Skip to main content
Top
Published in: BMC Cancer 1/2022

Open Access 01-12-2022 | Endometrial Cancer | Research

GPX4 suppresses ferroptosis to promote malignant progression of endometrial carcinoma via transcriptional activation by ELK1

Authors: Sitian Wei, Zhicheng Yu, Rui Shi, Lanfen An, Qi Zhang, Qian Zhang, Tangansu Zhang, Jun Zhang, Hongbo Wang

Published in: BMC Cancer | Issue 1/2022

Login to get access

Abstract

Background

Glutathione Peroxidase 4 (GPX4) is a key protein that inhibits ferroptosis. However, its biological regulation and mechanism in endometrial cancer (EC) have not been reported in detail.

Methods

The expression of GPX4 in EC tissues was determined by TCGA databases, qRT-PCR, Western blot, and immunohistochemistry (IHC). The effects of GPX4 on EC cell proliferation, migration, apoptosis, and tumorigenesis were studied in vivo and in vitro. In addition, ETS Transcription Factor ELK1 (ELK1) was identified by bioinformatics methods, dual-luciferase reporter assay, and chromatin immunoprecipitation (ChIP). Pearson correlation analysis was used to evaluate the association between ELK1 and GPX4 expression.

Results

The expression of GPX4 was significantly up-regulated in EC tissues and cell lines. Silencing GPX4 significantly inhibited the proliferation, migration ability, induced apoptosis, and arrested the cell cycle of Ishikawa and KLE cells. Knockdown of GPX4 accumulated intracellular ferrous iron and ROS, disrupted MMP, and increased MDA levels. The xenograft tumor model also showed that GPX4 knockdown markedly reduced tumor growth in mice. Mechanically, ELK1 could bind to the promoter of GPX4 to promote its transcription. In addition, the expression of ELK1 in EC was positively correlated with GPX4. Rescue experiments confirmed that GPX4 knockdown could reverse the strengthens of cell proliferation and migration ability and the lower level of Fe2+ and MDA caused by upregulating ELK1.

Conclusion

The results of the present study suggest that ELK1 / GPX4 axis plays an important role in the progress of EC by promoting the malignant biological behavior and inducing ferroptosis of EC cells, which provides evidence for investigating the potential therapeutic strategies of endometrial cancer.
Appendix
Available only for authorised users
Literature
2.
go back to reference Sung H, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef Sung H, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef
4.
go back to reference Aoki Y, et al. Adjuvant treatment of endometrial cancer today. Jpn J Clin Oncol. 2020;50(7):753–65.PubMedCrossRef Aoki Y, et al. Adjuvant treatment of endometrial cancer today. Jpn J Clin Oncol. 2020;50(7):753–65.PubMedCrossRef
5.
go back to reference Paulino E, de Melo AC. Adjuvant treatment of endometrial cancer in molecular era: Are we ready to move on? Crit Rev Oncol Hematol. 2020;153: 103016.PubMedCrossRef Paulino E, de Melo AC. Adjuvant treatment of endometrial cancer in molecular era: Are we ready to move on? Crit Rev Oncol Hematol. 2020;153: 103016.PubMedCrossRef
8.
go back to reference Bell DW, Ellenson LH. Molecular Genetics of Endometrial Carcinoma. Annu Rev Pathol. 2019;14:339–67.PubMedCrossRef Bell DW, Ellenson LH. Molecular Genetics of Endometrial Carcinoma. Annu Rev Pathol. 2019;14:339–67.PubMedCrossRef
10.
go back to reference Su LJ, et al. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843.PubMedPubMedCentral Su LJ, et al. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843.PubMedPubMedCentral
12.
14.
go back to reference Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 2020;152:175–85.PubMedCrossRef Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 2020;152:175–85.PubMedCrossRef
15.
go back to reference Margis R, et al. Glutathione peroxidase family - an evolutionary overview. Febs j. 2008;275(15):3959–70.PubMedCrossRef Margis R, et al. Glutathione peroxidase family - an evolutionary overview. Febs j. 2008;275(15):3959–70.PubMedCrossRef
16.
go back to reference Toppo S, et al. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid Redox Signal. 2008;10(9):1501–14.PubMedCrossRef Toppo S, et al. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid Redox Signal. 2008;10(9):1501–14.PubMedCrossRef
17.
go back to reference Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830(5):3289–303.PubMedCrossRef Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830(5):3289–303.PubMedCrossRef
18.
go back to reference Ingold I, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172(3):409-422.e21.PubMedCrossRef Ingold I, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172(3):409-422.e21.PubMedCrossRef
19.
go back to reference Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.PubMedCrossRef Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.PubMedCrossRef
20.
go back to reference Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–52.PubMedCrossRef Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–52.PubMedCrossRef
21.
go back to reference Lu Y, et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett. 2021;522:1–13.PubMedCrossRef Lu Y, et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett. 2021;522:1–13.PubMedCrossRef
24.
go back to reference Chen W, et al. Circular RNA circKIF4A facilitates the malignant progression and suppresses ferroptosis by sponging miR-1231 and upregulating GPX4 in papillary thyroid cancer. Aging (Albany NY). 2021;13(12):16500–12.CrossRef Chen W, et al. Circular RNA circKIF4A facilitates the malignant progression and suppresses ferroptosis by sponging miR-1231 and upregulating GPX4 in papillary thyroid cancer. Aging (Albany NY). 2021;13(12):16500–12.CrossRef
25.
go back to reference Zhao L, et al. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer. 2021;24(3):642–54.PubMedCrossRef Zhao L, et al. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer. 2021;24(3):642–54.PubMedCrossRef
26.
go back to reference Allred DC, et al. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11(2):155–68.PubMed Allred DC, et al. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11(2):155–68.PubMed
27.
go back to reference Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell. 2019;35(6):830–49.PubMedCrossRef Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell. 2019;35(6):830–49.PubMedCrossRef
28.
go back to reference Liang C, et al. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Adv Mater. 2019;31(51): e1904197.PubMedCrossRef Liang C, et al. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Adv Mater. 2019;31(51): e1904197.PubMedCrossRef
30.
go back to reference Zhu J, et al. The Molecular Mechanisms of Regulating Oxidative Stress-Induced Ferroptosis and Therapeutic Strategy in Tumors. Oxid Med Cell Longev. 2020;2020:8810785.PubMedPubMedCentral Zhu J, et al. The Molecular Mechanisms of Regulating Oxidative Stress-Induced Ferroptosis and Therapeutic Strategy in Tumors. Oxid Med Cell Longev. 2020;2020:8810785.PubMedPubMedCentral
31.
go back to reference López-Janeiro Á, et al. Proteomic Analysis of Low-Grade, Early-Stage Endometrial Carcinoma Reveals New Dysregulated Pathways Associated with Cell Death and Cell Signaling. Cancers (Basel). 2021;13(4):794.CrossRef López-Janeiro Á, et al. Proteomic Analysis of Low-Grade, Early-Stage Endometrial Carcinoma Reveals New Dysregulated Pathways Associated with Cell Death and Cell Signaling. Cancers (Basel). 2021;13(4):794.CrossRef
32.
go back to reference Zhang YY, et al. Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells. Food Funct. 2021;12(11):4947–59.PubMedCrossRef Zhang YY, et al. Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells. Food Funct. 2021;12(11):4947–59.PubMedCrossRef
33.
34.
go back to reference Weïwer M, et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg Med Chem Lett. 2012;22(4):1822–6.PubMedCrossRef Weïwer M, et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg Med Chem Lett. 2012;22(4):1822–6.PubMedCrossRef
35.
go back to reference Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45.PubMedPubMedCentralCrossRef Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45.PubMedPubMedCentralCrossRef
37.
go back to reference Kerins MJ, et al. Fumarate hydratase inactivation in hereditary leiomyomatosis and renal cell cancer is synthetic lethal with ferroptosis induction. Cancer Sci. 2018;109(9):2757–66.PubMedPubMedCentralCrossRef Kerins MJ, et al. Fumarate hydratase inactivation in hereditary leiomyomatosis and renal cell cancer is synthetic lethal with ferroptosis induction. Cancer Sci. 2018;109(9):2757–66.PubMedPubMedCentralCrossRef
38.
go back to reference Grossman EA, et al. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products. Cell Chem Biol. 2017;24(11):1368-1376.e4.PubMedPubMedCentralCrossRef Grossman EA, et al. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products. Cell Chem Biol. 2017;24(11):1368-1376.e4.PubMedPubMedCentralCrossRef
39.
go back to reference Cui C, Yang F, Li Q. Post-Translational Modification of GPX4 is a Promising Target for Treating Ferroptosis-Related Diseases. Front Mol Biosci. 2022;9: 901565.PubMedPubMedCentralCrossRef Cui C, Yang F, Li Q. Post-Translational Modification of GPX4 is a Promising Target for Treating Ferroptosis-Related Diseases. Front Mol Biosci. 2022;9: 901565.PubMedPubMedCentralCrossRef
40.
go back to reference Hipskind RA, et al. Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF. Nature. 1991;354(6354):531–4.PubMedCrossRef Hipskind RA, et al. Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF. Nature. 1991;354(6354):531–4.PubMedCrossRef
42.
43.
go back to reference Boros J, et al. Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery. Genome Res. 2009;19(11):1963–73.PubMedPubMedCentralCrossRef Boros J, et al. Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery. Genome Res. 2009;19(11):1963–73.PubMedPubMedCentralCrossRef
44.
go back to reference Odrowaz Z, Sharrocks AD. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes. PLoS Genet. 2012;8(5): e1002694.PubMedPubMedCentralCrossRef Odrowaz Z, Sharrocks AD. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes. PLoS Genet. 2012;8(5): e1002694.PubMedPubMedCentralCrossRef
46.
go back to reference Li S, et al. miR-597-5p inhibits cell growth and promotes cell apoptosis by targeting ELK1 in pancreatic cancer. Hum Cell. 2020;33(4):1165–75.PubMedCrossRef Li S, et al. miR-597-5p inhibits cell growth and promotes cell apoptosis by targeting ELK1 in pancreatic cancer. Hum Cell. 2020;33(4):1165–75.PubMedCrossRef
47.
go back to reference Ma G, et al. ELK1-mediated upregulation of lncRNA LBX2-AS1 facilitates cell proliferation and invasion via regulating miR-491-5p/S100A11 axis in colorectal cancer. Int J Mol Med. 2021;48(1):138.PubMedPubMedCentralCrossRef Ma G, et al. ELK1-mediated upregulation of lncRNA LBX2-AS1 facilitates cell proliferation and invasion via regulating miR-491-5p/S100A11 axis in colorectal cancer. Int J Mol Med. 2021;48(1):138.PubMedPubMedCentralCrossRef
48.
go back to reference Ma J, et al. c-KIT-ERK1/2 signaling activated ELK1 and upregulated carcinoembryonic antigen expression to promote colorectal cancer progression. Cancer Sci. 2021;112(2):655–67.PubMedCrossRef Ma J, et al. c-KIT-ERK1/2 signaling activated ELK1 and upregulated carcinoembryonic antigen expression to promote colorectal cancer progression. Cancer Sci. 2021;112(2):655–67.PubMedCrossRef
49.
go back to reference Huang B, et al. ELK1-induced upregulation of lncRNA TRPM2-AS promotes tumor progression in gastric cancer by regulating miR-195/ HMGA1 axis. J Cell Biochem. 2019;120(10):16921–33.PubMedCrossRef Huang B, et al. ELK1-induced upregulation of lncRNA TRPM2-AS promotes tumor progression in gastric cancer by regulating miR-195/ HMGA1 axis. J Cell Biochem. 2019;120(10):16921–33.PubMedCrossRef
50.
go back to reference Sheng K, Lu J, Zhao H. ELK1-induced upregulation of lncRNA HOXA10-AS promotes lung adenocarcinoma progression by increasing Wnt/β-catenin signaling. Biochem Biophys Res Commun. 2018;501(3):612–8.PubMedCrossRef Sheng K, Lu J, Zhao H. ELK1-induced upregulation of lncRNA HOXA10-AS promotes lung adenocarcinoma progression by increasing Wnt/β-catenin signaling. Biochem Biophys Res Commun. 2018;501(3):612–8.PubMedCrossRef
51.
go back to reference Zhao H, et al. PCNA-associated factor KIAA0101 transcriptionally induced by ELK1 controls cell proliferation and apoptosis in nasopharyngeal carcinoma: an integrated bioinformatics and experimental study. Aging (Albany NY). 2020;12(7):5992–6017.CrossRef Zhao H, et al. PCNA-associated factor KIAA0101 transcriptionally induced by ELK1 controls cell proliferation and apoptosis in nasopharyngeal carcinoma: an integrated bioinformatics and experimental study. Aging (Albany NY). 2020;12(7):5992–6017.CrossRef
Metadata
Title
GPX4 suppresses ferroptosis to promote malignant progression of endometrial carcinoma via transcriptional activation by ELK1
Authors
Sitian Wei
Zhicheng Yu
Rui Shi
Lanfen An
Qi Zhang
Qian Zhang
Tangansu Zhang
Jun Zhang
Hongbo Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2022
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-022-09986-3

Other articles of this Issue 1/2022

BMC Cancer 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine