Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2019

Open Access 01-12-2019 | Endometriosis | Research

Epigenetic role of the nuclear factor NF-Y on ID gene family in endometrial tissues of women with endometriosis: a case control study

Authors: Shirin Amirteimouri, Manan Ashini, Fariba Ramazanali, Reza Aflatoonian, Parvaneh Afsharian, Maryam Shahhoseini

Published in: Reproductive Biology and Endocrinology | Issue 1/2019

Login to get access

Abstract

Background

A predominant difference between endometrial and normal cells is higher proliferation rate in the former cells which is benign. The genes of inhibitor of differentiation (ID) family play a major role in cell proliferation regulation which might be targeted by the nuclear transcription factor Y (NF-Y) for subsequent epigenetic modifications through the CCAAT box regulatory region. The present study was designed to investigate the epigenetic role of NF-Y on ID gene family in endometrial tissue of patients with endometriosis.

Materials & methods

In this case-control study, 20 patients with endometriosis and 20 normal women were examined for the relative expression of the NF-YA, NF-YB, NF-YC and ID genes by real-time PCR during the proliferative phase. The occupancy of NF-Y on CCAAT box region of ID genes was investigated using chromatin immunoprecipitation (ChIP) followed by real-time PCR.

Results

The NF-YA was over-expressed in eutopic endometrium during the proliferative phase. Although the expression level of NF-YB and NF-YC were unchanged in eutopic samples, they were remarkably higher in ectopic group (P<0.05). The ID2 and ID3 genes were up-regulated in ectopic and eutopic tissues, however ID1 and ID4 genes were down-regulated in these samples (P<0.05). The ChIP analysis revealed significant enrichment of NF-Y on regulatory regions of ID2,3 genes in eutopic group, but reduced binding level of NF-Y to the ID1,3 promoters in ectopic specimens (P<0.05).

Conclusion

The ability of NF-Y to regulate ID genes via CCAAT box region suggests the possible role of NF-Y transcription factor in epigenetic changes in endometrial tissues which may open novel avenues in finding new therapeutic strategies.
Literature
1.
go back to reference Bulun SE. Mechanisms of disease endometriosis. Th e new england journal o f medicine. 2009;360:268–79. Bulun SE. Mechanisms of disease endometriosis. Th e new england journal o f medicine. 2009;360:268–79.
3.
go back to reference Sourial S, Tempest N, Hapangama DK. Theories on the pathogenesis of endometriosis. International journal of reproductive medicine. 2014;2014. Sourial S, Tempest N, Hapangama DK. Theories on the pathogenesis of endometriosis. International journal of reproductive medicine. 2014;2014.
4.
go back to reference Sampson JA. Endometrial carcinoma of the ovary, arising in endometrial tissue in that organ. Arch Surg. 1925;10(1):1–72. Sampson JA. Endometrial carcinoma of the ovary, arising in endometrial tissue in that organ. Arch Surg. 1925;10(1):1–72.
5.
go back to reference Pavone ME, Lyttle BM. Endometriosis and ovarian cancer: links, risks, and challenges faced. Int J Women's Health. 2015;7:663. Pavone ME, Lyttle BM. Endometriosis and ovarian cancer: links, risks, and challenges faced. Int J Women's Health. 2015;7:663.
7.
go back to reference Kumar R, Clerc A-C, Gori I, Russell R, Pellegrini C, Govender L, et al. Lipoxin A4 prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E2 production and estrogen signaling. PLoS One. 2014;9(2):e89742.PubMedPubMedCentral Kumar R, Clerc A-C, Gori I, Russell R, Pellegrini C, Govender L, et al. Lipoxin A4 prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E2 production and estrogen signaling. PLoS One. 2014;9(2):e89742.PubMedPubMedCentral
8.
go back to reference Forte A, Cipollaro M, Galderisi U. Genetic, epigenetic and stem cell alterations in endometriosis: new insights and potential therapeutic perspectives. Clin Sci. 2014;126(2):123–38.PubMed Forte A, Cipollaro M, Galderisi U. Genetic, epigenetic and stem cell alterations in endometriosis: new insights and potential therapeutic perspectives. Clin Sci. 2014;126(2):123–38.PubMed
9.
go back to reference Shao R, Cao S, Wang X, Feng Y, Billig H. The elusive and controversial roles of estrogen and progesterone receptors in human endometriosis. Am J Transl Res. 2014;6(2):104–13.PubMedPubMedCentral Shao R, Cao S, Wang X, Feng Y, Billig H. The elusive and controversial roles of estrogen and progesterone receptors in human endometriosis. Am J Transl Res. 2014;6(2):104–13.PubMedPubMedCentral
10.
go back to reference Guo S-W. Epigenetics of endometriosis. Mol Hum Reprod. 2009;15(10):587–607.PubMed Guo S-W. Epigenetics of endometriosis. Mol Hum Reprod. 2009;15(10):587–607.PubMed
11.
go back to reference Nasu K, Kawano Y, Tsukamoto Y, Takano M, Takai N, Li H, et al. Aberrant DNA methylation status of endometriosis: epigenetics as the pathogenesis, biomarker and therapeutic target. J Obstet Gynaecol Res. 2011;37(7):683–95.PubMed Nasu K, Kawano Y, Tsukamoto Y, Takano M, Takai N, Li H, et al. Aberrant DNA methylation status of endometriosis: epigenetics as the pathogenesis, biomarker and therapeutic target. J Obstet Gynaecol Res. 2011;37(7):683–95.PubMed
12.
go back to reference Ly LL, Yoshida H, Yamaguchi M. Nuclear transcription factor Y and its roles in cellular processes related to human disease. Am J Cancer Res. 2013;3(4):339–46.PubMedPubMedCentral Ly LL, Yoshida H, Yamaguchi M. Nuclear transcription factor Y and its roles in cellular processes related to human disease. Am J Cancer Res. 2013;3(4):339–46.PubMedPubMedCentral
13.
go back to reference Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol. 2012;47(1):29–49.PubMed Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol. 2012;47(1):29–49.PubMed
14.
go back to reference Dolfini D, Zambelli F, Pavesi G, Mantovani R. A perspective of promoter architecture from the CCAAT box. Cell Cycle. 2009;8(24):4127–37.PubMed Dolfini D, Zambelli F, Pavesi G, Mantovani R. A perspective of promoter architecture from the CCAAT box. Cell Cycle. 2009;8(24):4127–37.PubMed
15.
go back to reference Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, et al. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell. 2013;152(1):132–43.PubMed Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, et al. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell. 2013;152(1):132–43.PubMed
17.
go back to reference Shilovskiĭ I, Mazurov D, Khaitov M. The development of vector constructions for respiratory syncitial virus (RSV) P-gene silencing. Patologicheskaia fiziologiia i eksperimental’naia terapiia. 2009;(4):11–6. Shilovskiĭ I, Mazurov D, Khaitov M. The development of vector constructions for respiratory syncitial virus (RSV) P-gene silencing. Patologicheskaia fiziologiia i eksperimental’naia terapiia. 2009;(4):11–6.
18.
go back to reference Guerra RF, Imperadori L, Mantovani R, Dunlap DD, Finzi L. DNA compaction by the nuclear factor-Y. Biophys J. 2007;93(1):176–82.PubMedPubMedCentral Guerra RF, Imperadori L, Mantovani R, Dunlap DD, Finzi L. DNA compaction by the nuclear factor-Y. Biophys J. 2007;93(1):176–82.PubMedPubMedCentral
19.
go back to reference Dolfini D, Mantovani R. Targeting the Y/CCAAT box in cancer: YB-1 (YBX1) or NF-Y&quest. Cell Death & Differentiation. 2013;20(5):676–85. Dolfini D, Mantovani R. Targeting the Y/CCAAT box in cancer: YB-1 (YBX1) or NF-Y&quest. Cell Death & Differentiation. 2013;20(5):676–85.
20.
go back to reference Niida A, Smith AD, Imoto S, Tsutsumi S, Aburatani H, Zhang MQ, et al. Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells. BMC bioinformatics. 2008;9(1):404.PubMedPubMedCentral Niida A, Smith AD, Imoto S, Tsutsumi S, Aburatani H, Zhang MQ, et al. Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells. BMC bioinformatics. 2008;9(1):404.PubMedPubMedCentral
21.
go back to reference Garipov A, Li H, Bitler BG, Thapa RJ, Balachandran S, Zhang R. NF-YA underlies EZH2 upregulation and is essential for proliferation of human epithelial ovarian cancer cells. Mol Cancer Res 2013;11(4):360-369. Garipov A, Li H, Bitler BG, Thapa RJ, Balachandran S, Zhang R. NF-YA underlies EZH2 upregulation and is essential for proliferation of human epithelial ovarian cancer cells. Mol Cancer Res 2013;11(4):360-369.
22.
go back to reference Calvo A, Perez-Stable C, Segura V, Catena R, Guruceaga E, Nguewa P, et al. Molecular characterization of the Gγ-globin-tag transgenic mouse model of hormone refractory prostate cancer: comparison to human prostate cancer. Prostate. 2010;70(6):630–45.PubMedPubMedCentral Calvo A, Perez-Stable C, Segura V, Catena R, Guruceaga E, Nguewa P, et al. Molecular characterization of the Gγ-globin-tag transgenic mouse model of hormone refractory prostate cancer: comparison to human prostate cancer. Prostate. 2010;70(6):630–45.PubMedPubMedCentral
23.
go back to reference Salvatore G, Nappi TC, Salerno P, Jiang Y, Garbi C, Ugolini C, et al. A cell proliferation and chromosomal instability signature in anaplastic thyroid carcinoma. Cancer Res. 2007;67(21):10148–58.PubMed Salvatore G, Nappi TC, Salerno P, Jiang Y, Garbi C, Ugolini C, et al. A cell proliferation and chromosomal instability signature in anaplastic thyroid carcinoma. Cancer Res. 2007;67(21):10148–58.PubMed
24.
go back to reference Li G, Zhao H, Wang L, Wang Y, Guo X, Xu B. The animal nuclear factor Y: an enigmatic and important heterotrimeric transcription factor. Am J Cancer Res. 2018;8(7):1106–25.PubMedPubMedCentral Li G, Zhao H, Wang L, Wang Y, Guo X, Xu B. The animal nuclear factor Y: an enigmatic and important heterotrimeric transcription factor. Am J Cancer Res. 2018;8(7):1106–25.PubMedPubMedCentral
25.
go back to reference Chaudhary J, Sadler-Riggleman I, Ague JM, Skinner MK. The helix-loop-helix inhibitor of differentiation (ID) proteins induce post-mitotic terminally differentiated Sertoli cells to re-enter the cell cycle and proliferate. Biol Reprod. 2005;72(5):1205–17.PubMed Chaudhary J, Sadler-Riggleman I, Ague JM, Skinner MK. The helix-loop-helix inhibitor of differentiation (ID) proteins induce post-mitotic terminally differentiated Sertoli cells to re-enter the cell cycle and proliferate. Biol Reprod. 2005;72(5):1205–17.PubMed
26.
go back to reference O'Toole PJ, Inoue T, Emerson L, Morrison IE, Mackie AR, Cherry RJ, et al. Id proteins negatively regulate basic helix-loop-helix transcription factor function by disrupting subnuclear compartmentalization. J Biol Chem. 2003;278(46):45770–6.PubMed O'Toole PJ, Inoue T, Emerson L, Morrison IE, Mackie AR, Cherry RJ, et al. Id proteins negatively regulate basic helix-loop-helix transcription factor function by disrupting subnuclear compartmentalization. J Biol Chem. 2003;278(46):45770–6.PubMed
27.
go back to reference Zebedee Z, Hara E. Id proteins in cell cycle control and cellular senescence. Oncogene. 2001;20(58):8317.PubMed Zebedee Z, Hara E. Id proteins in cell cycle control and cellular senescence. Oncogene. 2001;20(58):8317.PubMed
28.
go back to reference Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer. 2014;14(2):77–91.PubMed Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer. 2014;14(2):77–91.PubMed
29.
go back to reference Chaudhary J, Johnson J, Kim G, Skinner MK. Hormonal Regulation and Differential Actions of the Helix-Loop-Helix Transcriptional Inhibitors of Differentiation (Id1, Id2, Id3, and Id4) in Sertoli Cells. Endocrinology. 2011;142(5):1727–36. Chaudhary J, Johnson J, Kim G, Skinner MK. Hormonal Regulation and Differential Actions of the Helix-Loop-Helix Transcriptional Inhibitors of Differentiation (Id1, Id2, Id3, and Id4) in Sertoli Cells. Endocrinology. 2011;142(5):1727–36.
30.
31.
go back to reference Samadieh Y, Favaedi R, Ramezanali F, Afsharian P, Aflatoonian R, Shahhoseini M. Epigenetic dynamics of HOXA10 gene in infertile women with endometriosis. Reprod Sci. 2018;26(1):1933719118766255. Samadieh Y, Favaedi R, Ramezanali F, Afsharian P, Aflatoonian R, Shahhoseini M. Epigenetic dynamics of HOXA10 gene in infertile women with endometriosis. Reprod Sci. 2018;26(1):1933719118766255.
32.
go back to reference Hosseini E, Mehraein F, Shahhoseini M, Karimian L, Nikmard F, Ashrafi M, et al. Epigenetic alterations of CYP19A1 gene in cumulus cells and its relevance to infertility in endometriosis. J Assist Reprod Genet. 2016;33(8):1105–13.PubMedPubMedCentral Hosseini E, Mehraein F, Shahhoseini M, Karimian L, Nikmard F, Ashrafi M, et al. Epigenetic alterations of CYP19A1 gene in cumulus cells and its relevance to infertility in endometriosis. J Assist Reprod Genet. 2016;33(8):1105–13.PubMedPubMedCentral
33.
go back to reference Moeinvaziri F, Shahhoseini M. Epigenetic role of CCAAT box-binding transcription factor NF-Y on ID gene family in human embryonic carcinoma cells. IUBMB Life. 2015;67(11):880–7.PubMed Moeinvaziri F, Shahhoseini M. Epigenetic role of CCAAT box-binding transcription factor NF-Y on ID gene family in human embryonic carcinoma cells. IUBMB Life. 2015;67(11):880–7.PubMed
34.
go back to reference Wingfield M, Macpherson A, Healy DL, Rogers PA. Cell proliferation is increased in the endometrium of women with endometriosis. Fertil Steril. 1995;64(2):340–6.PubMed Wingfield M, Macpherson A, Healy DL, Rogers PA. Cell proliferation is increased in the endometrium of women with endometriosis. Fertil Steril. 1995;64(2):340–6.PubMed
35.
go back to reference Giudice LC, Evers JL, Healy DL. Endometriosis: science and practice: John Wiley & Sons; 2012. Giudice LC, Evers JL, Healy DL. Endometriosis: science and practice: John Wiley & Sons; 2012.
36.
go back to reference Gurtner A, Fuschi P, Magi F, Colussi C, Gaetano C, Dobbelstein M, et al. NF-Y dependent epigenetic modifications discriminate between proliferating and postmitotic tissue. PLoS One. 2008;3(4):e2047.PubMedPubMedCentral Gurtner A, Fuschi P, Magi F, Colussi C, Gaetano C, Dobbelstein M, et al. NF-Y dependent epigenetic modifications discriminate between proliferating and postmitotic tissue. PLoS One. 2008;3(4):e2047.PubMedPubMedCentral
37.
go back to reference Ceribelli M, Dolfini D, Merico D, Gatta R, Viganò AM, Pavesi G, et al. The histone-like NF-Y is a bifunctional transcription factor. Mol Cell Biol. 2008;28(6):2047–58.PubMedPubMedCentral Ceribelli M, Dolfini D, Merico D, Gatta R, Viganò AM, Pavesi G, et al. The histone-like NF-Y is a bifunctional transcription factor. Mol Cell Biol. 2008;28(6):2047–58.PubMedPubMedCentral
38.
go back to reference Norton JD. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci. 2000;113(22):3897–905.PubMed Norton JD. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci. 2000;113(22):3897–905.PubMed
39.
40.
go back to reference Ruzinova MB, Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 2003;13(8):410–8.PubMed Ruzinova MB, Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 2003;13(8):410–8.PubMed
41.
go back to reference Gearhart J, Pashos EE, Prasad MK. Pluripotency redux—advances in stem-cell research. N Engl J Med. 2007;357(15):1469–72.PubMed Gearhart J, Pashos EE, Prasad MK. Pluripotency redux—advances in stem-cell research. N Engl J Med. 2007;357(15):1469–72.PubMed
42.
go back to reference Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer. 2005;5(8):603–14.PubMed Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer. 2005;5(8):603–14.PubMed
43.
go back to reference Lasorella A, Uo T, Iavarone A. Id proteins at the cross-road of development and cancer. Oncogene. 2001;20(58):8326–33.PubMed Lasorella A, Uo T, Iavarone A. Id proteins at the cross-road of development and cancer. Oncogene. 2001;20(58):8326–33.PubMed
44.
go back to reference Johnson MC, Torres M, Alves A, Bacallao K, Fuentes A, Vega M, et al. Augmented cell survival in eutopic endometrium from women with endometriosis: expression of c-myc, TGF-beta1 and bax genes. Reprod Biol Endocrinol. 2005;3(1):45.PubMedPubMedCentral Johnson MC, Torres M, Alves A, Bacallao K, Fuentes A, Vega M, et al. Augmented cell survival in eutopic endometrium from women with endometriosis: expression of c-myc, TGF-beta1 and bax genes. Reprod Biol Endocrinol. 2005;3(1):45.PubMedPubMedCentral
45.
go back to reference Young VJ, Ahmad SF, Brown JK, Duncan WC, Horne AW. Id2 mediates the transforming growth factor-β1-induced Warburg-like effect seen in the peritoneum of women with endometriosis. MHR: Basic Sci Reprod Med. 2016;22(9):648–54. Young VJ, Ahmad SF, Brown JK, Duncan WC, Horne AW. Id2 mediates the transforming growth factor-β1-induced Warburg-like effect seen in the peritoneum of women with endometriosis. MHR: Basic Sci Reprod Med. 2016;22(9):648–54.
46.
go back to reference Rockman SP, Currie SA, Ciavarella M, Vincan E, Dow C, Thomas RJ, et al. Id2 is a target of the β-catenin/T cell factor pathway in colon carcinoma. J Biol Chem. 2001;276(48):45113–9.PubMed Rockman SP, Currie SA, Ciavarella M, Vincan E, Dow C, Thomas RJ, et al. Id2 is a target of the β-catenin/T cell factor pathway in colon carcinoma. J Biol Chem. 2001;276(48):45113–9.PubMed
47.
go back to reference Kamalian L, Gosney JR, Forootan SS, Foster CS, Bao ZZ, Beesley C, et al. Increased expression of id family proteins in small cell lung cancer and its prognostic significance. Clin Cancer Res. 2008;14(8):2318–25.PubMed Kamalian L, Gosney JR, Forootan SS, Foster CS, Bao ZZ, Beesley C, et al. Increased expression of id family proteins in small cell lung cancer and its prognostic significance. Clin Cancer Res. 2008;14(8):2318–25.PubMed
48.
go back to reference Wu Q, Hoffmann MJ, Hartmann FH, Schulz WA. Amplification and overexpression of the ID4 gene at 6p22. 3 in bladder cancer. Molecular Cancer. 2005;4(1):16.PubMedPubMedCentral Wu Q, Hoffmann MJ, Hartmann FH, Schulz WA. Amplification and overexpression of the ID4 gene at 6p22. 3 in bladder cancer. Molecular Cancer. 2005;4(1):16.PubMedPubMedCentral
49.
go back to reference Kim D, Franklyn J, Stratford A, Boelaert K, Watkinson J, Eggo M, et al. Pituitary tumor-transforming gene regulates multiple downstream angiogenic genes in thyroid cancer. J Clin Endocrinol Metabol. 2006;91(3):1119–28. Kim D, Franklyn J, Stratford A, Boelaert K, Watkinson J, Eggo M, et al. Pituitary tumor-transforming gene regulates multiple downstream angiogenic genes in thyroid cancer. J Clin Endocrinol Metabol. 2006;91(3):1119–28.
50.
go back to reference Mern D, Hasskarl J, Burwinkel B. Inhibition of id proteins by a peptide aptamer induces cell-cycle arrest and apoptosis in ovarian cancer cells. Br J Cancer. 2010;103(8):1237–44.PubMedPubMedCentral Mern D, Hasskarl J, Burwinkel B. Inhibition of id proteins by a peptide aptamer induces cell-cycle arrest and apoptosis in ovarian cancer cells. Br J Cancer. 2010;103(8):1237–44.PubMedPubMedCentral
51.
go back to reference Chan ASW, Tsui WY, Chen X, Chu KM, Chan TL, Chan ASY, et al. Downregulation of ID4 by promoter hypermethylation in gastric adenocarcinoma. Oncogene. 2003;22(44):6946–53.PubMed Chan ASW, Tsui WY, Chen X, Chu KM, Chan TL, Chan ASY, et al. Downregulation of ID4 by promoter hypermethylation in gastric adenocarcinoma. Oncogene. 2003;22(44):6946–53.PubMed
52.
go back to reference Welcsh PL, Lee MK, Gonzalez-Hernandez RM, Black DJ, Mahadevappa M, Swisher EM, et al. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci. 2002;99(11):7560–5.PubMed Welcsh PL, Lee MK, Gonzalez-Hernandez RM, Black DJ, Mahadevappa M, Swisher EM, et al. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci. 2002;99(11):7560–5.PubMed
53.
go back to reference Carey JP, Asirvatham AJ, Galm O, Ghogomu TA, Chaudhary J. Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer. BMC Cancer. 2009;9(1):173.PubMedPubMedCentral Carey JP, Asirvatham AJ, Galm O, Ghogomu TA, Chaudhary J. Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer. BMC Cancer. 2009;9(1):173.PubMedPubMedCentral
54.
go back to reference Cooper CL, Newburger PE. Differential expression of id genes in multipotent myeloid progenitor cells: id-1 is induced by early-and late-acting cytokines while id-2 is selectively induced by cytokines that drive terminal granulocytic differentiation. J Cell Biochem. 1998;71(2):277–85.PubMed Cooper CL, Newburger PE. Differential expression of id genes in multipotent myeloid progenitor cells: id-1 is induced by early-and late-acting cytokines while id-2 is selectively induced by cytokines that drive terminal granulocytic differentiation. J Cell Biochem. 1998;71(2):277–85.PubMed
55.
go back to reference Matuoka K, Chen KY. Nuclear factor Y (NF-Y) and cellular senescence. Exp Cell Res. 1999;253(2):365–71.PubMed Matuoka K, Chen KY. Nuclear factor Y (NF-Y) and cellular senescence. Exp Cell Res. 1999;253(2):365–71.PubMed
56.
go back to reference Stewart JJ, Fischbeck JA, Chen X, Stargell LA. Non-optimal TATA elements exhibit diverse mechanistic consequences. J Biol Chem. 2006;281(32):22665–73.PubMed Stewart JJ, Fischbeck JA, Chen X, Stargell LA. Non-optimal TATA elements exhibit diverse mechanistic consequences. J Biol Chem. 2006;281(32):22665–73.PubMed
Metadata
Title
Epigenetic role of the nuclear factor NF-Y on ID gene family in endometrial tissues of women with endometriosis: a case control study
Authors
Shirin Amirteimouri
Manan Ashini
Fariba Ramazanali
Reza Aflatoonian
Parvaneh Afsharian
Maryam Shahhoseini
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2019
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-019-0476-9

Other articles of this Issue 1/2019

Reproductive Biology and Endocrinology 1/2019 Go to the issue