Skip to main content
Top
Published in: Journal of Orthopaedic Science 4/2007

Open Access 01-07-2007 | Instructional lecture

Engineering cartilage and bone using human mesenchymal stem cells

Authors: Pen-hsiu Grace Chao, Warren Grayson, Gordana Vunjak-Novakovic

Published in: Journal of Orthopaedic Science | Issue 4/2007

Login to get access

Excerpt

Cartilage and bone defects are leading causes of disability. The economic burden of orthopedic repair exceeds 28 billion dollars per year in the United States alone,1 and the situation is similar in many other countries. Although artificial joints or metal inserts are widely utilized and in most cases work well, cell-based therapies based on tissue-engineered cartilage and bone beckon a new frontier for clinical treatment owing to their biocompatibility and long-term prognosis. Functional tissue engineering2 involves an integrated use of three components — cells, scaffold material, and a bioreactor (Fig. 1), — in settings that mimic some elements of the in vivo environment. Synergistic interactions of biomimetic cues applied with temporal and spatial regulation influence cell growth and biosynthesis and guide cellular development into functional replacement tissue constructs. This article discusses the design criteria and parameters essential for engineering cartilage and bone grafts as well as the current status and future perspective of the field.
Literature
1.
go back to reference Felson, DT, Lawrence, RC, Dieppe, PA, Hirsch, R, Helmick, CG, Jordan, JM, et al. 2000Osteoarthritis — new insights. Part I. The disease and its risk factorsAnn Intern Med13363546PubMed Felson, DT, Lawrence, RC, Dieppe, PA, Hirsch, R, Helmick, CG, Jordan, JM,  et al. 2000Osteoarthritis — new insights. Part I. The disease and its risk factorsAnn Intern Med13363546PubMed
2.
go back to reference Butler, DL, Goldstein, SA, Guilak, F 2000Functional tissue engineering: the role of biomechanicsJ Biomech Eng1225705CrossRefPubMed Butler, DL, Goldstein, SA, Guilak, F 2000Functional tissue engineering: the role of biomechanicsJ Biomech Eng1225705CrossRefPubMed
3.
go back to reference Mauney, JR, Volloch, V, Kaplan, DL 2005Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospectsTissue Eng11787802CrossRefPubMed Mauney, JR, Volloch, V, Kaplan, DL 2005Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospectsTissue Eng11787802CrossRefPubMed
4.
go back to reference Mauck, RL, Yuan, X, Tuan, RS 2006Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose cultureOsteoarthitis Cartilage1417989CrossRef Mauck, RL, Yuan, X, Tuan, RS 2006Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose cultureOsteoarthitis Cartilage1417989CrossRef
5.
go back to reference Baker B, Tan A, Metter R, Anathan A, Mauck RL. Nanofiber alignment enhances the development of engineered meniscus constructs. Trans Orthop Res Soc 2007 Baker B, Tan A, Metter R, Anathan A, Mauck RL. Nanofiber alignment enhances the development of engineered meniscus constructs. Trans Orthop Res Soc 2007
6.
go back to reference Nerurkar N, Nguyen A, Elliott D, Mauck RL. Annulus fibrosus tissue engineering with aligned electrospun nanofibrous scaffolds. Trans Orthop Res Soc 2007 Nerurkar N, Nguyen A, Elliott D, Mauck RL. Annulus fibrosus tissue engineering with aligned electrospun nanofibrous scaffolds. Trans Orthop Res Soc 2007
7.
go back to reference Drury, JL, Mooney, DJ 2003Hydrogels for tissue engineering: scaffold design variables and applicationsBiomaterials24433751CrossRefPubMed Drury, JL, Mooney, DJ 2003Hydrogels for tissue engineering: scaffold design variables and applicationsBiomaterials24433751CrossRefPubMed
8.
go back to reference Kim, U-J, Park, J, Joo Kim, H, Wada, M, Kaplan, DL 2005Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroinBiomaterials26277585CrossRefPubMed Kim, U-J, Park, J, Joo Kim, H, Wada, M, Kaplan, DL 2005Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroinBiomaterials26277585CrossRefPubMed
9.
go back to reference Huang, J, Wong, C, George, A, Kaplan, DL 2007The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleationBiomaterials28235867CrossRefPubMed Huang, J, Wong, C, George, A, Kaplan, DL 2007The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleationBiomaterials28235867CrossRefPubMed
10.
go back to reference Li, YJ, Batra, NN, You, L, Meier, SC, Coe, IA, Yellowley, CE, et al. 2004Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiationJ Orthop Res2212839CrossRefPubMed Li, YJ, Batra, NN, You, L, Meier, SC, Coe, IA, Yellowley, CE,  et al. 2004Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiationJ Orthop Res2212839CrossRefPubMed
11.
go back to reference Freed, LE, Hollander, AP, Martin, I, Barry, JR, Langer, R, Vunjak-Novakovic, G 1998Chondrogenesis in a cell-polymer-bioreactor systemExp Cell Res2405865CrossRefPubMed Freed, LE, Hollander, AP, Martin, I, Barry, JR, Langer, R, Vunjak-Novakovic, G 1998Chondrogenesis in a cell-polymer-bioreactor systemExp Cell Res2405865CrossRefPubMed
12.
go back to reference Meinel, L, Hofmann, S, Betz, O, Fajardo, R, Merkle, HP, Langer, R, et al. 2006Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2Biomaterials2749935002CrossRefPubMed Meinel, L, Hofmann, S, Betz, O, Fajardo, R, Merkle, HP, Langer, R,  et al. 2006Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2Biomaterials2749935002CrossRefPubMed
13.
go back to reference Burstein, D, Gray, M 2003New MRI techniques for imaging cartilageJ Bone Joint Surg Am85707PubMed Burstein, D, Gray, M 2003New MRI techniques for imaging cartilageJ Bone Joint Surg Am85707PubMed
14.
go back to reference McCulloch, AD, Harris, AB, Sarraf, CE, Eastwood, M 2004New multi-cue bioreactor for tissue engineering of tubular cardiovascular samples under physiological conditionsTissue Eng1056573CrossRefPubMed McCulloch, AD, Harris, AB, Sarraf, CE, Eastwood, M 2004New multi-cue bioreactor for tissue engineering of tubular cardiovascular samples under physiological conditionsTissue Eng1056573CrossRefPubMed
15.
go back to reference Meinel, L, Hofmann, S, Karageorgiou, V, Zichner, L, Langer, R, Kaplan, D, et al. 2004Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffoldsBiotechnol Bioeng8837991CrossRefPubMed Meinel, L, Hofmann, S, Karageorgiou, V, Zichner, L, Langer, R, Kaplan, D,  et al. 2004Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffoldsBiotechnol Bioeng8837991CrossRefPubMed
16.
go back to reference Moutos, FT, Freed, LE, Guilak, F 2007A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilageNat Mater61627CrossRefPubMed Moutos, FT, Freed, LE, Guilak, F 2007A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilageNat Mater61627CrossRefPubMed
17.
go back to reference O’Driscoll, SW, Fitzsimmons, JS, Commisso, CN 1997Role of oxygen tension during cartilage formation by periosteumJ Orthop Res156827CrossRefPubMed O’Driscoll, SW, Fitzsimmons, JS, Commisso, CN 1997Role of oxygen tension during cartilage formation by periosteumJ Orthop Res156827CrossRefPubMed
18.
go back to reference Obradovic, B, Carrier, RL, Vunjak-Novakovic, G, Freed, LE 1999Gas exchange is essential for bioreactor cultivation of tissue engineered cartilageBiotechnol Bioeng63197205CrossRefPubMed Obradovic, B, Carrier, RL, Vunjak-Novakovic, G, Freed, LE 1999Gas exchange is essential for bioreactor cultivation of tissue engineered cartilageBiotechnol Bioeng63197205CrossRefPubMed
19.
go back to reference Pei, M, Seidel, J, Vunjak-Novakovic, G, Freed, LE 2002Growth factors for sequential cellular de- and re-differentiation in tissue engineeringBiochem Biophys Res Commun29414954CrossRefPubMed Pei, M, Seidel, J, Vunjak-Novakovic, G, Freed, LE 2002Growth factors for sequential cellular de- and re-differentiation in tissue engineeringBiochem Biophys Res Commun29414954CrossRefPubMed
20.
go back to reference Byers BA, Mauck RL, Chiang I, Tuan RS. Temporal exposure of TGF-beta3 under serum-free conditions enhances biomechanical and biochemical maturation of tissue-engineered cartilage. Trans Orthop Res Soc 2006;43 Byers BA, Mauck RL, Chiang I, Tuan RS. Temporal exposure of TGF-beta3 under serum-free conditions enhances biomechanical and biochemical maturation of tissue-engineered cartilage. Trans Orthop Res Soc 2006;43
21.
go back to reference Vunjak-Novakovic, G, Martin, I, Obradovic, B, Treppo, S, Grodzinsky, AJ, Langer, R, et al. 1999Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilageJ Orthop Res171308CrossRefPubMed Vunjak-Novakovic, G, Martin, I, Obradovic, B, Treppo, S, Grodzinsky, AJ, Langer, R,  et al. 1999Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilageJ Orthop Res171308CrossRefPubMed
22.
go back to reference Mauck, RL, Nicoll, SB, Seyhan, SL, Ateshian, GA, Hung, CT 2003Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineeringTissue Eng9597611CrossRefPubMed Mauck, RL, Nicoll, SB, Seyhan, SL, Ateshian, GA, Hung, CT 2003Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineeringTissue Eng9597611CrossRefPubMed
23.
go back to reference Obradovic, B, Martin, I, Padera, RF, Treppo, S, Freed, LE, Vunjak-Novakovic, G 2001Integration of engineered cartilageJ Orthop Res19108997CrossRefPubMed Obradovic, B, Martin, I, Padera, RF, Treppo, S, Freed, LE, Vunjak-Novakovic, G 2001Integration of engineered cartilageJ Orthop Res19108997CrossRefPubMed
24.
go back to reference Meinel, L, Karageorgiou, V, Hofmann, S, Fajardo, R, Snyder, B, Li, C, et al. 2004Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffoldsJ Biomed Mater Res A71A2534CrossRef Meinel, L, Karageorgiou, V, Hofmann, S, Fajardo, R, Snyder, B, Li, C,  et al. 2004Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffoldsJ Biomed Mater Res A71A2534CrossRef
25.
go back to reference Hofmann, S, Hagenmuller, H, Koch, AM, Muller, R, Vunjak-Novakovic, G, Kaplan, DL, et al. 2007Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffoldsBiomaterials28115262CrossRefPubMed Hofmann, S, Hagenmuller, H, Koch, AM, Muller, R, Vunjak-Novakovic, G, Kaplan, DL,  et al. 2007Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffoldsBiomaterials28115262CrossRefPubMed
26.
go back to reference Donahue, TL, Haut, TR, Yellowley, CE, Donahue, HJ, Jacobs, CR 2003Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransportJ Biomech36136371CrossRefPubMed Donahue, TL, Haut, TR, Yellowley, CE, Donahue, HJ, Jacobs, CR 2003Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransportJ Biomech36136371CrossRefPubMed
27.
go back to reference Sikavitsas, VI, Bancroft, GN, Holtorf, HL, Jansen, JA, Mikos, AG 2003Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forcesProc Natl Acad Sci U S A100146838CrossRefPubMed Sikavitsas, VI, Bancroft, GN, Holtorf, HL, Jansen, JA, Mikos, AG 2003Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forcesProc Natl Acad Sci U S A100146838CrossRefPubMed
28.
go back to reference Meinel, L, Fajardo, R, Hofmann, S, Langer, R, Chen, J, Snyder, B, et al. 2005Silk implants for the healing of critical size bone defectsBone3768898CrossRefPubMed Meinel, L, Fajardo, R, Hofmann, S, Langer, R, Chen, J, Snyder, B,  et al. 2005Silk implants for the healing of critical size bone defectsBone3768898CrossRefPubMed
29.
go back to reference Meinel, L, Betz, O, Fajardo, R, Hofmann, S, Nazarian, A, Cory, E, et al. 2006Silk based biomaterials to heal critical sized femur defectsBone3992231CrossRefPubMed Meinel, L, Betz, O, Fajardo, R, Hofmann, S, Nazarian, A, Cory, E,  et al. 2006Silk based biomaterials to heal critical sized femur defectsBone3992231CrossRefPubMed
30.
go back to reference Lima, EG, Mauck, RL, Han, SH, Park, S, Ng, KW, Ateshian, GA, et al. 2004Functional tissue engineering of chondral and osteochondral constructsBiorheology4157790PubMed Lima, EG, Mauck, RL, Han, SH, Park, S, Ng, KW, Ateshian, GA,  et al. 2004Functional tissue engineering of chondral and osteochondral constructsBiorheology4157790PubMed
31.
go back to reference Tuli, R, Nandi, S, Li, WJ, Tuli, S, Huang, X, Manner, PA, et al. 2004Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral constructTissue Eng10116979PubMed Tuli, R, Nandi, S, Li, WJ, Tuli, S, Huang, X, Manner, PA,  et al. 2004Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral constructTissue Eng10116979PubMed
32.
go back to reference Grayson WL, Bhumiratana S, Chao P-HG, Vunjak-Novakovic G. Engineering human osteochondral grafts using spatially-controlled multiparametric stimulation. Presented at the Annual Fall Meeting of the Biomedical Engineering Society, Chicago, 2006 Grayson WL, Bhumiratana S, Chao P-HG, Vunjak-Novakovic G. Engineering human osteochondral grafts using spatially-controlled multiparametric stimulation. Presented at the Annual Fall Meeting of the Biomedical Engineering Society, Chicago, 2006
33.
go back to reference Schaefer, D, Martin, I, Jundt, G, Seidel, J, Heberer, M, Grodzinsky, A, et al. 2002Tissue-engineered composites for the repair of large osteochondral defectsArthritis Rheum46252434CrossRefPubMed Schaefer, D, Martin, I, Jundt, G, Seidel, J, Heberer, M, Grodzinsky, A,  et al. 2002Tissue-engineered composites for the repair of large osteochondral defectsArthritis Rheum46252434CrossRefPubMed
34.
go back to reference Kandel, RA, Grynpas, M, Pilliar, R, Lee, J, Wang, J, Waldman, S, et al. 2006Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep modelBiomaterials27412031CrossRefPubMed Kandel, RA, Grynpas, M, Pilliar, R, Lee, J, Wang, J, Waldman, S,  et al. 2006Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep modelBiomaterials27412031CrossRefPubMed
35.
go back to reference Solchaga, LA, Gao, J, Dennis, JE, Awadallah, A, Lundberg, M, Caplan, AI, et al. 2002Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicleTissue Eng833347CrossRefPubMed Solchaga, LA, Gao, J, Dennis, JE, Awadallah, A, Lundberg, M, Caplan, AI,  et al. 2002Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicleTissue Eng833347CrossRefPubMed
36.
go back to reference Alhadlaq, A, Elisseeff, JH, Hong, L, Williams, CG, Caplan, AI, Sharma, B, et al. 2004Adult stem cell driven genesis of human-shaped articular condyleAnn Biomed Eng3291123CrossRefPubMed Alhadlaq, A, Elisseeff, JH, Hong, L, Williams, CG, Caplan, AI, Sharma, B,  et al. 2004Adult stem cell driven genesis of human-shaped articular condyleAnn Biomed Eng3291123CrossRefPubMed
37.
go back to reference Hung, CT, Lima, EG, Mauck, RL, Takai, E, LeRoux, MA, Lu, HH, et al. 2003Anatomically shaped osteochondral constructs for articular cartilage repairJ Biomech36185364CrossRefPubMed Hung, CT, Lima, EG, Mauck, RL, Takai, E, LeRoux, MA, Lu, HH,  et al. 2003Anatomically shaped osteochondral constructs for articular cartilage repairJ Biomech36185364CrossRefPubMed
38.
go back to reference Mauck, RL, Seyhan, SL, Jamieson, KV, Nicoll, SB, Ateshian, GA, Hung, CT 2002Synergistic effects of growth factors and dynamic loading for cartilage tissue engineeringTrans Orthop Res Soc27213 Mauck, RL, Seyhan, SL, Jamieson, KV, Nicoll, SB, Ateshian, GA, Hung, CT 2002Synergistic effects of growth factors and dynamic loading for cartilage tissue engineeringTrans Orthop Res Soc27213
Metadata
Title
Engineering cartilage and bone using human mesenchymal stem cells
Authors
Pen-hsiu Grace Chao
Warren Grayson
Gordana Vunjak-Novakovic
Publication date
01-07-2007
Publisher
Springer-Verlag
Published in
Journal of Orthopaedic Science / Issue 4/2007
Print ISSN: 0949-2658
Electronic ISSN: 1436-2023
DOI
https://doi.org/10.1007/s00776-007-1147-9

Other articles of this Issue 4/2007

Journal of Orthopaedic Science 4/2007 Go to the issue