in hematopoietic cells. Oncogene 20:4354–4364PubMedCrossRef
21.
go back to reference LaBaer J, Garrett MD, Stevenson LF et al (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11:847–862PubMedCrossRef LaBaer J, Garrett MD, Stevenson LF et al (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11:847–862PubMedCrossRef
22.
go back to reference Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578PubMedCrossRef Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578PubMedCrossRef
23.
go back to reference Weiss RH, Joo A, Randour C (2000) p21(Waf1/Cip1) is an assembly factor required for platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem 275:10285–10290PubMedCrossRef Weiss RH, Joo A, Randour C (2000) p21(Waf1/Cip1) is an assembly factor required for platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem 275:10285–10290PubMedCrossRef
24.
go back to reference Kavurma MM, Khachigian LM (2004) Vascular smooth muscle cell-specific regulation of cyclin-dependent kinase inhibitor p21(WAF1/Cip1) transcription by Sp1 is mediated via distinct cis-acting positive and negative regulatory elements in the proximal p21(WAF1/Cip1) promoter. J Cell Biochem 93:904–916PubMedCrossRef Kavurma MM, Khachigian LM (2004) Vascular smooth muscle cell-specific regulation of cyclin-dependent kinase inhibitor p21(WAF1/Cip1) transcription by Sp1 is mediated via distinct cis-acting positive and negative regulatory elements in the proximal p21(WAF1/Cip1) promoter. J Cell Biochem 93:904–916PubMedCrossRef
25.
go back to reference Kavurma MM, Khachigian LM (2003) Sp1 inhibits proliferation and induces apoptosis in vascular smooth muscle cells by repressing p21WAF1/Cip1 transcription and cyclin D1-Cdk4-p21WAF1/Cip1 complex formation. J Biol Chem 278:32537–32543PubMedCrossRef Kavurma MM, Khachigian LM (2003) Sp1 inhibits proliferation and induces apoptosis in vascular smooth muscle cells by repressing p21WAF1/Cip1 transcription and cyclin D1-Cdk4-p21WAF1/Cip1 complex formation. J Biol Chem 278:32537–32543PubMedCrossRef
26.
go back to reference Georgia S, Bhushan A (2006) p27 Regulates the transition of beta-cells from quiescence to proliferation. Diabetes 55:2950–2956PubMedCrossRef Georgia S, Bhushan A (2006) p27 Regulates the transition of beta-cells from quiescence to proliferation. Diabetes 55:2950–2956PubMedCrossRef
27.
go back to reference Rachdi L, Balcazar N, Elghazi L et al (2006) Differential effects of p27 in regulation of beta-cell mass during development, neonatal period, and adult life. Diabetes 55:3520–3528PubMedCrossRef Rachdi L, Balcazar N, Elghazi L et al (2006) Differential effects of p27 in regulation of beta-cell mass during development, neonatal period, and adult life. Diabetes 55:3520–3528PubMedCrossRef
28.
go back to reference Uchida T, Nakamura T, Hashimoto N et al (2005) Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat Med 11:175–182PubMedCrossRef Uchida T, Nakamura T, Hashimoto N et al (2005) Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat Med 11:175–182PubMedCrossRef
29.
go back to reference Cozar-Castellano I, Haught M, Stewart AF (2006) The cell cycle inhibitory protein p21cip is not essential for maintaining beta-cell cycle arrest or beta-cell function in vivo. Diabetes 55:3271–3278PubMedCrossRef Cozar-Castellano I, Haught M, Stewart AF (2006) The cell cycle inhibitory protein p21cip is not essential for maintaining beta-cell cycle arrest or beta-cell function in vivo. Diabetes 55:3271–3278PubMedCrossRef
30.
go back to reference Yang J, Zhang W, Jiang W et al (2009) P21cip-overexpression in the mouse beta cells leads to the improved recovery from streptozotocin-induced diabetes. PLoS One 4:e8344PubMedCrossRef Yang J, Zhang W, Jiang W et al (2009) P21cip-overexpression in the mouse beta cells leads to the improved recovery from streptozotocin-induced diabetes. PLoS One 4:e8344PubMedCrossRef
31.
go back to reference Agudo J, Ayuso E, Jimenez V et al (2008) IGF-I mediates regeneration of endocrine pancreas by increasing beta cell replication through cell cycle protein modulation in mice. Diabetologia 51:1862–1872PubMedCrossRef Agudo J, Ayuso E, Jimenez V et al (2008) IGF-I mediates regeneration of endocrine pancreas by increasing beta cell replication through cell cycle protein modulation in mice. Diabetologia 51:1862–1872PubMedCrossRef
32.
go back to reference Cozar-Castellano I, Weinstock M, Haught M, Velázquez-Garcia S, Sipula D, Stewart AF (2006) Evaluation of beta-cell replication in mice transgenic for hepatocyte growth factor and placental lactogen: comprehensive characterization of the G1/S regulatory proteins reveals unique involvement of p21cip. Diabetes 55:70–77PubMedCrossRef Cozar-Castellano I, Weinstock M, Haught M, Velázquez-Garcia S, Sipula D, Stewart AF (2006) Evaluation of beta-cell replication in mice transgenic for hepatocyte growth factor and placental lactogen: comprehensive characterization of the G1/S regulatory proteins reveals unique involvement of p21cip. Diabetes 55:70–77PubMedCrossRef
33.
go back to reference Balcazar N, Sathyamurthy A, Elghazi L et al (2009) mTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J Biol Chem 284(12):7832–7842PubMedCrossRef Balcazar N, Sathyamurthy A, Elghazi L et al (2009) mTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J Biol Chem 284(12):7832–7842PubMedCrossRef
34.
go back to reference Bernal-Mizrachi E, Wice B, Inoue H, Permutt MA (2000) Activation of serum response factor in the depolarization induction of Egr-1 transcription in pancreatic islet beta-cells. J Biol Chem 275:25681–25689PubMedCrossRef Bernal-Mizrachi E, Wice B, Inoue H, Permutt MA (2000) Activation of serum response factor in the depolarization induction of Egr-1 transcription in pancreatic islet beta-cells. J Biol Chem 275:25681–25689PubMedCrossRef
35.
go back to reference Cozar-Castellano I, Harb G, Selk K et al (2008) Lessons from the first comprehensive molecular characterization of cell cycle control in rodent insulinoma cell lines. Diabetes 57:3056–3068PubMedCrossRef Cozar-Castellano I, Harb G, Selk K et al (2008) Lessons from the first comprehensive molecular characterization of cell cycle control in rodent insulinoma cell lines. Diabetes 57:3056–3068PubMedCrossRef
36.
go back to reference Alejandro EU, Johnson JD (2008) Inhibition of Raf-1 alters multiple downstream pathways to induce pancreatic beta-cell apoptosis. J Biol Chem 283:2407–2417PubMedCrossRef Alejandro EU, Johnson JD (2008) Inhibition of Raf-1 alters multiple downstream pathways to induce pancreatic beta-cell apoptosis. J Biol Chem 283:2407–2417PubMedCrossRef
37.
go back to reference Child ES, Mann DJ (2006) The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 5:1313–1319PubMedCrossRef Child ES, Mann DJ (2006) The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 5:1313–1319PubMedCrossRef
38.
go back to reference Cmielova J, Rezacova M (2011) p21(Cip1/Waf1) protein and its function based on a subcellular localization. J Cell Biochem 112:3502–3506PubMedCrossRef Cmielova J, Rezacova M (2011) p21(Cip1/Waf1) protein and its function based on a subcellular localization. J Cell Biochem 112:3502–3506PubMedCrossRef
39.
go back to reference Herold S, Wanzel M, Beuger V et al (2002) Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10:509–521PubMedCrossRef Herold S, Wanzel M, Beuger V et al (2002) Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10:509–521PubMedCrossRef
40.
go back to reference Seoane J, Le HV, Massague J (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419:729–734PubMedCrossRef Seoane J, Le HV, Massague J (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419:729–734PubMedCrossRef
41.
go back to reference Wu S, Cetinkaya C, Munoz-Alonso MJ et al (2003) Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22:351–360PubMedCrossRef Wu S, Cetinkaya C, Munoz-Alonso MJ et al (2003) Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22:351–360PubMedCrossRef
42.
go back to reference Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223PubMedCrossRef Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223PubMedCrossRef
43.
go back to reference Evans-Anderson HJ, Alfieri CM, Yutzey KE (2008) Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 102:686–694PubMedCrossRef Evans-Anderson HJ, Alfieri CM, Yutzey KE (2008) Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 102:686–694PubMedCrossRef
44.
go back to reference Li Y, Dowbenko D, Lasky LA (2002) AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 277:11352–11361PubMedCrossRef Li Y, Dowbenko D, Lasky LA (2002) AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 277:11352–11361PubMedCrossRef
45.
go back to reference Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3:245–252PubMedCrossRef Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3:245–252PubMedCrossRef
46.
go back to reference Xia W, Chen JS, Zhou X et al (2004) Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 10:3815–3824PubMedCrossRef Xia W, Chen JS, Zhou X et al (2004) Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 10:3815–3824PubMedCrossRef
47.
go back to reference Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65–70PubMedCrossRef Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65–70PubMedCrossRef
48.
go back to reference Inoue N, Yahagi N, Yamamoto T et al (2008) Cyclin-dependent kinase inhibitor, p21WAF1/CIP1, is involved in adipocyte differentiation and hypertrophy, linking to obesity, and insulin resistance. J Biol Chem 283:21220–21229PubMedCrossRef Inoue N, Yahagi N, Yamamoto T et al (2008) Cyclin-dependent kinase inhibitor, p21WAF1/CIP1, is involved in adipocyte differentiation and hypertrophy, linking to obesity, and insulin resistance. J Biol Chem 283:21220–21229PubMedCrossRef
49.
go back to reference Naaz A, Holsberger DR, Iwamoto GA, Nelson A, Kiyokawa H, Cooke PS (2004) Loss of cyclin-dependent kinase inhibitors produces adipocyte hyperplasia and obesity. FASEB J 18:1925–1927PubMed Naaz A, Holsberger DR, Iwamoto GA, Nelson A, Kiyokawa H, Cooke PS (2004) Loss of cyclin-dependent kinase inhibitors produces adipocyte hyperplasia and obesity. FASEB J 18:1925–1927PubMed
Metadata
Title
Enhanced beta cell proliferation in mice overexpressing a constitutively active form of Akt and one allele of p21 Cip
Authors
M. Blandino-Rosano
E. U. Alejandro
A. Sathyamurthy
J. O. Scheys
B. Gregg
A. Y. Chen
L. Rachdi
A. Weiss
D. J. Barker
A. P. Gould
L. Elghazi
E. Bernal-Mizrachi
Publication date
01-05-2012
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 5/2012
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-012-2465-9

Other articles of this Issue 5/2012

Diabetologia 5/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine