Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Empagliflozin | Research

Empagliflozin targets Mfn1 and Opa1 to attenuate microglia-mediated neuroinflammation in retinal ischemia and reperfusion injury

Authors: Zhenlan Yang, Yidan Liu, Xuhao Chen, Shaofen Huang, Yangyang Li, Guitong Ye, Xu Cao, Wenru Su, Yehong Zhuo

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Background

Neuroinflammation and mitochondrial dysfunction play crucial roles in retinal ischemia and reperfusion (IR) injury. Recent studies have identified mitochondrial function as a promising target for immunomodulation. Empagliflozin (EMPA), an anti-diabetic drug, has exhibited great potential as both an anti-inflammatory agent and a protector of mitochondrial health. This study aimed to assess the therapeutic efficacy of EMPA in retinal IR injury.

Methods

To evaluate the protective effects of EMPA, the drug was injected into the vitreous body of mice post-retinal IR. Single-cell RNA sequencing (scRNA-seq) analysis was conducted to uncover the underlying mechanisms, and the results were further validated through in vivo and in vitro experiments.

Results

EMPA effectively protected retinal ganglion cells (RGCs) from IR injury by attenuating local retinal inflammation. The scRNA-seq analysis revealed that EMPA downregulated the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) signaling pathway and restored mitochondrial dynamics by upregulating the expression of mitochondrial fusion-related genes, Mitofusin 1 (Mfn1) and optic atrophy 1 (Opa1). These findings were further corroborated by Western blotting. In vitro experiments provided additional insights, demonstrating that EMPA suppressed lipopolysaccharide (LPS)-induced cell inflammation and NLRP3 inflammasome activation. Moreover, EMPA enhanced mitochondrial fusion, neutralized mitochondrial reactive oxygen species (mtROS), and restored mitochondrial membrane potential (MMP) in BV2 microglia. Notably, genetic ablation of Mfn1 or Opa1 abolished the anti-inflammatory effects of EMPA.

Conclusions

Our findings highlight the positive contribution of Mfn1 and Opa1 to the anti-inflammatory therapeutic effect of EMPA. By restoring mitochondrial dynamics, EMPA effectively mitigates microglia-mediated neuroinflammation and prevents RGC loss in retinal IR injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res. 2004;23:91–147.PubMedCrossRef Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res. 2004;23:91–147.PubMedCrossRef
2.
go back to reference Zheng L, Gong B, Hatala DA, Kern TS. Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci. 2007;48:361–7.PubMedCrossRef Zheng L, Gong B, Hatala DA, Kern TS. Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci. 2007;48:361–7.PubMedCrossRef
3.
go back to reference Kim BJ, Braun TA, Wordinger RJ, Clark AF. Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice. Mol Neurodegener. 2013;8:21.PubMedPubMedCentralCrossRef Kim BJ, Braun TA, Wordinger RJ, Clark AF. Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice. Mol Neurodegener. 2013;8:21.PubMedPubMedCentralCrossRef
4.
go back to reference Rahimi M, Leahy S, Matei N, Burford J, Blair NP, Shahidi M. Impairments of retinal hemodynamics and oxygen metrics in ocular hypertension-induced ischemia-reperfusion. Exp Eye Res. 2022;225: 109278.PubMedCrossRef Rahimi M, Leahy S, Matei N, Burford J, Blair NP, Shahidi M. Impairments of retinal hemodynamics and oxygen metrics in ocular hypertension-induced ischemia-reperfusion. Exp Eye Res. 2022;225: 109278.PubMedCrossRef
5.
go back to reference Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res. 2023;95: 101136.PubMedCrossRef Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res. 2023;95: 101136.PubMedCrossRef
6.
go back to reference Tezel G. Molecular regulation of neuroinflammation in glaucoma: current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res. 2022;87: 100998.PubMedCrossRef Tezel G. Molecular regulation of neuroinflammation in glaucoma: current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res. 2022;87: 100998.PubMedCrossRef
7.
go back to reference Fernandez-Albarral JA, Ramírez AI, de Hoz R, Salazar JJ. Retinal microglial activation in glaucoma: evolution over time in a unilateral ocular hypertension model. Neural Regen Res. 2022;17:797–9.PubMedCrossRef Fernandez-Albarral JA, Ramírez AI, de Hoz R, Salazar JJ. Retinal microglial activation in glaucoma: evolution over time in a unilateral ocular hypertension model. Neural Regen Res. 2022;17:797–9.PubMedCrossRef
8.
go back to reference Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - a key player in healthy and diseased retina. Prog Neurobiol. 2019;173:18–40.PubMedCrossRef Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - a key player in healthy and diseased retina. Prog Neurobiol. 2019;173:18–40.PubMedCrossRef
9.
go back to reference Wan P, Su W, Zhang Y, Li Z, Deng C, Li J, Jiang N, Huang S, Long E, Zhuo Y. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ. 2020;27:176–91.PubMedCrossRef Wan P, Su W, Zhang Y, Li Z, Deng C, Li J, Jiang N, Huang S, Long E, Zhuo Y. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ. 2020;27:176–91.PubMedCrossRef
10.
go back to reference Jiang N, Li Z, Li Z, Zhang Y, Yu Z, Wan P, Zhu Y, Li Y, Su W, Zhuo Y. Laquinimod exerts anti-inflammatory and antiapoptotic effects in retinal ischemia/reperfusion injury. Int Immunopharmacol. 2020;88: 106989.PubMedCrossRef Jiang N, Li Z, Li Z, Zhang Y, Yu Z, Wan P, Zhu Y, Li Y, Su W, Zhuo Y. Laquinimod exerts anti-inflammatory and antiapoptotic effects in retinal ischemia/reperfusion injury. Int Immunopharmacol. 2020;88: 106989.PubMedCrossRef
11.
go back to reference Yu Z, Wen Y, Jiang N, Li Z, Guan J, Zhang Y, Deng C, Zhao L, Zheng SG, Zhu Y, et al. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials. 2022;284: 121484.PubMedCrossRef Yu Z, Wen Y, Jiang N, Li Z, Guan J, Zhang Y, Deng C, Zhao L, Zheng SG, Zhu Y, et al. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials. 2022;284: 121484.PubMedCrossRef
12.
go back to reference Bader V, Winklhofer KF. Mitochondria at the interface between neurodegeneration and neuroinflammation. Semin Cell Dev Biol. 2020;99:163–71.PubMedCrossRef Bader V, Winklhofer KF. Mitochondria at the interface between neurodegeneration and neuroinflammation. Semin Cell Dev Biol. 2020;99:163–71.PubMedCrossRef
13.
go back to reference Jauhari A, Baranov SV, Suofu Y, Kim J, Singh T, Yablonska S, Li F, Wang X, Oberly P, Minnigh MB, et al. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest. 2020;130:3124–36.PubMedPubMedCentralCrossRef Jauhari A, Baranov SV, Suofu Y, Kim J, Singh T, Yablonska S, Li F, Wang X, Oberly P, Minnigh MB, et al. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest. 2020;130:3124–36.PubMedPubMedCentralCrossRef
14.
go back to reference Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang XJ, Wang H, Du Y, Guan J, Wang X, Fu J. NAD+ improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflamm. 2021;18:207.CrossRef Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang XJ, Wang H, Du Y, Guan J, Wang X, Fu J. NAD+ improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflamm. 2021;18:207.CrossRef
15.
go back to reference Vringer E, Tait SWG. Mitochondria and cell death-associated inflammation. Cell Death Differ. 2023;30:304–12.PubMedCrossRef Vringer E, Tait SWG. Mitochondria and cell death-associated inflammation. Cell Death Differ. 2023;30:304–12.PubMedCrossRef
16.
go back to reference Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial control of inflammation. Nat Rev Immunol. 2023;23:159–73.PubMedCrossRef Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial control of inflammation. Nat Rev Immunol. 2023;23:159–73.PubMedCrossRef
17.
18.
go back to reference Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW, Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019;22:1635–48.PubMedPubMedCentralCrossRef Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW, Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019;22:1635–48.PubMedPubMedCentralCrossRef
19.
go back to reference de Oliveira LG, Angelo YS, Iglesias AH, Peron JPS. Unraveling the link between mitochondrial dynamics and neuroinflammation. Front Immunol. 2021;12: 624919.PubMedPubMedCentralCrossRef de Oliveira LG, Angelo YS, Iglesias AH, Peron JPS. Unraveling the link between mitochondrial dynamics and neuroinflammation. Front Immunol. 2021;12: 624919.PubMedPubMedCentralCrossRef
20.
go back to reference Saly DL, Perazella MA. Harnessing basic and clinic tools to evaluate SGLT2 inhibitor nephrotoxicity. Am J Physiol Renal Physiol. 2017;313:F951-f954.PubMedCrossRef Saly DL, Perazella MA. Harnessing basic and clinic tools to evaluate SGLT2 inhibitor nephrotoxicity. Am J Physiol Renal Physiol. 2017;313:F951-f954.PubMedCrossRef
21.
go back to reference Biegus J, Voors AA, Collins SP, Kosiborod MN, Teerlink JR, Angermann CE, Tromp J, Ferreira JP, Nassif ME, Psotka MA, et al. Impact of empagliflozin on decongestion in acute heart failure: the EMPULSE trial. Eur Heart J. 2023;44:41–50.PubMedCrossRef Biegus J, Voors AA, Collins SP, Kosiborod MN, Teerlink JR, Angermann CE, Tromp J, Ferreira JP, Nassif ME, Psotka MA, et al. Impact of empagliflozin on decongestion in acute heart failure: the EMPULSE trial. Eur Heart J. 2023;44:41–50.PubMedCrossRef
22.
go back to reference Wu CY, Iskander C, Wang C, Xiong LY, Shah BR, Edwards JD, Kapral MK, Herrmann N, Lanctôt KL, Masellis M, et al. Association of sodium-glucose cotransporter 2 inhibitors with time to dementia: a population-based cohort study. Diabetes Care. 2023;46:297–304.PubMedCrossRef Wu CY, Iskander C, Wang C, Xiong LY, Shah BR, Edwards JD, Kapral MK, Herrmann N, Lanctôt KL, Masellis M, et al. Association of sodium-glucose cotransporter 2 inhibitors with time to dementia: a population-based cohort study. Diabetes Care. 2023;46:297–304.PubMedCrossRef
23.
go back to reference Zheng SL, Roddick AJ, Aghar-Jaffar R, Shun-Shin MJ, Francis D, Oliver N, Meeran K. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: a systematic review and meta-analysis. JAMA. 2018;319:1580–91.PubMedPubMedCentralCrossRef Zheng SL, Roddick AJ, Aghar-Jaffar R, Shun-Shin MJ, Francis D, Oliver N, Meeran K. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: a systematic review and meta-analysis. JAMA. 2018;319:1580–91.PubMedPubMedCentralCrossRef
24.
go back to reference Koyani CN, Plastira I, Sourij H, Hallström S, Schmidt A, Rainer PP, Bugger H, Frank S, Malle E, von Lewinski D. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res. 2020;158: 104870.PubMedCrossRef Koyani CN, Plastira I, Sourij H, Hallström S, Schmidt A, Rainer PP, Bugger H, Frank S, Malle E, von Lewinski D. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res. 2020;158: 104870.PubMedCrossRef
25.
go back to reference Ahmed S, El-Sayed MM, Kandeil MA, Khalaf MM. Empagliflozin attenuates neurodegeneration through antioxidant, anti-inflammatory, and modulation of α-synuclein and Parkin levels in rotenone-induced Parkinson’s disease in rats. Saudi Pharm J. 2022;30:863–73.PubMedPubMedCentralCrossRef Ahmed S, El-Sayed MM, Kandeil MA, Khalaf MM. Empagliflozin attenuates neurodegeneration through antioxidant, anti-inflammatory, and modulation of α-synuclein and Parkin levels in rotenone-induced Parkinson’s disease in rats. Saudi Pharm J. 2022;30:863–73.PubMedPubMedCentralCrossRef
26.
go back to reference Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E, Kaneko S, Ota T. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 Macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49.PubMedPubMedCentralCrossRef Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E, Kaneko S, Ota T. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 Macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49.PubMedPubMedCentralCrossRef
27.
go back to reference Quagliariello V, De Laurentiis M, Rea D, Barbieri A, Monti MG, Carbone A, Paccone A, Altucci L, Conte M, Canale ML, et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol. 2021;20:150.PubMedPubMedCentralCrossRef Quagliariello V, De Laurentiis M, Rea D, Barbieri A, Monti MG, Carbone A, Paccone A, Altucci L, Conte M, Canale ML, et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol. 2021;20:150.PubMedPubMedCentralCrossRef
28.
go back to reference Zhang W, Li X, Li M, He H, Yang C, Wang M, Liu D, Zhang L, Shu C. Empagliflozin inhibits neointimal hyperplasia through attenuating endothelial-to-mesenchymal transition via TAK-1/NF-κB pathway. Eur J Pharmacol. 2023;954: 175826.PubMedCrossRef Zhang W, Li X, Li M, He H, Yang C, Wang M, Liu D, Zhang L, Shu C. Empagliflozin inhibits neointimal hyperplasia through attenuating endothelial-to-mesenchymal transition via TAK-1/NF-κB pathway. Eur J Pharmacol. 2023;954: 175826.PubMedCrossRef
29.
go back to reference Song Y, Huang C, Sin J, Germano JF, Taylor DJR, Thakur R, Gottlieb RA, Mentzer RM, Andres AM. Attenuation of adverse postinfarction left ventricular remodeling with empagliflozin enhances mitochondria-linked cellular energetics and mitochondrial biogenesis. Int J Mol Sci. 2021;23:437.PubMedPubMedCentralCrossRef Song Y, Huang C, Sin J, Germano JF, Taylor DJR, Thakur R, Gottlieb RA, Mentzer RM, Andres AM. Attenuation of adverse postinfarction left ventricular remodeling with empagliflozin enhances mitochondria-linked cellular energetics and mitochondrial biogenesis. Int J Mol Sci. 2021;23:437.PubMedPubMedCentralCrossRef
30.
go back to reference Shiraki A, Oyama JI, Shimizu T, Nakajima T, Yokota T, Node K. Empagliflozin improves cardiac mitochondrial function and survival through energy regulation in a murine model of heart failure. Eur J Pharmacol. 2022;931: 175194.PubMedCrossRef Shiraki A, Oyama JI, Shimizu T, Nakajima T, Yokota T, Node K. Empagliflozin improves cardiac mitochondrial function and survival through energy regulation in a murine model of heart failure. Eur J Pharmacol. 2022;931: 175194.PubMedCrossRef
31.
go back to reference Zou R, Shi W, Qiu J, Zhou N, Du N, Zhou H, Chen X, Ma L. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 2022;21:106.PubMedPubMedCentralCrossRef Zou R, Shi W, Qiu J, Zhou N, Du N, Zhou H, Chen X, Ma L. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 2022;21:106.PubMedPubMedCentralCrossRef
32.
go back to reference Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 2022;52: 102288.PubMedPubMedCentralCrossRef Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 2022;52: 102288.PubMedPubMedCentralCrossRef
33.
go back to reference Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X, Zhu J, Wu F, Ouyang H, Ge J, et al. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma. Proc Natl Acad Sci U S A. 2014;111:11181–6.PubMedPubMedCentralCrossRef Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X, Zhu J, Wu F, Ouyang H, Ge J, et al. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma. Proc Natl Acad Sci U S A. 2014;111:11181–6.PubMedPubMedCentralCrossRef
34.
go back to reference Wan P, Su W, Zhang Y, Li Z, Deng C, Zhuo Y. Trimetazidine protects retinal ganglion cells from acute glaucoma via the Nrf2/Ho-1 pathway. Clin Sci. 2017;131:2363–75.CrossRef Wan P, Su W, Zhang Y, Li Z, Deng C, Zhuo Y. Trimetazidine protects retinal ganglion cells from acute glaucoma via the Nrf2/Ho-1 pathway. Clin Sci. 2017;131:2363–75.CrossRef
35.
go back to reference Park J, Choi H, Kim B, Chae U, Lee DG, Lee SR, Lee S, Lee HS, Lee DS. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca2+/calcineurin-Drp1-dependent mitochondrial fission. Free Radic Biol Med. 2016;99:392–404.PubMedCrossRef Park J, Choi H, Kim B, Chae U, Lee DG, Lee SR, Lee S, Lee HS, Lee DS. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca2+/calcineurin-Drp1-dependent mitochondrial fission. Free Radic Biol Med. 2016;99:392–404.PubMedCrossRef
36.
go back to reference Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, Kim B, Chae JI, Yim M, Lee DS. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem. 2013;127:221–32.PubMedCrossRef Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, Kim B, Chae JI, Yim M, Lee DS. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem. 2013;127:221–32.PubMedCrossRef
37.
go back to reference Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.PubMedPubMedCentralCrossRef Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.PubMedPubMedCentralCrossRef
38.
go back to reference Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.PubMedPubMedCentralCrossRef Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.PubMedPubMedCentralCrossRef
39.
go back to reference Chen D, Peng C, Ding XM, Wu Y, Zeng CJ, Xu L, Guo WY. Interleukin-4 promotes microglial polarization toward a neuroprotective phenotype after retinal ischemia/reperfusion injury. Neural Regen Res. 2022;17:2755–60.PubMedPubMedCentralCrossRef Chen D, Peng C, Ding XM, Wu Y, Zeng CJ, Xu L, Guo WY. Interleukin-4 promotes microglial polarization toward a neuroprotective phenotype after retinal ischemia/reperfusion injury. Neural Regen Res. 2022;17:2755–60.PubMedPubMedCentralCrossRef
41.
go back to reference Morrison HA, Trusiano B, Rowe AJ, Allen IC. Negative regulatory NLRs mitigate inflammation via NF-κB pathway signaling in inflammatory bowel disease. Biomed J. 2023;46: 100616.PubMedPubMedCentralCrossRef Morrison HA, Trusiano B, Rowe AJ, Allen IC. Negative regulatory NLRs mitigate inflammation via NF-κB pathway signaling in inflammatory bowel disease. Biomed J. 2023;46: 100616.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 2015;4:6–13.PubMedCrossRef Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 2015;4:6–13.PubMedCrossRef
44.
go back to reference Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20:31–42.PubMedCrossRef Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20:31–42.PubMedCrossRef
45.
go back to reference Yang W, Li X, He L, Zhu S, Lai S, Zhang X, Huang Z, Yu B, Cui C, Wang Q. Empagliflozin improves renal ischemia-reperfusion injury by reducing inflammation and enhancing mitochondrial fusion through AMPK-OPA1 pathway promotion. Cell Mol Biol Lett. 2023;28:42.PubMedPubMedCentralCrossRef Yang W, Li X, He L, Zhu S, Lai S, Zhang X, Huang Z, Yu B, Cui C, Wang Q. Empagliflozin improves renal ischemia-reperfusion injury by reducing inflammation and enhancing mitochondrial fusion through AMPK-OPA1 pathway promotion. Cell Mol Biol Lett. 2023;28:42.PubMedPubMedCentralCrossRef
46.
go back to reference Amin EF, Rifaai RA, Abdel-Latif RG. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol. 2020;34:548–58.PubMedCrossRef Amin EF, Rifaai RA, Abdel-Latif RG. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol. 2020;34:548–58.PubMedCrossRef
47.
48.
go back to reference Silverman SM, Wong WT. Microglia in the retina: roles in development, maturity, and disease. Annu Rev Vis Sci. 2018;4:45–77.PubMedCrossRef Silverman SM, Wong WT. Microglia in the retina: roles in development, maturity, and disease. Annu Rev Vis Sci. 2018;4:45–77.PubMedCrossRef
50.
go back to reference Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab. 2016;27:105–17.PubMedCrossRef Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab. 2016;27:105–17.PubMedCrossRef
51.
go back to reference Nair S, Sobotka KS, Joshi P, Gressens P, Fleiss B, Thornton C, Mallard C, Hagberg H. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia. 2019;67:1047–61.PubMedCrossRef Nair S, Sobotka KS, Joshi P, Gressens P, Fleiss B, Thornton C, Mallard C, Hagberg H. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia. 2019;67:1047–61.PubMedCrossRef
52.
go back to reference Bao D, Zhao J, Zhou X, Yang Q, Chen Y, Zhu J, Yuan P, Yang J, Qin T, Wan S, Xing J. Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression. Oncogene. 2019;38:5007–20.PubMedPubMedCentralCrossRef Bao D, Zhao J, Zhou X, Yang Q, Chen Y, Zhu J, Yuan P, Yang J, Qin T, Wan S, Xing J. Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression. Oncogene. 2019;38:5007–20.PubMedPubMedCentralCrossRef
53.
go back to reference Xu T, Dong Q, Luo Y, Liu Y, Gao L, Pan Y, Zhang D. Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells. Int J Oral Sci. 2021;13:28.PubMedPubMedCentralCrossRef Xu T, Dong Q, Luo Y, Liu Y, Gao L, Pan Y, Zhang D. Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells. Int J Oral Sci. 2021;13:28.PubMedPubMedCentralCrossRef
54.
go back to reference Duan W, Liu C, Zhou J, Yu Q, Duan Y, Zhang T, Li Y, Fu G, Sun Y, Tian J, et al. Upregulation of mitochondrial calcium uniporter contributes to paraquat-induced neuropathology linked to Parkinson’s disease via imbalanced OPA1 processing. J Hazard Mater. 2023;453: 131369.PubMedCrossRef Duan W, Liu C, Zhou J, Yu Q, Duan Y, Zhang T, Li Y, Fu G, Sun Y, Tian J, et al. Upregulation of mitochondrial calcium uniporter contributes to paraquat-induced neuropathology linked to Parkinson’s disease via imbalanced OPA1 processing. J Hazard Mater. 2023;453: 131369.PubMedCrossRef
55.
go back to reference Rong R, Yang R, Li H, You M, Liang Z, Zeng Z, Zhou R, Xia X, Ji D. The roles of mitochondrial dynamics and NLRP3 inflammasomes in the pathogenesis of retinal light damage. Ann N Y Acad Sci. 2022;1508:78–91.PubMedCrossRef Rong R, Yang R, Li H, You M, Liang Z, Zeng Z, Zhou R, Xia X, Ji D. The roles of mitochondrial dynamics and NLRP3 inflammasomes in the pathogenesis of retinal light damage. Ann N Y Acad Sci. 2022;1508:78–91.PubMedCrossRef
56.
go back to reference Ongnok B, Maneechote C, Chunchai T, Pantiya P, Arunsak B, Nawara W, Chattipakorn N, Chattipakorn SC. Modulation of mitochondrial dynamics rescues cognitive function in rats with “doxorubicin-induced chemobrain” via mitigation of mitochondrial dysfunction and neuroinflammation. Febs j. 2022;289:6435–55.PubMedCrossRef Ongnok B, Maneechote C, Chunchai T, Pantiya P, Arunsak B, Nawara W, Chattipakorn N, Chattipakorn SC. Modulation of mitochondrial dynamics rescues cognitive function in rats with “doxorubicin-induced chemobrain” via mitigation of mitochondrial dysfunction and neuroinflammation. Febs j. 2022;289:6435–55.PubMedCrossRef
58.
go back to reference Zhang K, Wang T, Sun GF, Xiao JX, Jiang LP, Tou FF, Qu XH, Han XJ. Metformin protects against retinal ischemia/reperfusion injury through AMPK-mediated mitochondrial fusion. Free Radic Biol Med. 2023;205:47–61.PubMedCrossRef Zhang K, Wang T, Sun GF, Xiao JX, Jiang LP, Tou FF, Qu XH, Han XJ. Metformin protects against retinal ischemia/reperfusion injury through AMPK-mediated mitochondrial fusion. Free Radic Biol Med. 2023;205:47–61.PubMedCrossRef
59.
go back to reference Pang Y, Qin M, Hu P, Ji K, Xiao R, Sun N, Pan X, Zhang X. Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression. Int J Mol Med. 2020;46:1707–20.PubMedPubMedCentral Pang Y, Qin M, Hu P, Ji K, Xiao R, Sun N, Pan X, Zhang X. Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression. Int J Mol Med. 2020;46:1707–20.PubMedPubMedCentral
60.
go back to reference Sun Y, Xue W, Song Z, Huang K, Zheng L. Restoration of Opa1-long isoform inhibits retinal injury-induced neurodegeneration. J Mol Med. 2016;94:335–46.PubMedCrossRef Sun Y, Xue W, Song Z, Huang K, Zheng L. Restoration of Opa1-long isoform inhibits retinal injury-induced neurodegeneration. J Mol Med. 2016;94:335–46.PubMedCrossRef
Metadata
Title
Empagliflozin targets Mfn1 and Opa1 to attenuate microglia-mediated neuroinflammation in retinal ischemia and reperfusion injury
Authors
Zhenlan Yang
Yidan Liu
Xuhao Chen
Shaofen Huang
Yangyang Li
Guitong Ye
Xu Cao
Wenru Su
Yehong Zhuo
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Empagliflozin
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02982-9

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue