Skip to main content
Top
Published in: Brain Structure and Function 7/2018

01-09-2018 | Original Article

Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron

Authors: Bas-Jan Zandt, Margaret Lin Veruki, Espen Hartveit

Published in: Brain Structure and Function | Issue 7/2018

Login to get access

Abstract

Amacrine cells are critical for processing of visual signals, but little is known about their electrotonic structure and passive membrane properties. AII amacrine cells are multifunctional interneurons in the mammalian retina and essential for both rod- and cone-mediated vision. Their dendrites are the site of both input and output chemical synapses and gap junctions that form electrically coupled networks. This electrical coupling is a challenge for developing realistic computer models of single neurons. Here, we combined multiphoton microscopy and electrophysiological recording from dye-filled AII amacrine cells in rat retinal slices to develop morphologically accurate compartmental models. Passive cable properties were estimated by directly fitting the current responses of the models evoked by voltage pulses to the physiologically recorded responses, obtained after blocking electrical coupling. The average best-fit parameters (obtained at − 60 mV and ~ 25 °C) were 0.91 µF cm−2 for specific membrane capacitance, 198 Ω cm for cytoplasmic resistivity, and 30 kΩ cm2 for specific membrane resistance. We examined the passive signal transmission between the cell body and the dendrites by the electrotonic transform and quantified the frequency-dependent voltage attenuation in response to sinusoidal current stimuli. There was significant frequency-dependent attenuation, most pronounced for signals generated at the arboreal dendrites and propagating towards the soma and lobular dendrites. In addition, we explored the consequences of the electrotonic structure for interpreting currents in somatic, whole-cell voltage-clamp recordings. The results indicate that AII amacrines cannot be characterized as electrotonically compact and suggest that their morphology and passive properties can contribute significantly to signal integration and processing.
Literature
go back to reference Abrahamsson T, Cathala L, Matsui K, Shigemoto R, DiGregorio DA (2012) Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. Neuron 73:1159–1172PubMed Abrahamsson T, Cathala L, Matsui K, Shigemoto R, DiGregorio DA (2012) Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. Neuron 73:1159–1172PubMed
go back to reference Balakrishnan V, Puthussery T, Kim M-H, Taylor WR, von Gersdorff H (2015) Synaptic vesicle exocytosis at the dendritic lobules of an inhibitory interneuron in the mammalian retina. Neuron 87:563–575PubMedPubMedCentral Balakrishnan V, Puthussery T, Kim M-H, Taylor WR, von Gersdorff H (2015) Synaptic vesicle exocytosis at the dendritic lobules of an inhibitory interneuron in the mammalian retina. Neuron 87:563–575PubMedPubMedCentral
go back to reference Bloomfield SA, Völgyi B (2004) Function and plasticity of homologous coupling between AII amacrine cells. Vis Res 44:3297–3306PubMed Bloomfield SA, Völgyi B (2004) Function and plasticity of homologous coupling between AII amacrine cells. Vis Res 44:3297–3306PubMed
go back to reference Boos R, Schneider H, Wässle H (1993) Voltage- and transmitter-gated currents of AII-amacrine cells in a slice preparation of the rat retina. J Neurosci 13:2874–2888PubMed Boos R, Schneider H, Wässle H (1993) Voltage- and transmitter-gated currents of AII-amacrine cells in a slice preparation of the rat retina. J Neurosci 13:2874–2888PubMed
go back to reference Brent RP (1973) A new algorithm for minimizing a function of several variables without calculating derivatives. In: Algorithms for minimization without derivatives. Prentice Hall, Englewood Cliffs, pp 116–167 Brent RP (1973) A new algorithm for minimizing a function of several variables without calculating derivatives. In: Algorithms for minimization without derivatives. Prentice Hall, Englewood Cliffs, pp 116–167
go back to reference Cajal SRy (1893) La rétine des vertébrés. La Cellule 9:119–255 Cajal SRy (1893) La rétine des vertébrés. La Cellule 9:119–255
go back to reference Cajal SRy (1909) Histologie du Système Nerveux de l’Homme et des Vertébrés, vol I. Maloine, Paris Cajal SRy (1909) Histologie du Système Nerveux de l’Homme et des Vertébrés, vol I. Maloine, Paris
go back to reference Cajal SRy (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés, vol II. Maloine, Paris Cajal SRy (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés, vol II. Maloine, Paris
go back to reference Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, Cambridge Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, Cambridge
go back to reference Carnevale NT, Tsai KY, Claiborne BJ, Brown TH (1995) The electrotonic transformation: a tool for relating neuronal form to function. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems, vol 7. MIT Press, Cambridge, pp 69–76 Carnevale NT, Tsai KY, Claiborne BJ, Brown TH (1995) The electrotonic transformation: a tool for relating neuronal form to function. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems, vol 7. MIT Press, Cambridge, pp 69–76
go back to reference Castilho Á, Ambrósio AF, Hartveit E, Veruki ML (2015) Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. J Neurosci 35:5422–5433PubMed Castilho Á, Ambrósio AF, Hartveit E, Veruki ML (2015) Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. J Neurosci 35:5422–5433PubMed
go back to reference Cembrowski MS, Logan SM, Tian M, Jia L, Li W, Kath WL, Riecke H, Singer JH (2012) The mechanisms of repetitive spike generation in an axonless retinal interneuron. Cell Rep 1:155–166PubMedPubMedCentral Cembrowski MS, Logan SM, Tian M, Jia L, Li W, Kath WL, Riecke H, Singer JH (2012) The mechanisms of repetitive spike generation in an axonless retinal interneuron. Cell Rep 1:155–166PubMedPubMedCentral
go back to reference Choi H, Zhang L, Cembrowski MS, Sabottke CF, Markowitz AL, Butts DA, Kath WL, Singer JH, Riecke H (2014) Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina. J Neurophysiol 112:1491–1504PubMedPubMedCentral Choi H, Zhang L, Cembrowski MS, Sabottke CF, Markowitz AL, Butts DA, Kath WL, Singer JH, Riecke H (2014) Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina. J Neurophysiol 112:1491–1504PubMedPubMedCentral
go back to reference Clements JD, Redman SJ (1989) Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J Physiol 409:63–87PubMedPubMedCentral Clements JD, Redman SJ (1989) Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J Physiol 409:63–87PubMedPubMedCentral
go back to reference De Schutter E, Steuber V (2001) Modeling simple and complex active neurons. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 233–257 De Schutter E, Steuber V (2001) Modeling simple and complex active neurons. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 233–257
go back to reference De Schutter E, van Geit W (2010) Modeling complex neurons. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 259–283 De Schutter E, van Geit W (2010) Modeling complex neurons. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 259–283
go back to reference Deans MR, Völgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36:703–712PubMedPubMedCentral Deans MR, Völgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36:703–712PubMedPubMedCentral
go back to reference Destexhe A, Huguenard JR (2010) Modeling voltage-dependent channels. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 107–137 Destexhe A, Huguenard JR (2010) Modeling voltage-dependent channels. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 107–137
go back to reference Diamond JS (2017) Inhibitory interneurons in the retina: types, circuitry, and function. Annu Rev Vis Sci 3:1–24PubMed Diamond JS (2017) Inhibitory interneurons in the retina: types, circuitry, and function. Annu Rev Vis Sci 3:1–24PubMed
go back to reference Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63:429–437PubMedPubMedCentral Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63:429–437PubMedPubMedCentral
go back to reference Doll CJ, Hochachka PW, Reiner PB (1993) Reduced ionic conductance in turtle brain. Am J Physiol 265:R929-R933 Doll CJ, Hochachka PW, Reiner PB (1993) Reduced ionic conductance in turtle brain. Am J Physiol 265:R929-R933
go back to reference Gill SB, Veruki ML, Hartveit E (2006) Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina. J Physiol 575:739–759PubMedPubMedCentral Gill SB, Veruki ML, Hartveit E (2006) Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina. J Physiol 575:739–759PubMedPubMedCentral
go back to reference Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568:69–82PubMedPubMedCentral Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568:69–82PubMedPubMedCentral
go back to reference Habermann CJ, O’Brien BJ, Wässle H, Protti DA (2003) AII amacrine cells express L-type calcium channels at their output synapses. J Neurosci 23:6904–6913PubMed Habermann CJ, O’Brien BJ, Wässle H, Protti DA (2003) AII amacrine cells express L-type calcium channels at their output synapses. J Neurosci 23:6904–6913PubMed
go back to reference Hampson ECGM., Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12:4911–4922PubMed Hampson ECGM., Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12:4911–4922PubMed
go back to reference Hartveit E, Veruki ML (2010) Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance. J Neurosci Meth 187:13–25 Hartveit E, Veruki ML (2010) Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance. J Neurosci Meth 187:13–25
go back to reference Hartveit E, Veruki ML (2012) Electrical synapses between AII amacrine cells in the retina: function and modulation. Brain Res 1487:160–172PubMed Hartveit E, Veruki ML (2012) Electrical synapses between AII amacrine cells in the retina: function and modulation. Brain Res 1487:160–172PubMed
go back to reference Hartveit E, Zandt B-J, Madsen E, Castilho Á, Mørkve SH, Veruki ML (2018) AMPA receptors at ribbon synapses in the mammalian retina: kinetic models and molecular identity. Brain Struct Funct 223:769–804PubMed Hartveit E, Zandt B-J, Madsen E, Castilho Á, Mørkve SH, Veruki ML (2018) AMPA receptors at ribbon synapses in the mammalian retina: kinetic models and molecular identity. Brain Struct Funct 223:769–804PubMed
go back to reference Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–174 Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–174
go back to reference Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland
go back to reference Holmes WR (2010) Passive cable modeling. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, MA, pp 233–258 Holmes WR (2010) Passive cable modeling. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, MA, pp 233–258
go back to reference Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Meth 25:1–11 Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Meth 25:1–11
go back to reference Jackson MB (2006) Molecular and cellular biophysics. Cambridge University Press, Cambridge Jackson MB (2006) Molecular and cellular biophysics. Cambridge University Press, Cambridge
go back to reference Jacobs G, Claiborne B, Harris K (2010) Reconstruction of neuronal morphology. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 187–210 Jacobs G, Claiborne B, Harris K (2010) Reconstruction of neuronal morphology. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, Cambridge, pp 187–210
go back to reference Jaeger D (2001) Accurate reconstruction of neuronal morphology. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 159–178 Jaeger D (2001) Accurate reconstruction of neuronal morphology. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 159–178
go back to reference Jaffe DB, Carnevale NT (1999) Passive normalization of synaptic integration influenced by dendritic architecture. J Neurophysiol 82:3268–3285PubMed Jaffe DB, Carnevale NT (1999) Passive normalization of synaptic integration influenced by dendritic architecture. J Neurophysiol 82:3268–3285PubMed
go back to reference Kita H, Armstrong W (1991) A biotin-containing compound N-(2- aminoethyl)biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin. J Neurosci Meth 37:141–150 Kita H, Armstrong W (1991) A biotin-containing compound N-(2- aminoethyl)biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin. J Neurosci Meth 37:141–150
go back to reference Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New York Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New York
go back to reference Koch C, Rapp M, Segev I (1996) A brief history of time (constants). Cereb Cortex 6:93–101PubMed Koch C, Rapp M, Segev I (1996) A brief history of time (constants). Cereb Cortex 6:93–101PubMed
go back to reference Kolb H, Famiglietti EV (1974) Rod and cone pathways in the inner plexiform layer of cat retina. Science 186:47–49PubMed Kolb H, Famiglietti EV (1974) Rod and cone pathways in the inner plexiform layer of cat retina. Science 186:47–49PubMed
go back to reference Kole MHP, Stuart GJ (2012) Signal processing in the axon initial segment. Neuron 73:235–247PubMed Kole MHP, Stuart GJ (2012) Signal processing in the axon initial segment. Neuron 73:235–247PubMed
go back to reference Kothmann WW, Trexler EB, Whitaker CM, Li W, Massey SC, O’Brien J (2012) Nonsynaptic NMDA receptors mediate activity-dependent plasticity of gap junctional coupling in the AII amacrine cell network. J Neurosci 32:6747–6759PubMedPubMedCentral Kothmann WW, Trexler EB, Whitaker CM, Li W, Massey SC, O’Brien J (2012) Nonsynaptic NMDA receptors mediate activity-dependent plasticity of gap junctional coupling in the AII amacrine cell network. J Neurosci 32:6747–6759PubMedPubMedCentral
go back to reference Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366PubMed Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366PubMed
go back to reference Major G (2001) Passive cable modeling—a practical introduction. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 209–232 Major G (2001) Passive cable modeling—a practical introduction. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 209–232
go back to reference Major G, Larkman AU, Jonas P, Sakmann B, Jack JJB (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14:4613–4638PubMed Major G, Larkman AU, Jonas P, Sakmann B, Jack JJB (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14:4613–4638PubMed
go back to reference Manookin MB, Beaudoin DL, Ernst ZR, Flagel LJ, Demb JB (2008) Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J Neurosci 28:4136–4150PubMedPubMedCentral Manookin MB, Beaudoin DL, Ernst ZR, Flagel LJ, Demb JB (2008) Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J Neurosci 28:4136–4150PubMedPubMedCentral
go back to reference Mills SL, Massey SC (1995) Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377:734–737PubMed Mills SL, Massey SC (1995) Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377:734–737PubMed
go back to reference Mørkve SH, Veruki ML, Hartveit E (2002) Functional characteristics of non-NMDA- type ionotropic glutamate receptor channels in AII amacrine cells in rat retina. J Physiol 542:147–165PubMedPubMedCentral Mørkve SH, Veruki ML, Hartveit E (2002) Functional characteristics of non-NMDA- type ionotropic glutamate receptor channels in AII amacrine cells in rat retina. J Physiol 542:147–165PubMedPubMedCentral
go back to reference Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B (2009) Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci 12:1308–1316PubMed Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B (2009) Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci 12:1308–1316PubMed
go back to reference Murphy GJ, Rieke F (2008) Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells. Nat Neurosci 11:318–326PubMedPubMedCentral Murphy GJ, Rieke F (2008) Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells. Nat Neurosci 11:318–326PubMedPubMedCentral
go back to reference Nörenberg A, Hu H, Vida I, Bartos M, Jonas P (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proc Natl Acad Sci USA 107:894–899PubMed Nörenberg A, Hu H, Vida I, Bartos M, Jonas P (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proc Natl Acad Sci USA 107:894–899PubMed
go back to reference Oltedal L, Veruki ML, Hartveit E (2009) Passive membrane properties and electrotonic signal processing in retinal rod bipolar cells. J Physiol 587:829–849PubMed Oltedal L, Veruki ML, Hartveit E (2009) Passive membrane properties and electrotonic signal processing in retinal rod bipolar cells. J Physiol 587:829–849PubMed
go back to reference Perreault M-C, Raastad M (2006) Contribution of morphology and membrane resistance to integration of fast synaptic signals in two thalamic cell types. J Physiol 577:205–220PubMedPubMedCentral Perreault M-C, Raastad M (2006) Contribution of morphology and membrane resistance to integration of fast synaptic signals in two thalamic cell types. J Physiol 577:205–220PubMedPubMedCentral
go back to reference Peters F, Gennerich A, Czesnik D, Schild D (2000) Low frequency voltage clamp: recording of voltage transients at constant average command voltage. J Neurosci Meth 99:129–135 Peters F, Gennerich A, Czesnik D, Schild D (2000) Low frequency voltage clamp: recording of voltage transients at constant average command voltage. J Neurosci Meth 99:129–135
go back to reference Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13PubMedPubMedCentral Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13PubMedPubMedCentral
go back to reference Schaefer AT, Helmstaedter M, Sakmann B, Korngreen A (2003) Correction of conductance measurements in non-space-clamped structures: 1. Voltage-gated K+ channels. Biophys J 84:3508–3528PubMedPubMedCentral Schaefer AT, Helmstaedter M, Sakmann B, Korngreen A (2003) Correction of conductance measurements in non-space-clamped structures: 1. Voltage-gated K+ channels. Biophys J 84:3508–3528PubMedPubMedCentral
go back to reference Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430–8441PubMed Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430–8441PubMed
go back to reference Schubert T, Euler T (2010) Retinal processing: global players like it local. Curr Biol 20:R486-488 Schubert T, Euler T (2010) Retinal processing: global players like it local. Curr Biol 20:R486-488
go back to reference Spruston N, Jaffe DB, Johnston D (1994) Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends Neurosci 17:161–166PubMed Spruston N, Jaffe DB, Johnston D (1994) Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends Neurosci 17:161–166PubMed
go back to reference Spruston N, Stuart G, Häusser M (2016) Principles of dendritic integration. In: Stuart G, Spruston N, Häusser M (eds) Dendrites, 3rd edn. Oxford University Press, Oxford, pp 351–398 Spruston N, Stuart G, Häusser M (2016) Principles of dendritic integration. In: Stuart G, Spruston N, Häusser M (eds) Dendrites, 3rd edn. Oxford University Press, Oxford, pp 351–398
go back to reference Stincic T, Smith RG, Taylor WR (2016) Time course of EPSCs in ON-type starburst amacrine cells is independent of dendritic location. J Physiol 594:5685–5694PubMedPubMedCentral Stincic T, Smith RG, Taylor WR (2016) Time course of EPSCs in ON-type starburst amacrine cells is independent of dendritic location. J Physiol 594:5685–5694PubMedPubMedCentral
go back to reference Strettoi E, Masland RH (1996) The number of unidentified amacrine cells in the mammalian retina. Proc Natl Acad Sci USA 93:14906–14911PubMed Strettoi E, Masland RH (1996) The number of unidentified amacrine cells in the mammalian retina. Proc Natl Acad Sci USA 93:14906–14911PubMed
go back to reference Strettoi E, Raviola E, Dacheux RF (1992) Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol 325:152–168PubMed Strettoi E, Raviola E, Dacheux RF (1992) Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol 325:152–168PubMed
go back to reference Strettoi E, Dacheux RF, Raviola E (1994) Cone bipolar cells as interneurons in the rod pathway of the rabbit retina. J Comp Neurol 347:139–149PubMed Strettoi E, Dacheux RF, Raviola E (1994) Cone bipolar cells as interneurons in the rod pathway of the rabbit retina. J Comp Neurol 347:139–149PubMed
go back to reference Szoboszlay M, Lörincz A, Lanore F, Vervaeke K, Silver RA, Nusser Z (2016) Functional properties of dendritic gap junctions in cerebellar Golgi cells. Neuron 90:1043–1056PubMedPubMedCentral Szoboszlay M, Lörincz A, Lanore F, Vervaeke K, Silver RA, Nusser Z (2016) Functional properties of dendritic gap junctions in cerebellar Golgi cells. Neuron 90:1043–1056PubMedPubMedCentral
go back to reference Thompson SM, Masukawa LM, Prince DA (1985) Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J Neurosci 5:817–824PubMed Thompson SM, Masukawa LM, Prince DA (1985) Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J Neurosci 5:817–824PubMed
go back to reference Tian M, Jarsky T, Murphy GJ, Rieke F, Singer JH (2010) Voltage-gated Na channels in AII amacrine cells accelerate scotopic light responses mediated by the rod bipolar cell pathway. J Neurosci 30:4650–4659PubMedPubMedCentral Tian M, Jarsky T, Murphy GJ, Rieke F, Singer JH (2010) Voltage-gated Na channels in AII amacrine cells accelerate scotopic light responses mediated by the rod bipolar cell pathway. J Neurosci 30:4650–4659PubMedPubMedCentral
go back to reference Trevelyan AJ, Jack J (2002) Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. J Physiol 539:623–636PubMedPubMedCentral Trevelyan AJ, Jack J (2002) Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. J Physiol 539:623–636PubMedPubMedCentral
go back to reference Trexler EB, Li W, Mills SL, Massey SC (2001) Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional. J Comp Neurol 437:408–422PubMed Trexler EB, Li W, Mills SL, Massey SC (2001) Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional. J Comp Neurol 437:408–422PubMed
go back to reference Vaney DI (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci Lett 125:187–190PubMed Vaney DI (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci Lett 125:187–190PubMed
go back to reference Vardi N, Smith RG (1996) The AII amacrine network: coupling can increase correlated activity. Vis Res 36:3743–3757PubMed Vardi N, Smith RG (1996) The AII amacrine network: coupling can increase correlated activity. Vis Res 36:3743–3757PubMed
go back to reference Veruki ML, Hartveit E (2002a) AII (rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron 33:935–946PubMed Veruki ML, Hartveit E (2002a) AII (rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron 33:935–946PubMed
go back to reference Veruki ML, Hartveit E (2002b) Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. J Neurosci 22:10558–10566PubMed Veruki ML, Hartveit E (2002b) Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. J Neurosci 22:10558–10566PubMed
go back to reference Veruki ML, Hartveit E (2009) Meclofenamic acid blocks electrical synapses of retinal AII amacrine and ON-cone bipolar cells. J Neurophysiol 101:2339–2347PubMed Veruki ML, Hartveit E (2009) Meclofenamic acid blocks electrical synapses of retinal AII amacrine and ON-cone bipolar cells. J Neurophysiol 101:2339–2347PubMed
go back to reference Veruki ML, Mørkve SH, Hartveit E (2003) Functional properties of spontaneous EPSCs and non-NMDA receptors in rod amacrine (AII) cells in the rat retina. J Physiol 549:759–774PubMedPubMedCentral Veruki ML, Mørkve SH, Hartveit E (2003) Functional properties of spontaneous EPSCs and non-NMDA receptors in rod amacrine (AII) cells in the rat retina. J Physiol 549:759–774PubMedPubMedCentral
go back to reference Veruki ML, Oltedal L, Hartveit E (2010) Electrical coupling and passive membrane properties of AII amacrine cells. J Neurophysiol 103:1456–1466PubMed Veruki ML, Oltedal L, Hartveit E (2010) Electrical coupling and passive membrane properties of AII amacrine cells. J Neurophysiol 103:1456–1466PubMed
go back to reference Vervaeke K, Lörincz A, Nusser Z, Silver RA (2012) Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science 335:1624–1628PubMedPubMedCentral Vervaeke K, Lörincz A, Nusser Z, Silver RA (2012) Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science 335:1624–1628PubMedPubMedCentral
go back to reference Vlasits AL, Morrie RD, Tran-Van-Minh A, Bleckert A, Gainer CF, DiGregorio DA, Feller MB (2016) A role for synaptic input distribution in a dendritic computation of motion direction in the retina. Neuron 89:1317–1330PubMedPubMedCentral Vlasits AL, Morrie RD, Tran-Van-Minh A, Bleckert A, Gainer CF, DiGregorio DA, Feller MB (2016) A role for synaptic input distribution in a dendritic computation of motion direction in the retina. Neuron 89:1317–1330PubMedPubMedCentral
go back to reference Wu C, Ivanova E, Cui J, Lu Q, Pan Z-H (2011) Action potential generation at an axon initial segment-like process in the axonless retinal AII amacrine cell. J Neurosci 31:14654–14659PubMedPubMedCentral Wu C, Ivanova E, Cui J, Lu Q, Pan Z-H (2011) Action potential generation at an axon initial segment-like process in the axonless retinal AII amacrine cell. J Neurosci 31:14654–14659PubMedPubMedCentral
go back to reference Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, Sabatini BL, Svoboda K (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004:p15 Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, Sabatini BL, Svoboda K (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004:p15
go back to reference Zandt B-J, Liu JH, Veruki ML, Hartveit E (2017) AII amacrine cells: quantitative reconstruction and morphometric analysis of electrophysiologically identified cells in live rat retinal slices imaged with multi-photon excitation microscopy. Brain Struct Funct 222:151–182PubMed Zandt B-J, Liu JH, Veruki ML, Hartveit E (2017) AII amacrine cells: quantitative reconstruction and morphometric analysis of electrophysiologically identified cells in live rat retinal slices imaged with multi-photon excitation microscopy. Brain Struct Funct 222:151–182PubMed
Metadata
Title
Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron
Authors
Bas-Jan Zandt
Margaret Lin Veruki
Espen Hartveit
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 7/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1696-z

Other articles of this Issue 7/2018

Brain Structure and Function 7/2018 Go to the issue