Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

Energy expenditure during common sitting and standing tasks: examining the 1.5 MET definition of sedentary behaviour

Authors: Maedeh Mansoubi, Natalie Pearson, Stacy A Clemes, Stuart JH Biddle, Danielle H Bodicoat, Keith Tolfrey, Charlotte L Edwardson, Thomas Yates

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

Sedentary behavior is defined as any waking behavior characterized by an energy expenditure of 1.5 METS or less while in a sitting or reclining posture. This study examines this definition by assessing the energy cost (METs) of common sitting, standing and walking tasks.

Methods

Fifty one adults spent 10 min during each activity in a variety of sitting tasks (watching TV, Playing on the Wii, Playing on the PlayStation Portable (PSP) and typing) and non-sedentary tasks (standing still, walking at 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6 mph). Activities were completed on the same day in a random order following an assessment of resting metabolic rate (RMR). A portable gas analyzer was used to measure oxygen uptake, and data were converted to units of energy expenditure (METs).

Results

Average of standardized MET values for screen-based sitting tasks were: 1.33 (SD: 0.24) METS (TV), 1.41 (SD: 0.28) (PSP), and 1.45 (SD: 0.32) (Typing). The more active, yet still seated, games on the Wii yielded an average of 2.06 (SD: 0.5) METS. Standing still yielded an average of 1.59 (SD: 0.37) METs. Walking MET values increased incrementally with speed from 2.17 to 2.99 (SD: 0.5 - 0.69) METs.

Conclusions

The suggested 1.5 MET threshold for sedentary behaviors seems reasonable however some sitting based activities may be classified as non-sedentary. The effect of this on the definition of sedentary behavior and associations with metabolic health needs further investigation.
Literature
1.
go back to reference Clemes SA, O’Connell SE, Edwardson CE. Office workers objectively measured sedentary behaviour and physical activity during and OutsideWorking hours. J Occup Environ Med. 2014;56(3):298–303.CrossRefPubMed Clemes SA, O’Connell SE, Edwardson CE. Office workers objectively measured sedentary behaviour and physical activity during and OutsideWorking hours. J Occup Environ Med. 2014;56(3):298–303.CrossRefPubMed
2.
go back to reference Proper KI, Singh AS, van Mechelen W, Chinapaw MJ. Sedentary behaviors and health outcomes among adults: a systematic review of prospective studies. Am J Prev Med. 2011;40:174–82.CrossRefPubMed Proper KI, Singh AS, van Mechelen W, Chinapaw MJ. Sedentary behaviors and health outcomes among adults: a systematic review of prospective studies. Am J Prev Med. 2011;40:174–82.CrossRefPubMed
3.
go back to reference Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55:2895–905.CrossRefPubMed Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55:2895–905.CrossRefPubMed
4.
go back to reference Edwardson CL, Gorely T, Davies MJ, Gray LJ, Khunti K, Wilmot EG, et al. Association of sedentary behaviour with metabolic syndrome: a meta-analysis. PloS One. 2012;7:e34916.CrossRefPubMedPubMedCentral Edwardson CL, Gorely T, Davies MJ, Gray LJ, Khunti K, Wilmot EG, et al. Association of sedentary behaviour with metabolic syndrome: a meta-analysis. PloS One. 2012;7:e34916.CrossRefPubMedPubMedCentral
5.
go back to reference Lynch BM. Sedentary behavior and cancer: a systematic review of the literature and proposed biological mechanisms. Cancer Epidemiol Biomarkers Prev. 2010;19:2691–709.CrossRefPubMed Lynch BM. Sedentary behavior and cancer: a systematic review of the literature and proposed biological mechanisms. Cancer Epidemiol Biomarkers Prev. 2010;19:2691–709.CrossRefPubMed
6.
go back to reference Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32.CrossRefPubMed Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32.CrossRefPubMed
7.
go back to reference Chau JY, van der Ploeg HP, Merom D, Chey T, Bauman AE. Cross- sectional associations between occupational and leisure-time sitting, physical activity and obesity in working adults. Prev Med. 2012;54:195–200.CrossRefPubMed Chau JY, van der Ploeg HP, Merom D, Chey T, Bauman AE. Cross- sectional associations between occupational and leisure-time sitting, physical activity and obesity in working adults. Prev Med. 2012;54:195–200.CrossRefPubMed
8.
go back to reference Thorp AA, Healy GN, Owen N, Salmon J, Ball K, Shaw JE, et al. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian diabetes, obesity and lifestyle (AusDiab) study 2004–2005. Diabetes Care. 2010;33:327–34.CrossRefPubMed Thorp AA, Healy GN, Owen N, Salmon J, Ball K, Shaw JE, et al. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian diabetes, obesity and lifestyle (AusDiab) study 2004–2005. Diabetes Care. 2010;33:327–34.CrossRefPubMed
9.
go back to reference Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95:437–45.CrossRefPubMedPubMedCentral Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95:437–45.CrossRefPubMedPubMedCentral
10.
go back to reference Mansoubi M, Pearson N, Biddle SJ, Clemes SA. The relationship between sedentary behaviour and physical activity in adults: a systematic review. Prev Med. 2014;69:28–35.CrossRefPubMed Mansoubi M, Pearson N, Biddle SJ, Clemes SA. The relationship between sedentary behaviour and physical activity in adults: a systematic review. Prev Med. 2014;69:28–35.CrossRefPubMed
11.
go back to reference Rhodes RE, Mark RS, Temmel CP. Adult sedentary behavior: a systematic review. Am J Prev Med. 2012;42:e3–e28.CrossRefPubMed Rhodes RE, Mark RS, Temmel CP. Adult sedentary behavior: a systematic review. Am J Prev Med. 2012;42:e3–e28.CrossRefPubMed
12.
go back to reference Network SBR. Letter to the editor: standardized Use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–2.CrossRef Network SBR. Letter to the editor: standardized Use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–2.CrossRef
13.
go back to reference Hamilton MT, Healy GN, Dunstan DW, Zderic TW, Owen N. Too little exercise and Too much sitting: inactivity physiology and the need for New recommendations on sedentary behavior. Curr Cardiovasc Risk Rep. 2008;2:292–8.CrossRefPubMedPubMedCentral Hamilton MT, Healy GN, Dunstan DW, Zderic TW, Owen N. Too little exercise and Too much sitting: inactivity physiology and the need for New recommendations on sedentary behavior. Curr Cardiovasc Risk Rep. 2008;2:292–8.CrossRefPubMedPubMedCentral
14.
go back to reference Pate RR, O’Neill JR, Lobelo F. The evolving definition of “sedentary”. Exerc Sport Sci Rev. 2008;36:173–8.CrossRefPubMed Pate RR, O’Neill JR, Lobelo F. The evolving definition of “sedentary”. Exerc Sport Sci Rev. 2008;36:173–8.CrossRefPubMed
15.
go back to reference Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35:725–40.CrossRefPubMed Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35:725–40.CrossRefPubMed
16.
go back to reference Yates T, Wilmot EG, Davies MJ. Sedentary behavior: What’s in a definition? Am J Prev Med. 2011;40:4–e33. author reply e4.CrossRef Yates T, Wilmot EG, Davies MJ. Sedentary behavior: What’s in a definition? Am J Prev Med. 2011;40:4–e33. author reply e4.CrossRef
17.
go back to reference Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett Jr DR, Tudor-Locke C, et al. Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.CrossRefPubMed Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett Jr DR, Tudor-Locke C, et al. Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.CrossRefPubMed
18.
go back to reference O’Donovan C, Hirsch E, Holohan E, McBride I, McManus R, Hussey J. Energy expended playing Xbox kinect (TM) and Wii (TM) games: a preliminary study comparing single and multiplayer modes. Phsiotherapy. 2012;98(3):224–9.CrossRef O’Donovan C, Hirsch E, Holohan E, McBride I, McManus R, Hussey J. Energy expended playing Xbox kinect (TM) and Wii (TM) games: a preliminary study comparing single and multiplayer modes. Phsiotherapy. 2012;98(3):224–9.CrossRef
19.
go back to reference Byrne NM, Hills AP, Hunter GR, Weinsier RL, & Schutz Y. Metabolic Equivalent: One Size Does Not Fit All. J Appl Physiol. 2005;99(3):1112–9. Byrne NM, Hills AP, Hunter GR, Weinsier RL, & Schutz Y. Metabolic Equivalent: One Size Does Not Fit All. J Appl Physiol. 2005;99(3):1112–9.
20.
go back to reference Weyand PG, Smith BR, Schultz NS, Ludlow LW, Puyau MR, Butte NF. Predicting Metabolic Rate Across Walking Speed: One Fit For All Body Sizes? J Appl Physiol. 2013;115(9):1332–42. Weyand PG, Smith BR, Schultz NS, Ludlow LW, Puyau MR, Butte NF. Predicting Metabolic Rate Across Walking Speed: One Fit For All Body Sizes? J Appl Physiol. 2013;115(9):1332–42.
21.
go back to reference Compher C, Frankenfield D, Keim N, Roth-Yousey L. Evidence analysis working group. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881–903.CrossRefPubMed Compher C, Frankenfield D, Keim N, Roth-Yousey L. Evidence analysis working group. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881–903.CrossRefPubMed
23.
go back to reference Hanley JA, Negassa A, Edwardes MD, Forrester JE. Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol. 2003;157(4):364–75.CrossRefPubMed Hanley JA, Negassa A, Edwardes MD, Forrester JE. Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol. 2003;157(4):364–75.CrossRefPubMed
24.
go back to reference Lante K, Reece J, Walkley J. Energy expended by adults with and without intellectual disabilities during activities of daily living. Res Dev Disabil. 2010;31:1380–9.CrossRefPubMed Lante K, Reece J, Walkley J. Energy expended by adults with and without intellectual disabilities during activities of daily living. Res Dev Disabil. 2010;31:1380–9.CrossRefPubMed
25.
go back to reference Dos Anjos LA, da Mata MJ, Wahrlichn V, DenVasconcellos MT, Caspersen CJ. Caspersen CJAbsolute and rlative energy costs of walking in a Brazilian adult probability sample. Med Sci Sports Exerc. 2011;43:2211–8.CrossRefPubMed Dos Anjos LA, da Mata MJ, Wahrlichn V, DenVasconcellos MT, Caspersen CJ. Caspersen CJAbsolute and rlative energy costs of walking in a Brazilian adult probability sample. Med Sci Sports Exerc. 2011;43:2211–8.CrossRefPubMed
27.
go back to reference Whybrow S, Ritz P, Horgan GW, Stubbs RJ. An evaluation of the IDEEA activity monitor for estimating energy expenditure. Br J Nutr. 2013;109(1):173–83.CrossRefPubMed Whybrow S, Ritz P, Horgan GW, Stubbs RJ. An evaluation of the IDEEA activity monitor for estimating energy expenditure. Br J Nutr. 2013;109(1):173–83.CrossRefPubMed
28.
go back to reference Newton Jr RL, Han H, Zderic T, Hamilton M. The energy expenditure of sedentary behavior: a whole room calorimeter study. PLoS One. 2013;8(5), e63171. doi:10.1371/journal.pone.0063171.CrossRefPubMedPubMedCentral Newton Jr RL, Han H, Zderic T, Hamilton M. The energy expenditure of sedentary behavior: a whole room calorimeter study. PLoS One. 2013;8(5), e63171. doi:10.1371/journal.pone.0063171.CrossRefPubMedPubMedCentral
29.
go back to reference Cox RH, Guth J, Siekemeyer L, Keilems B, Brehm SB, Ohiinger CM. Metabolic cost and speech quality while using an active workstation. J Phys Act Health. 2011;8:332–9.CrossRefPubMed Cox RH, Guth J, Siekemeyer L, Keilems B, Brehm SB, Ohiinger CM. Metabolic cost and speech quality while using an active workstation. J Phys Act Health. 2011;8:332–9.CrossRefPubMed
30.
go back to reference Weyand PG, Smith BR, Sandell RF. Assessing the Metabolic Cost of Walking: theInfluence of Baseline Subtractions. 31st Annual International Conference of the IEEE EMBS. 2009;6878–81. doi: 10.1109/IEMBS.2009.5333126. Weyand PG, Smith BR, Sandell RF. Assessing the Metabolic Cost of Walking: theInfluence of Baseline Subtractions. 31st Annual International Conference of the IEEE EMBS. 2009;6878–81. doi: 10.1109/IEMBS.2009.5333126.
31.
go back to reference Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking Up Prolonged Sitting Reduces Postprandial Glucose and Insulin Responses. Diabetes Care. 2012;35(5):976–83. doi: 10.2337/dc11-1931. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking Up Prolonged Sitting Reduces Postprandial Glucose and Insulin Responses. Diabetes Care. 2012;35(5):976–83. doi: 10.2337/dc11-1931.
32.
go back to reference Thorp AA, Kingwell BA, Sethi P, Hammond L, Owen N, Dunstan DW. Alternating bouts of sitting and standing attenuate postprandial glucose responses. Med Sci Sports Exerc. 2014;46(11):2053–61. doi:10.1249/mss.0000000000000337.CrossRefPubMed Thorp AA, Kingwell BA, Sethi P, Hammond L, Owen N, Dunstan DW. Alternating bouts of sitting and standing attenuate postprandial glucose responses. Med Sci Sports Exerc. 2014;46(11):2053–61. doi:10.1249/mss.0000000000000337.CrossRefPubMed
33.
go back to reference Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, et al. Physical activity and public health: a recommendation from the centers for disease control and prevention and the American college of sports medicine. JAMA. 1995;273:402–7.CrossRefPubMed Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, et al. Physical activity and public health: a recommendation from the centers for disease control and prevention and the American college of sports medicine. JAMA. 1995;273:402–7.CrossRefPubMed
34.
go back to reference Bubb WJ, Martin DA, Howley ET. Predicting oxygen uptake during level walking at speeds of 80–130 m/min. J Card Rehabil. 1985;5:462–5. Bubb WJ, Martin DA, Howley ET. Predicting oxygen uptake during level walking at speeds of 80–130 m/min. J Card Rehabil. 1985;5:462–5.
35.
go back to reference McDonald I. Statistical studies of recorded energy expenditure of Man. Part 2: expenditure on walking related to weight, Sex, Age, height. Speed and Gradient Nutr Abs Rev. 1961;31:739–62. McDonald I. Statistical studies of recorded energy expenditure of Man. Part 2: expenditure on walking related to weight, Sex, Age, height. Speed and Gradient Nutr Abs Rev. 1961;31:739–62.
36.
go back to reference Brooks AG, Gunn SM, Withers RT, Gore CJ, Plummer JL. Predicting walking METs and energy expenditure from speed or accelerometry. Med Sci Sports Exerc. 2005;37(7):1216–23.CrossRefPubMed Brooks AG, Gunn SM, Withers RT, Gore CJ, Plummer JL. Predicting walking METs and energy expenditure from speed or accelerometry. Med Sci Sports Exerc. 2005;37(7):1216–23.CrossRefPubMed
Metadata
Title
Energy expenditure during common sitting and standing tasks: examining the 1.5 MET definition of sedentary behaviour
Authors
Maedeh Mansoubi
Natalie Pearson
Stacy A Clemes
Stuart JH Biddle
Danielle H Bodicoat
Keith Tolfrey
Charlotte L Edwardson
Thomas Yates
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-1851-x

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue