Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Enhanced and long term immunogenicity of a Her-2/neu multi-epitope vaccine conjugated to the carrier CRM197 in conjunction with the adjuvant Montanide

Authors: Joshua Tobias, Joanna Jasinska, Karin Baier, Michael Kundi, Nicholas Ede, Christoph Zielinski, Ursula Wiedermann

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

We previously identified three short single peptides (P4, P6 and P7) representing different B-cell epitopes on the extracellular domain of Her-2/neu for a vaccine that was tested in a phase-I clinical trial. Here we describe the improvement of the multi peptide vaccine by fusing the single peptides to a hybrid peptide P467.

Methods

After coupling to either virosomes or to diphtheria toxoid CRM197 (CRM), the hybrid peptide was tested in different concentrations in combination with either Montanide or Aluminium hydroxide (Alum) in preclinical studies.

Results

Already low amount (10 μg) of P467 conjugated to CRM led to faster onset of high antibody levels compared to the P467-virosome. The formulation P467-CRM-Montanide induced higher serum IgG antibody titers, compared with P467-CRM-Alum, as examined by ELISA using recombinant Her-2/neu or Her-2/neu natively expressed on the tumor cell line SK-BR-3. Compared to P467-CRM-Alum, higher in vitro production of IL-2 and IFNγ in the Montanide-immunized mice was induced after re-stimulation of splenocytes with CRM but also with P467, indicating a clear Th1-biased response. In contrast to the single B cell peptides, the hybrid peptide led to T cell proliferation and cytokine production as CD4 T cell epitopes were generated in the fusion region of the single peptides P4 and P6 or P6 and P7. Additionally, a significantly higher proportion IFNγ-producing CD8+ T cells was found in the P467-CRM-Montanide immunized mice, probably by Montanide-driven bystander activation. Importantly, anti-P467 IgG antibodies exhibited anti-tumor properties and the combination of anti-P467 specific IgG with Herceptin® was found to inhibit the proliferation of Her-2/neu-overexpressing cell line SK-BR-3 in a significantly higher capacity than Herceptin® alone.

Conclusions

Fusion of the B cell peptides has led to additional generation of CD4 T cell epitopes, and this P467-multi epitope vaccine was found to induce polyclonal antibody responses with anti-proliferative capacity against Her-2/neu. The hybrid vaccine together with Montanide induced higher and long-lasting antibody levels, Th1-biased cellular responses being superior to vaccination with the single B cell peptides. This vaccine formulation is now planned to be evaluated in a phase Ib/II study in Her-2/neu overexpressing cancer patients.
Literature
1.
go back to reference Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.CrossRefPubMed Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.CrossRefPubMed
2.
go back to reference Ménard S, Casalini P, Campiglio M, Pupa SM, Tagliabue E. Role of HER2/neu in tumor progression and therapy. Cell Mol Life Sci. 2004;61:2965–78.CrossRefPubMed Ménard S, Casalini P, Campiglio M, Pupa SM, Tagliabue E. Role of HER2/neu in tumor progression and therapy. Cell Mol Life Sci. 2004;61:2965–78.CrossRefPubMed
3.
go back to reference Wiedermann U, Davis AB, Zielinski CC. Vaccination for the prevention and treatment of breast cancer with special focus on Her-2/neu peptide vaccines. Breast Cancer Res Treat. 2013;138:1–12.CrossRefPubMed Wiedermann U, Davis AB, Zielinski CC. Vaccination for the prevention and treatment of breast cancer with special focus on Her-2/neu peptide vaccines. Breast Cancer Res Treat. 2013;138:1–12.CrossRefPubMed
4.
go back to reference Wang CY, Walfield AM. Site-specific peptide vaccines for immunotherapy and immunization against chronic diseases, cancer, infectious diseases, and for veterinary applications. Vaccine. 2005;23:2049–56.CrossRefPubMed Wang CY, Walfield AM. Site-specific peptide vaccines for immunotherapy and immunization against chronic diseases, cancer, infectious diseases, and for veterinary applications. Vaccine. 2005;23:2049–56.CrossRefPubMed
6.
go back to reference Jasinska J, Wagner S, Radauer C, Sedivy R, Brodowicz T, Wiltschke C, et al. Inhibition of tumor cell growth by antibodies induced after vaccination with peptides derived from the extracellular domain of Her-2/neu. Int J Cancer. 2003;107:976–83.CrossRefPubMed Jasinska J, Wagner S, Radauer C, Sedivy R, Brodowicz T, Wiltschke C, et al. Inhibition of tumor cell growth by antibodies induced after vaccination with peptides derived from the extracellular domain of Her-2/neu. Int J Cancer. 2003;107:976–83.CrossRefPubMed
7.
go back to reference Wagner S, Jasinska J, Breiteneder H, Kundi M, Pehamberger H, Scheiner O, et al. Delayed tumor onset and reduced tumor growth progression after immunization with a Her-2/neu multi-peptide vaccine and IL-12 in c-neu transgenic mice. Breast Cancer Res Treat. 2007;106:29–38.CrossRefPubMed Wagner S, Jasinska J, Breiteneder H, Kundi M, Pehamberger H, Scheiner O, et al. Delayed tumor onset and reduced tumor growth progression after immunization with a Her-2/neu multi-peptide vaccine and IL-12 in c-neu transgenic mice. Breast Cancer Res Treat. 2007;106:29–38.CrossRefPubMed
8.
go back to reference Huckriede A, Bungener L, Stegmann T, Daemen T, Medema J, Palache AM, et al. The virosome concept for influenza vaccines. Vaccine. 2005;23 Suppl 1:S26–38.CrossRefPubMed Huckriede A, Bungener L, Stegmann T, Daemen T, Medema J, Palache AM, et al. The virosome concept for influenza vaccines. Vaccine. 2005;23 Suppl 1:S26–38.CrossRefPubMed
9.
go back to reference Moser C, Müller M, Kaeser MD, Weydemann U, Amacker M. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev Vaccines. 2013;12:779–91. Moser C, Müller M, Kaeser MD, Weydemann U, Amacker M. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev Vaccines. 2013;12:779–91.
10.
go back to reference Wiedermann U, Wiltschke C, Jasinska J, Kundi M, Zurbriggen R, Garner-Spitzer E, et al. A virosomal formulated Her-2/neu multi peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study. Breast Cancer Res Treat. 2009;119:673–83.CrossRef Wiedermann U, Wiltschke C, Jasinska J, Kundi M, Zurbriggen R, Garner-Spitzer E, et al. A virosomal formulated Her-2/neu multi peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study. Breast Cancer Res Treat. 2009;119:673–83.CrossRef
11.
go back to reference Slingluff CL. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J. 2011;17:343–50.CrossRefPubMedPubMedCentral Slingluff CL. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J. 2011;17:343–50.CrossRefPubMedPubMedCentral
12.
go back to reference Pevion Biotech AG, Kammer A, Amacker M, Zurbriggen R. Multiepitope vaccine for Her2/neu-associated cancers. International Publication No. WO 2011/020604 A1. 2011. World Intellectual Property Organization, International Bureau, WIPO/OMPI, Geneva. Pevion Biotech AG, Kammer A, Amacker M, Zurbriggen R. Multiepitope vaccine for Her2/neu-associated cancers. International Publication No. WO 2011/020604 A1. 2011. World Intellectual Property Organization, International Bureau, WIPO/OMPI, Geneva.
13.
go back to reference Malito E, Bursulaya B, Chen C, Lo Surdo P, Picchianti M, Balducci E, et al. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. 2012;109:5229–34.CrossRefPubMedPubMedCentral Malito E, Bursulaya B, Chen C, Lo Surdo P, Picchianti M, Balducci E, et al. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. 2012;109:5229–34.CrossRefPubMedPubMedCentral
14.
go back to reference Shinefield HR. Overview of the development and current use of CRM(197) conjugate vaccines for pediatric use. Vaccine. 2010;28:4335–9.CrossRefPubMed Shinefield HR. Overview of the development and current use of CRM(197) conjugate vaccines for pediatric use. Vaccine. 2010;28:4335–9.CrossRefPubMed
15.
go back to reference Kamboj KK, King CL, Greenspan NS, Kirchner HL, Schreiber JR. Immunization with Haemophilus influenzae type b-CRM(197) conjugate vaccine elicits a mixed Th1 and Th2 CD(4+) T cell cytokine response that correlates with the isotype of antipolysaccharide antibody. J Infect Dis. 2001;184:931–5.CrossRefPubMed Kamboj KK, King CL, Greenspan NS, Kirchner HL, Schreiber JR. Immunization with Haemophilus influenzae type b-CRM(197) conjugate vaccine elicits a mixed Th1 and Th2 CD(4+) T cell cytokine response that correlates with the isotype of antipolysaccharide antibody. J Infect Dis. 2001;184:931–5.CrossRefPubMed
16.
go back to reference Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein-10. Blood. 1996;87:3877–82.PubMed Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein-10. Blood. 1996;87:3877–82.PubMed
17.
go back to reference Arenberg DA, Kunkel SL, Polverini PJ, Morris SB, Burdick MD, Glass MC, et al. Interferon-g-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med. 1996;184:981–2.CrossRefPubMed Arenberg DA, Kunkel SL, Polverini PJ, Morris SB, Burdick MD, Glass MC, et al. Interferon-g-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med. 1996;184:981–2.CrossRefPubMed
18.
go back to reference Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines. Vaccine. 2001;19:2666–72.CrossRefPubMed Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines. Vaccine. 2001;19:2666–72.CrossRefPubMed
20.
go back to reference Wagner A, Schabussova I, Ruttkowski B, Peschke R, Kur J, Kundi M, et al. Prime-boost vaccination with toxoplasma lysate antigen, but not with a mixture of recombinant protein antigens, leads to reduction of brain cyst formation in BALB/c mice. PLoS One. 2015;10:e0126334.CrossRefPubMedPubMedCentral Wagner A, Schabussova I, Ruttkowski B, Peschke R, Kur J, Kundi M, et al. Prime-boost vaccination with toxoplasma lysate antigen, but not with a mixture of recombinant protein antigens, leads to reduction of brain cyst formation in BALB/c mice. PLoS One. 2015;10:e0126334.CrossRefPubMedPubMedCentral
21.
go back to reference Shurin MR, Lu L, Kalinski P, Stewart-Akers AM, Lotze MT. Th1/Th2 balance in cancer, transplantation and pregnancy. Springer Semin Immunopathol. 1999;21:339–59.CrossRefPubMed Shurin MR, Lu L, Kalinski P, Stewart-Akers AM, Lotze MT. Th1/Th2 balance in cancer, transplantation and pregnancy. Springer Semin Immunopathol. 1999;21:339–59.CrossRefPubMed
22.
go back to reference Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–71.CrossRefPubMed Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–71.CrossRefPubMed
23.
go back to reference Brewer JM, Conacher M, Hunter CA, Mohrs M, Brombacher F, Alexander J. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J Immunol. 1999;163:6448–54.PubMed Brewer JM, Conacher M, Hunter CA, Mohrs M, Brombacher F, Alexander J. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J Immunol. 1999;163:6448–54.PubMed
24.
go back to reference Mohan T, Verma P, Rao DN. Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J Med Res. 2013;138:779–95.PubMedPubMedCentral Mohan T, Verma P, Rao DN. Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J Med Res. 2013;138:779–95.PubMedPubMedCentral
25.
go back to reference Mosmann TR, Cherwinski HM, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–57.PubMed Mosmann TR, Cherwinski HM, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–57.PubMed
26.
go back to reference Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17:138–46.CrossRefPubMed Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17:138–46.CrossRefPubMed
27.
go back to reference Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, et al. Distinct role of antigen-specific T helper type (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med. 1999;190:617–27.CrossRefPubMedPubMedCentral Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, et al. Distinct role of antigen-specific T helper type (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med. 1999;190:617–27.CrossRefPubMedPubMedCentral
29.
go back to reference Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, et al. Cancer therapy: clinical: phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human Papillomavirus 16 in End-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res. 2008;14:169–77.CrossRefPubMed Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, et al. Cancer therapy: clinical: phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human Papillomavirus 16 in End-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res. 2008;14:169–77.CrossRefPubMed
30.
go back to reference Tough DF, Sun S, Zhang X, Sprent J. Stimulation of naive and memory T cells by cytokines. Immunol Rev. 1999;170:39–47.CrossRefPubMed Tough DF, Sun S, Zhang X, Sprent J. Stimulation of naive and memory T cells by cytokines. Immunol Rev. 1999;170:39–47.CrossRefPubMed
31.
go back to reference Tough DF, Zhang X, Sprent J. An IFNγ-dependent pathway controls stimulation of memory phenotype CD81 T cell turnover in vivo by IL-12, IL-18, and IFNγ. J Immunol. 2001;166:6007–11.CrossRefPubMed Tough DF, Zhang X, Sprent J. An IFNγ-dependent pathway controls stimulation of memory phenotype CD81 T cell turnover in vivo by IL-12, IL-18, and IFNγ. J Immunol. 2001;166:6007–11.CrossRefPubMed
32.
go back to reference Lertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ. Bystander activation of CD81 T cells contributes to the rapid production of IFNγ in response to bacterial pathogens. J Immunol. 2001;166:1097–105.CrossRefPubMed Lertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ. Bystander activation of CD81 T cells contributes to the rapid production of IFNγ in response to bacterial pathogens. J Immunol. 2001;166:1097–105.CrossRefPubMed
33.
go back to reference Lennerz V, Gross S, Gallerani E, Sessa C, Mach N, Boehm S, et al. Immunologic response to the survivin-derived multi-epitope vaccine EMD640744 in patients with advanced solid tumors. Cancer Immunol Immunother. 2014;63:381–94.CrossRefPubMed Lennerz V, Gross S, Gallerani E, Sessa C, Mach N, Boehm S, et al. Immunologic response to the survivin-derived multi-epitope vaccine EMD640744 in patients with advanced solid tumors. Cancer Immunol Immunother. 2014;63:381–94.CrossRefPubMed
34.
go back to reference Reuschenbach M, Pauligk C, Karbach J, Rafiyan MR, Kloor M, Prigge ES, et al. A phase 1/2a study to test the safety and immunogenicity of a p16(INK4a) peptide vaccine in patients with advanced human papillomavirus-associated cancers. Cancer. 2016;122:1425–33.CrossRefPubMed Reuschenbach M, Pauligk C, Karbach J, Rafiyan MR, Kloor M, Prigge ES, et al. A phase 1/2a study to test the safety and immunogenicity of a p16(INK4a) peptide vaccine in patients with advanced human papillomavirus-associated cancers. Cancer. 2016;122:1425–33.CrossRefPubMed
Metadata
Title
Enhanced and long term immunogenicity of a Her-2/neu multi-epitope vaccine conjugated to the carrier CRM197 in conjunction with the adjuvant Montanide
Authors
Joshua Tobias
Joanna Jasinska
Karin Baier
Michael Kundi
Nicholas Ede
Christoph Zielinski
Ursula Wiedermann
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3098-7

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine