Skip to main content
Top
Published in: BMC Pediatrics 1/2018

Open Access 01-12-2018 | Case report

Eleven percent intact PGM3 in a severely immunodeficient patient with a novel splice-site mutation, a case report

Authors: Karin E. Lundin, Qing Wang, Abdulrahman Hamasy, Per Marits, Mehmet Uzunel, Valtteri Wirta, Ann-Charlotte Wikström, Anders Fasth, Olov Ekwall, C.I. Edvard Smith

Published in: BMC Pediatrics | Issue 1/2018

Login to get access

Abstract

Background

A novel immunodeficiency, frequently accompanied by high serum-IgE, and caused by mutations in the PGM3 gene was described in 2014. To date there are no unique phenotype characteristics for PGM3 deficiency. PGM3 encodes a carbohydrate-modifying enzyme, phosphoglucomutase 3. Null-mutations are quite likely lethal, and to date only missense mutations or small deletions have been reported. Such mutations frequently cause a combination of reduced enzyme activity and protein instability, complicating determination of the enzyme level needed for survival. Here we present the first patient with a homozygous splice-modifying mutation in the PGM3 gene. An A > G substitution at position c.871 + 3 (transcript NM_001199917) is causing a deletion of exon 7 in the majority of PGM3 transcripts. In addition, this case further increases the clinical phenotypes of immunodeficiency caused by PGM3 mutations.

Case presentation

We describe the symptoms of a 3-year-old girl who was severely growth retarded, had vascular malformations, extensive eczema, multiple food-allergies, and was prone to infections. Unlike the majority of reported PGM3 deficient patients she lacked skeletal dysplasia and had normal neurocognitive development. In addition to the high serum-IgE, she displayed altered T cell numbers with reduced naïve CD4+ and CD8+ T-cells, increased number of activated effector memory CD8+ T cells and aberrant T-cell functions.
The patient was homozygous for a new hypomorphic, splice-modifying mutation in the PGM3 gene, causing severely reduced mRNA levels. In the patient’s cells, we observed 5% intact mRNA and approximately 11% of the protein levels seen in healthy controls.
Treatment with allogeneic hematopoietic stem cell therapy was planned, but unfortunately the clinical condition deteriorated with multi-organ failure, which led to her death at 3 years of age.

Conclusions

There is still no specific phenotype identified that distinguishes immunodeficiency caused by PGM3 mutations from other forms of immunodeficiency. The patient described here yields new information on the phenotypic variability among these patients. In addition, since all the synthesized protein is wild-type, it is possible for the first time to estimate the enzyme activity in vivo. The results suggest that1/10 of the normal PGM3 level is sufficient for survival but that it is insufficient for accurate carbohydrate processing.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moens LN, Falk-Sorqvist E, Asplund AC, Bernatowska E, Smith CI, Nilsson M. Diagnostics of primary immunodeficiency diseases: a sequencing capture approach. PLoS One. 2014;9(12):e114901.CrossRefPubMedPubMedCentral Moens LN, Falk-Sorqvist E, Asplund AC, Bernatowska E, Smith CI, Nilsson M. Diagnostics of primary immunodeficiency diseases: a sequencing capture approach. PLoS One. 2014;9(12):e114901.CrossRefPubMedPubMedCentral
2.
go back to reference Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK, Coban Akdemir ZH, et al. Primary immunodeficiency diseases: genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol. 2017;139(1):232–45.CrossRefPubMed Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK, Coban Akdemir ZH, et al. Primary immunodeficiency diseases: genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol. 2017;139(1):232–45.CrossRefPubMed
3.
go back to reference Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol. 2016;138(4):957–69.CrossRefPubMedPubMedCentral Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol. 2016;138(4):957–69.CrossRefPubMedPubMedCentral
4.
go back to reference Sassi A, Lazaroski S, Wu G, Haslam SM, Fliegauf M, Mellouli F, et al. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol. 2014;133(5):1410–9. 9 e1–13CrossRefPubMedPubMedCentral Sassi A, Lazaroski S, Wu G, Haslam SM, Fliegauf M, Mellouli F, et al. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol. 2014;133(5):1410–9. 9 e1–13CrossRefPubMedPubMedCentral
5.
go back to reference Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT, et al. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol. 2014;133(5):1400–9. 9 e1–5CrossRefPubMedPubMedCentral Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT, et al. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol. 2014;133(5):1400–9. 9 e1–5CrossRefPubMedPubMedCentral
6.
go back to reference Stray-Pedersen A, Backe PH, Sorte HS, Morkrid L, Chokshi NY, Erichsen HC, et al. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet. 2014;95(1):96–107.CrossRefPubMedPubMedCentral Stray-Pedersen A, Backe PH, Sorte HS, Morkrid L, Chokshi NY, Erichsen HC, et al. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet. 2014;95(1):96–107.CrossRefPubMedPubMedCentral
7.
go back to reference Lundin KE, Hamasy A, Backe PH, Moens LN, Falk-Sorqvist E, Elgstoen KB, et al. Susceptibility to infections, without concomitant hyper-IgE, reported in 1976, is caused by hypomorphic mutation in the phosphoglucomutase 3 (PGM3) gene. Clin Immunol. 2015;161(2):366–72.CrossRefPubMedPubMedCentral Lundin KE, Hamasy A, Backe PH, Moens LN, Falk-Sorqvist E, Elgstoen KB, et al. Susceptibility to infections, without concomitant hyper-IgE, reported in 1976, is caused by hypomorphic mutation in the phosphoglucomutase 3 (PGM3) gene. Clin Immunol. 2015;161(2):366–72.CrossRefPubMedPubMedCentral
8.
go back to reference Bernth-Jensen JM, Holm M, Christiansen M. Neonatal-onset T(−)B(−)NK(+) severe combined immunodeficiency and neutropenia caused by mutated phosphoglucomutase 3. J Allergy Clin Immunol. 2016;137(1):321–4.CrossRefPubMed Bernth-Jensen JM, Holm M, Christiansen M. Neonatal-onset T(−)B(−)NK(+) severe combined immunodeficiency and neutropenia caused by mutated phosphoglucomutase 3. J Allergy Clin Immunol. 2016;137(1):321–4.CrossRefPubMed
9.
go back to reference Pacheco-Cuellar G, Gauthier J, Desilets V, Lachance C, Lemire-Girard M, Rypens F, et al. A novel PGM3 mutation is associated with a severe phenotype of bone marrow failure, severe combined immunodeficiency, skeletal dysplasia, and congenital malformations. J Bone Miner Res. 2017;32(9):1853–9.CrossRefPubMed Pacheco-Cuellar G, Gauthier J, Desilets V, Lachance C, Lemire-Girard M, Rypens F, et al. A novel PGM3 mutation is associated with a severe phenotype of bone marrow failure, severe combined immunodeficiency, skeletal dysplasia, and congenital malformations. J Bone Miner Res. 2017;32(9):1853–9.CrossRefPubMed
10.
go back to reference Scott K, Gadomski T, Kozicz T, Morava E. Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis. 2014;37(4):609–17.CrossRefPubMedPubMedCentral Scott K, Gadomski T, Kozicz T, Morava E. Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis. 2014;37(4):609–17.CrossRefPubMedPubMedCentral
11.
go back to reference Mogensen TH. Primary Immunodeficiencies with elevated IgE. Int Rev Immunol. 2016;35(1):39–56.PubMed Mogensen TH. Primary Immunodeficiencies with elevated IgE. Int Rev Immunol. 2016;35(1):39–56.PubMed
12.
go back to reference Willems AP, van Engelen BG, Lefeber DJ. Genetic defects in the hexosamine and sialic acid biosynthesis pathway. Biochim Biophys Acta. 2016;1860(8):1640–54.CrossRefPubMed Willems AP, van Engelen BG, Lefeber DJ. Genetic defects in the hexosamine and sialic acid biosynthesis pathway. Biochim Biophys Acta. 2016;1860(8):1640–54.CrossRefPubMed
13.
go back to reference Greig KT, Antonchuk J, Metcalf D, Morgan PO, Krebs DL, Zhang JG, et al. Agm1/Pgm3-mediated sugar nucleotide synthesis is essential for hematopoiesis and development. Mol Cell Biol. 2007;27(16):5849–59.CrossRefPubMedPubMedCentral Greig KT, Antonchuk J, Metcalf D, Morgan PO, Krebs DL, Zhang JG, et al. Agm1/Pgm3-mediated sugar nucleotide synthesis is essential for hematopoiesis and development. Mol Cell Biol. 2007;27(16):5849–59.CrossRefPubMedPubMedCentral
14.
go back to reference Ben-Khemis L, Mekki N, Ben-Mustapha I, Rouault K, Mellouli F, Khemiri M, et al. A founder mutation underlies a severe form of phosphoglutamase 3 (PGM3) deficiency in Tunisian patients. Mol Immunol. 2017;90:57–63.CrossRefPubMed Ben-Khemis L, Mekki N, Ben-Mustapha I, Rouault K, Mellouli F, Khemiri M, et al. A founder mutation underlies a severe form of phosphoglutamase 3 (PGM3) deficiency in Tunisian patients. Mol Immunol. 2017;90:57–63.CrossRefPubMed
15.
go back to reference Stranneheim H, Engvall M, Naess K, Lesko N, Larsson P, Dahlberg M, et al. Rapid pulsed whole genome sequencing for comprehensive acute diagnostics of inborn errors of metabolism. BMC Genomics. 2014;15:1090.CrossRefPubMedPubMedCentral Stranneheim H, Engvall M, Naess K, Lesko N, Larsson P, Dahlberg M, et al. Rapid pulsed whole genome sequencing for comprehensive acute diagnostics of inborn errors of metabolism. BMC Genomics. 2014;15:1090.CrossRefPubMedPubMedCentral
17.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.CrossRefPubMedPubMedCentral Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.CrossRefPubMedPubMedCentral
18.
go back to reference Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(Database issue):D980–5.CrossRefPubMed Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(Database issue):D980–5.CrossRefPubMed
20.
go back to reference Ling JC, Freeman AF, Gharib AM, Arai AE, Lederman RJ, Rosing DR, et al. Coronary artery aneurysms in patients with hyper IgE recurrent infection syndrome. Clin Immunol. 2007;122(3):255–8.CrossRefPubMed Ling JC, Freeman AF, Gharib AM, Arai AE, Lederman RJ, Rosing DR, et al. Coronary artery aneurysms in patients with hyper IgE recurrent infection syndrome. Clin Immunol. 2007;122(3):255–8.CrossRefPubMed
21.
go back to reference Shapiro MB, Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987;15(17):7155–74.CrossRefPubMedPubMedCentral Shapiro MB, Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987;15(17):7155–74.CrossRefPubMedPubMedCentral
22.
go back to reference Kralovicova J, Hwang G, Asplund AC, Churbanov A, Smith CI, Vorechovsky I. Compensatory signals associated with the activation of human GC 5′ splice sites. Nucleic Acids Res. 2011;39(16):7077–91.CrossRefPubMedPubMedCentral Kralovicova J, Hwang G, Asplund AC, Churbanov A, Smith CI, Vorechovsky I. Compensatory signals associated with the activation of human GC 5′ splice sites. Nucleic Acids Res. 2011;39(16):7077–91.CrossRefPubMedPubMedCentral
23.
go back to reference Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165(3):535–50.CrossRefPubMed Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165(3):535–50.CrossRefPubMed
Metadata
Title
Eleven percent intact PGM3 in a severely immunodeficient patient with a novel splice-site mutation, a case report
Authors
Karin E. Lundin
Qing Wang
Abdulrahman Hamasy
Per Marits
Mehmet Uzunel
Valtteri Wirta
Ann-Charlotte Wikström
Anders Fasth
Olov Ekwall
C.I. Edvard Smith
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2018
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-018-1258-9

Other articles of this Issue 1/2018

BMC Pediatrics 1/2018 Go to the issue