Skip to main content
Top
Published in: Current Sleep Medicine Reports 2/2024

Open Access 18-03-2024 | REVIEW

Electrophysiological Mechanisms of Memory Consolidation in Human Non-rapid Eye Movement Sleep

Authors: Dan Denis, Scott A. Cairney

Published in: Current Sleep Medicine Reports | Issue 2/2024

Login to get access

Abstract

Purpose of Review

Pioneering work in rodents has shown that the reactivation of recently acquired memories during sleep is a key mechanism underlying the beneficial effect of sleep on memory consolidation. In this review, we consider recent evidence of memory reactivation processes in human sleep.

Recent Findings

The precise temporal coupling of sleep spindles to slow oscillations during non-rapid eye movement sleep plays a central role in sleep-associated memory consolidation. Both correlational studies and studies directly manipulating oscillatory activity in the sleeping brain have confirmed that spindles coupled to slow oscillations are better predictors of memory than uncoupled spindles and that the greatest memory benefit comes when spindles are tightly coupled to the up-state of the slow oscillation. Recent evidence suggests that memory content is reactivated during sleep, with a functional benefit for memory performance after sleep. Reactivation events are time-locked around slow oscillation-spindle coupling events, as well as sharp-wave ripples in hippocampus.

Summary

Memory reactivation, which is facilitated by slow oscillation-spindle coupling events, can be observed during human sleep and shows promise as a prime mechanism underlying sleep’s beneficial effects on memory.
Literature
1.
go back to reference Findlay G, Tononi G, Cirelli C. The evolving view of replay and its functions in wake and sleep. SLEEP Adv. 2020;1:zpab002.PubMedCrossRef Findlay G, Tononi G, Cirelli C. The evolving view of replay and its functions in wake and sleep. SLEEP Adv. 2020;1:zpab002.PubMedCrossRef
2.
3.
go back to reference Robertson EM, Genzel L. Memories replayed: reactivating past successes and new dilemmas. Philos Trans R Soc B Biol Sci. 2020;375:20190226.CrossRef Robertson EM, Genzel L. Memories replayed: reactivating past successes and new dilemmas. Philos Trans R Soc B Biol Sci. 2020;375:20190226.CrossRef
4.
go back to reference Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265:676–9.PubMedCrossRef Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265:676–9.PubMedCrossRef
5.
go back to reference Girardeau G, Zugaro M. Hippocampal ripples and memory consolidation. Curr Opin Neurobiol. 2011;21:452–9.PubMedCrossRef Girardeau G, Zugaro M. Hippocampal ripples and memory consolidation. Curr Opin Neurobiol. 2011;21:452–9.PubMedCrossRef
6.
go back to reference Ramanathan DS, Gulati T, Ganguly K. Sleep-dependent reactivation of ensembles in motor cortex promotes skill consolidation. PLOS Biol. 2015;13:e1002263.PubMedPubMedCentralCrossRef Ramanathan DS, Gulati T, Ganguly K. Sleep-dependent reactivation of ensembles in motor cortex promotes skill consolidation. PLOS Biol. 2015;13:e1002263.PubMedPubMedCentralCrossRef
7.
go back to reference Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci. 2007;10:100–7.PubMedCrossRef Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci. 2007;10:100–7.PubMedCrossRef
8.
go back to reference Wierzynski CM, Lubenov EV, Gu M, Siapas AG. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron. 2009;61:587–96.PubMedPubMedCentralCrossRef Wierzynski CM, Lubenov EV, Gu M, Siapas AG. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron. 2009;61:587–96.PubMedPubMedCentralCrossRef
10.
go back to reference Lewis PA, Durrant SJ. Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn Sci. 2011;15:343–51.PubMedCrossRef Lewis PA, Durrant SJ. Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn Sci. 2011;15:343–51.PubMedCrossRef
11.
go back to reference Kim J, Gulati T, Ganguly K. Competing roles of slow oscillations and delta waves in memory consolidation versus forgetting. Cell. 2019;179:514-526.e13.PubMedPubMedCentralCrossRef Kim J, Gulati T, Ganguly K. Competing roles of slow oscillations and delta waves in memory consolidation versus forgetting. Cell. 2019;179:514-526.e13.PubMedPubMedCentralCrossRef
12.
go back to reference Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci. 2009;12:1222–3.PubMedCrossRef Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci. 2009;12:1222–3.PubMedCrossRef
13.
go back to reference Gridchyn I, Schoenenberger P, O’Neill J, Csicsvari J. Assembly-specific disruption of hippocampal replay leads to selective memory deficit. Neuron. 2020;106:291-300.e6.PubMedCrossRef Gridchyn I, Schoenenberger P, O’Neill J, Csicsvari J. Assembly-specific disruption of hippocampal replay leads to selective memory deficit. Neuron. 2020;106:291-300.e6.PubMedCrossRef
14.
go back to reference Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci. 2019;22:1598–610.PubMedCrossRef Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci. 2019;22:1598–610.PubMedCrossRef
16.
18.
go back to reference Cairney SA, Guttesen AÁV, El Marj N, Staresina BP. Memory consolidation is linked to spindle-mediated information processing during sleep. Curr Biol. 2018;28:948–54.PubMedPubMedCentralCrossRef Cairney SA, Guttesen AÁV, El Marj N, Staresina BP. Memory consolidation is linked to spindle-mediated information processing during sleep. Curr Biol. 2018;28:948–54.PubMedPubMedCentralCrossRef
19.
go back to reference Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–94.PubMedCrossRef Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–94.PubMedCrossRef
20.
21.
go back to reference Peyrache A, Seibt J. A mechanism for learning with sleep spindles. Philos Trans R Soc B Biol Sci. 2020;375:20190230.CrossRef Peyrache A, Seibt J. A mechanism for learning with sleep spindles. Philos Trans R Soc B Biol Sci. 2020;375:20190230.CrossRef
22.
go back to reference Seibt J, Richard CJ, Sigl-Glöckner J, Takahashi N, Kaplan DI, Doron G, et al. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nat Commun. 2017;8:684.PubMedPubMedCentralCrossRef Seibt J, Richard CJ, Sigl-Glöckner J, Takahashi N, Kaplan DI, Doron G, et al. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nat Commun. 2017;8:684.PubMedPubMedCentralCrossRef
23.
go back to reference Rosanova M, Ulrich D. Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci. 2005;25:9398–405.PubMedPubMedCentralCrossRef Rosanova M, Ulrich D. Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci. 2005;25:9398–405.PubMedPubMedCentralCrossRef
24.
go back to reference Timofeev I. Chapter 9. Neuronal plasticity and thalamocortical sleep and waking oscillations. In: Van Someren EJW, Van Der Werf YD, Roelfsema PR, Mansvelder HD, Lopes Da Silva FH, editors. Slow brain oscillations of sleep, resting state and vigilance, Elsevier; 2011. p. 121–44. Timofeev I. Chapter 9.  Neuronal plasticity and thalamocortical sleep and waking oscillations. In: Van Someren EJW, Van Der Werf YD, Roelfsema PR, Mansvelder HD, Lopes Da Silva FH, editors. Slow brain oscillations of sleep, resting state and vigilance, Elsevier; 2011. p. 121–44.
25.
go back to reference Steriade M. The corticothalamic system in sleep. Front Biosci J Virtual Libr. 2003;8:d878-899.CrossRef Steriade M. The corticothalamic system in sleep. Front Biosci J Virtual Libr. 2003;8:d878-899.CrossRef
26.
go back to reference Steriade M, Nunez A, Amzica F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13:3252–65.PubMedPubMedCentralCrossRef Steriade M, Nunez A, Amzica F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13:3252–65.PubMedPubMedCentralCrossRef
27.•
go back to reference Niknazar H, Malerba P, Mednick SC. Slow oscillations promote long-range effective communication: the key for memory consolidation in a broken-down network. Proc Natl Acad Sci. 2022;119:e2122515119. Found heightened global communication across the brain during slow oscillation upstates, creating the conditions for memory reactivation to occur.PubMedPubMedCentralCrossRef Niknazar H, Malerba P, Mednick SC. Slow oscillations promote long-range effective communication: the key for memory consolidation in a broken-down network. Proc Natl Acad Sci. 2022;119:e2122515119. Found heightened global communication across the brain during slow oscillation upstates, creating the conditions for memory reactivation to occur.PubMedPubMedCentralCrossRef
28.
go back to reference Latchoumane C-FV, Ngo H-VV, Born J, Shin H-S. Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron. 2017;95:424–35.PubMedCrossRef Latchoumane C-FV, Ngo H-VV, Born J, Shin H-S. Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron. 2017;95:424–35.PubMedCrossRef
29.
go back to reference Maingret N, Girardeau G, Todorova R, Goutierre M, Zugaro M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci. 2016;19:959–64.PubMedCrossRef Maingret N, Girardeau G, Todorova R, Goutierre M, Zugaro M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci. 2016;19:959–64.PubMedCrossRef
30.
go back to reference Oyanedel CN, Durán E, Niethard N, Inostroza M, Born J. Temporal associations between sleep slow oscillations, spindles and ripples. Eur J Neurosci. 2020;52:4762–78.PubMedCrossRef Oyanedel CN, Durán E, Niethard N, Inostroza M, Born J. Temporal associations between sleep slow oscillations, spindles and ripples. Eur J Neurosci. 2020;52:4762–78.PubMedCrossRef
31.
go back to reference Hokett E, Arunmozhi A, Campbell J, Verhaeghen P, Duarte A. A systematic review and meta-analysis of individual differences in naturalistic sleep quality and episodic memory performance in young and older adults. Neurosci Biobehav Rev. 2021;127:675–88.PubMedPubMedCentralCrossRef Hokett E, Arunmozhi A, Campbell J, Verhaeghen P, Duarte A. A systematic review and meta-analysis of individual differences in naturalistic sleep quality and episodic memory performance in young and older adults. Neurosci Biobehav Rev. 2021;127:675–88.PubMedPubMedCentralCrossRef
32.
go back to reference Berres S, Erdfelder E. The sleep benefit in episodic memory: an integrative review and a meta-analysis. Psychol Bull. 2021;147:1309–53.PubMedCrossRef Berres S, Erdfelder E. The sleep benefit in episodic memory: an integrative review and a meta-analysis. Psychol Bull. 2021;147:1309–53.PubMedCrossRef
33.
go back to reference Schmid D, Erlacher D, Klostermann A, Kredel R, Hossner E-J. Sleep-dependent motor memory consolidation in healthy adults: a meta-analysis. Neurosci Biobehav Rev. 2020;118:270–81.PubMedCrossRef Schmid D, Erlacher D, Klostermann A, Kredel R, Hossner E-J. Sleep-dependent motor memory consolidation in healthy adults: a meta-analysis. Neurosci Biobehav Rev. 2020;118:270–81.PubMedCrossRef
34.
35.
go back to reference Cairney SA, Lindsay S, Paller KA, Gaskell MG. Sleep preserves original and distorted memory traces. Cortex. 2018;99:39–44.PubMedCrossRef Cairney SA, Lindsay S, Paller KA, Gaskell MG. Sleep preserves original and distorted memory traces. Cortex. 2018;99:39–44.PubMedCrossRef
36.
go back to reference Staresina BP, Bergmann TO, Bonnefond M, van der Meij R, Jensen O, Deuker L, et al. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci. 2015;18:1679–86.PubMedPubMedCentralCrossRef Staresina BP, Bergmann TO, Bonnefond M, van der Meij R, Jensen O, Deuker L, et al. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci. 2015;18:1679–86.PubMedPubMedCentralCrossRef
38.
go back to reference Helfrich RF, Lendner JD, Mander BA, Guillen H, Paff M, Mnatsakanyan L, et al. Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nat Commun. 2019;10:3572.PubMedPubMedCentralCrossRef Helfrich RF, Lendner JD, Mander BA, Guillen H, Paff M, Mnatsakanyan L, et al. Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nat Commun. 2019;10:3572.PubMedPubMedCentralCrossRef
39.
go back to reference Mölle M, Bergmann TO, Marshall L, Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep. 2011;34:1411–21.PubMedPubMedCentralCrossRef Mölle M, Bergmann TO, Marshall L, Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep. 2011;34:1411–21.PubMedPubMedCentralCrossRef
40.
go back to reference Mölle M, Marshall L, Gais S, Born J. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci. 2002;22:10941–7.PubMedPubMedCentralCrossRef Mölle M, Marshall L, Gais S, Born J. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci. 2002;22:10941–7.PubMedPubMedCentralCrossRef
41.
go back to reference Cox R, Mylonas DS, Manoach DS, Stickgold R. Large-scale structure and individual fingerprints of locally coupled sleep oscillations. Sleep. 2018;41:zsy175.PubMedPubMedCentralCrossRef Cox R, Mylonas DS, Manoach DS, Stickgold R. Large-scale structure and individual fingerprints of locally coupled sleep oscillations. Sleep. 2018;41:zsy175.PubMedPubMedCentralCrossRef
42.
go back to reference Cox R, van Driel J, de Boer M, Talamini LM. Slow oscillations during sleep coordinate interregional communication in cortical networks. J Neurosci. 2014;34:16890–901.PubMedPubMedCentralCrossRef Cox R, van Driel J, de Boer M, Talamini LM. Slow oscillations during sleep coordinate interregional communication in cortical networks. J Neurosci. 2014;34:16890–901.PubMedPubMedCentralCrossRef
43.
go back to reference Klinzing JG, Mölle M, Weber F, Supp G, Hipp JF, Engel AK, et al. Spindle activity phase-locked to sleep slow oscillations. Neuroimage. 2016;134:607–16.PubMedCrossRef Klinzing JG, Mölle M, Weber F, Supp G, Hipp JF, Engel AK, et al. Spindle activity phase-locked to sleep slow oscillations. Neuroimage. 2016;134:607–16.PubMedCrossRef
44.
go back to reference Yordanova J, Kirov R, Verleger R, Kolev V. Dynamic coupling between slow waves and sleep spindles during slow wave sleep in humans is modulated by functional pre-sleep activation. Sci Rep. 2017;7:14496.PubMedPubMedCentralCrossRef Yordanova J, Kirov R, Verleger R, Kolev V. Dynamic coupling between slow waves and sleep spindles during slow wave sleep in humans is modulated by functional pre-sleep activation. Sci Rep. 2017;7:14496.PubMedPubMedCentralCrossRef
45.
go back to reference Whelan CD, Altmann A, Botía JA, Jahanshad N, Hibar DP, Absil J, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141:391–408.PubMedPubMedCentralCrossRef Whelan CD, Altmann A, Botía JA, Jahanshad N, Hibar DP, Absil J, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141:391–408.PubMedPubMedCentralCrossRef
46.
go back to reference Schabus M, Gruber G, Parapatics S, Sauter C, Kloesch G, Anderer P, et al. Sleep spindles and their significance for declarative memory consolidation. Sleep. 2004;27:1479–85.PubMedCrossRef Schabus M, Gruber G, Parapatics S, Sauter C, Kloesch G, Anderer P, et al. Sleep spindles and their significance for declarative memory consolidation. Sleep. 2004;27:1479–85.PubMedCrossRef
47.
go back to reference Lustenberger C, Wehrle F, Tüshaus L, Achermann P, Huber R. The multidimensional aspects of sleep spindles and their relationship to word-pair memory consolidation. Sleep. 2015;38:1093–103.PubMedPubMedCentralCrossRef Lustenberger C, Wehrle F, Tüshaus L, Achermann P, Huber R. The multidimensional aspects of sleep spindles and their relationship to word-pair memory consolidation. Sleep. 2015;38:1093–103.PubMedPubMedCentralCrossRef
49.
go back to reference Schmidt C, Peigneux P, Muto V, Schenkel M, Knoblauch V, Münch M, et al. Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J Neurosci. 2006;26:8976–82.PubMedPubMedCentralCrossRef Schmidt C, Peigneux P, Muto V, Schenkel M, Knoblauch V, Münch M, et al. Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J Neurosci. 2006;26:8976–82.PubMedPubMedCentralCrossRef
50.
go back to reference Tamminen J, Payne JD, Stickgold R, Wamsley EJ, Gaskell MG. Sleep spindle activity is associated with the integration of new memories and existing knowledge. J Neurosci. 2010;30:14356–60.PubMedPubMedCentralCrossRef Tamminen J, Payne JD, Stickgold R, Wamsley EJ, Gaskell MG. Sleep spindle activity is associated with the integration of new memories and existing knowledge. J Neurosci. 2010;30:14356–60.PubMedPubMedCentralCrossRef
51.
go back to reference Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: a meta-analysis. Neuropsychologia. 2023;189:108661.PubMedCrossRef Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: a meta-analysis. Neuropsychologia. 2023;189:108661.PubMedCrossRef
52.•
go back to reference Cowan E, Liu A, Henin S, Kothare S, Devinsky O, Davachi L. Sleep spindles promote the restructuring of memory representations in ventromedial prefrontal cortex through enhanced hippocampal–cortical functional connectivity. J Neurosci. 2020;40:1909–19. Showed that sleep spindles facilitate changes in the underlying neural memory traces.PubMedPubMedCentralCrossRef Cowan E, Liu A, Henin S, Kothare S, Devinsky O, Davachi L. Sleep spindles promote the restructuring of memory representations in ventromedial prefrontal cortex through enhanced hippocampal–cortical functional connectivity. J Neurosci. 2020;40:1909–19. Showed that sleep spindles facilitate changes in the underlying neural memory traces.PubMedPubMedCentralCrossRef
53.
go back to reference Mantua J. Sleep physiology correlations and human memory consolidation: where do we go from here? Sleep. 2018;41:zsx04.CrossRef Mantua J. Sleep physiology correlations and human memory consolidation: where do we go from here? Sleep. 2018;41:zsx04.CrossRef
54.
go back to reference Cox R, Fell J. Analyzing human sleep EEG: a methodological primer with code implementation. Sleep Med Rev. 2020;54:101353.PubMedCrossRef Cox R, Fell J. Analyzing human sleep EEG: a methodological primer with code implementation. Sleep Med Rev. 2020;54:101353.PubMedCrossRef
55.
go back to reference Ackermann S, Hartmann F, Papassotiropoulos A, de Quervain DJ-F, Rasch B. No associations between interindividual differences in sleep parameters and episodic memory consolidation. Sleep. 2015;38:951–9.PubMedPubMedCentral Ackermann S, Hartmann F, Papassotiropoulos A, de Quervain DJ-F, Rasch B. No associations between interindividual differences in sleep parameters and episodic memory consolidation. Sleep. 2015;38:951–9.PubMedPubMedCentral
56.•
go back to reference Denis D, Mylonas D, Poskanzer C, Bursal V, Payne JD, Stickgold R. Sleep spindles preferentially consolidate weakly encoded memories. J Neurosci. 2021;41:4088–99. Showed that SO coupled spindles are a better predictor of declarative memory consolidation than uncoupled sleep spindles.PubMedPubMedCentralCrossRef Denis D, Mylonas D, Poskanzer C, Bursal V, Payne JD, Stickgold R. Sleep spindles preferentially consolidate weakly encoded memories. J Neurosci. 2021;41:4088–99. Showed that SO coupled spindles are a better predictor of declarative memory consolidation than uncoupled sleep spindles.PubMedPubMedCentralCrossRef
57.
go back to reference Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Motor learning promotes the coupling between fast spindles and slow oscillations locally over the contralateral motor network. Cereb Cortex. 2022;32:2493–507.PubMedCrossRef Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Motor learning promotes the coupling between fast spindles and slow oscillations locally over the contralateral motor network. Cereb Cortex. 2022;32:2493–507.PubMedCrossRef
58.•
go back to reference Mylonas D, Baran B, Demanuele C, Cox R, Vuper TC, Seicol BJ, et al. The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized clinical trial. Neuropsychopharmacology. 2020;45:2189–97. Demonstrated that pharmacologically enhancing sleep spindles has no effect on memory if SO-spindle coupling is disrupted.PubMedPubMedCentralCrossRef Mylonas D, Baran B, Demanuele C, Cox R, Vuper TC, Seicol BJ, et al. The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized clinical trial. Neuropsychopharmacology. 2020;45:2189–97. Demonstrated that pharmacologically enhancing sleep spindles has no effect on memory if SO-spindle coupling is disrupted.PubMedPubMedCentralCrossRef
59.
go back to reference Denis D, Kim SY, Kark SM, Daley RT, Kensinger EA, Payne JD. Slow oscillation-spindle coupling is negatively associated with emotional memory formation following stress. Eur J Neurosci. 2022;55:2632–50.PubMedCrossRef Denis D, Kim SY, Kark SM, Daley RT, Kensinger EA, Payne JD. Slow oscillation-spindle coupling is negatively associated with emotional memory formation following stress. Eur J Neurosci. 2022;55:2632–50.PubMedCrossRef
60.
go back to reference Cross ZR, Helfrich RF, Corcoran AW, Kohler MJ, Coussens S, Zou-Williams L, et al. Spindle-slow oscillation coupling during sleep predicts sequence-based language learning. bioRxiv; 2021. Cross ZR, Helfrich RF, Corcoran AW, Kohler MJ, Coussens S, Zou-Williams L, et al. Spindle-slow oscillation coupling during sleep predicts sequence-based language learning. bioRxiv; 2021.
61.
go back to reference Hahn MA, Bothe K, Heib D, Schabus M, Helfrich RF, Hoedlmoser K. Slow oscillation-spindle coupling strength predicts real-life gross-motor learning in adolescents and adults. eLife. 2022;11:e66761 Hahn MA, Bothe K, Heib D, Schabus M, Helfrich RF, Hoedlmoser K. Slow oscillation-spindle coupling strength predicts real-life gross-motor learning in adolescents and adults. eLife. 2022;11:e66761
62.
go back to reference Halonen R, Kuula L, Antila M, Pesonen A-K. The Overnight retention of novel metaphors associates with slow oscillation–spindle coupling but not with respiratory phase at encoding. Front Behav Neurosci. 2021;15:712774.PubMedPubMedCentralCrossRef Halonen R, Kuula L, Antila M, Pesonen A-K. The Overnight retention of novel metaphors associates with slow oscillation–spindle coupling but not with respiratory phase at encoding. Front Behav Neurosci. 2021;15:712774.PubMedPubMedCentralCrossRef
63.
go back to reference Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP. Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron. 2018;97:221–30.PubMedCrossRef Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP. Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron. 2018;97:221–30.PubMedCrossRef
64.
go back to reference Mikutta C, Feige B, Maier JG, Hertenstein E, Holz J, Riemann D, et al. Phase-amplitude coupling of sleep slow oscillatory and spindle activity correlates with overnight memory consolidation. J Sleep Res. 2019;28:e12835.PubMedCrossRef Mikutta C, Feige B, Maier JG, Hertenstein E, Holz J, Riemann D, et al. Phase-amplitude coupling of sleep slow oscillatory and spindle activity correlates with overnight memory consolidation. J Sleep Res. 2019;28:e12835.PubMedCrossRef
65.
go back to reference Muehlroth BE, Sander MC, Fandakova Y, Grandy TH, Rasch B, Shing YL, et al. Precise slow oscillation-spindle coupling promotes memory consolidation in younger and older adults. Sci Rep. 2019;9:1940.PubMedPubMedCentralCrossRef Muehlroth BE, Sander MC, Fandakova Y, Grandy TH, Rasch B, Shing YL, et al. Precise slow oscillation-spindle coupling promotes memory consolidation in younger and older adults. Sci Rep. 2019;9:1940.PubMedPubMedCentralCrossRef
66.
go back to reference Niknazar M, Krishnan GP, Bazhenov M, Mednick SC. Coupling of thalamocortical sleep oscillations are important for memory consolidation in humans. PLoS ONE. 2015;10:e0144720.PubMedPubMedCentralCrossRef Niknazar M, Krishnan GP, Bazhenov M, Mednick SC. Coupling of thalamocortical sleep oscillations are important for memory consolidation in humans. PLoS ONE. 2015;10:e0144720.PubMedPubMedCentralCrossRef
67.
68.
go back to reference Bastian L, Samanta A, Ribeiro de Paula D, Weber FD, Schoenfeld R, Dresler M, et al. Spindle–slow oscillation coupling correlates with memory performance and connectivity changes in a hippocampal network after sleep. Hum Brain Mapp. 2022;43:3923–43.PubMedPubMedCentralCrossRef Bastian L, Samanta A, Ribeiro de Paula D, Weber FD, Schoenfeld R, Dresler M, et al. Spindle–slow oscillation coupling correlates with memory performance and connectivity changes in a hippocampal network after sleep. Hum Brain Mapp. 2022;43:3923–43.PubMedPubMedCentralCrossRef
69.
go back to reference Mednick SC, McDevitt EA, Walsh JK, Wamsley E, Paulus M, Kanady JC, et al. The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study. J Neurosci. 2013;33:4494–504.PubMedPubMedCentralCrossRef Mednick SC, McDevitt EA, Walsh JK, Wamsley E, Paulus M, Kanady JC, et al. The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study. J Neurosci. 2013;33:4494–504.PubMedPubMedCentralCrossRef
70.
go back to reference Wamsley EJ, Shinn AK, Tucker MA, Ono KE, McKinley SK, Ely AV, et al. The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized placebo-controlled trial. Sleep. 2013;36:1369–76.PubMedPubMedCentralCrossRef Wamsley EJ, Shinn AK, Tucker MA, Ono KE, McKinley SK, Ely AV, et al. The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized placebo-controlled trial. Sleep. 2013;36:1369–76.PubMedPubMedCentralCrossRef
71.
go back to reference Trachsel L, Dijk DJ, Brunner DP, Klene C, Borbély AA. Effect of zopiclone and midazolam on sleep and EEG spectra in a phase-advanced sleep schedule. Neuropsychopharmacology. 1990;3:11–8.PubMed Trachsel L, Dijk DJ, Brunner DP, Klene C, Borbély AA. Effect of zopiclone and midazolam on sleep and EEG spectra in a phase-advanced sleep schedule. Neuropsychopharmacology. 1990;3:11–8.PubMed
72.
go back to reference Lundahl J, Deacon S, Maurice D, Staner L. EEG spectral power density profiles during NREM sleep for gaboxadol and zolpidem in patients with primary insomnia. J Psychopharmacol (Oxf). 2012;26:1081–7.CrossRef Lundahl J, Deacon S, Maurice D, Staner L. EEG spectral power density profiles during NREM sleep for gaboxadol and zolpidem in patients with primary insomnia. J Psychopharmacol (Oxf). 2012;26:1081–7.CrossRef
73.
go back to reference Guo F, Yi L, Zhang W, Bian Z-J, Zhang Y-B. Association between Z drugs use and risk of cognitive impairment in middle-aged and older patients with chronic insomnia. Front Hum Neurosci. 2021;15:775144.PubMedPubMedCentralCrossRef Guo F, Yi L, Zhang W, Bian Z-J, Zhang Y-B. Association between Z drugs use and risk of cognitive impairment in middle-aged and older patients with chronic insomnia. Front Hum Neurosci. 2021;15:775144.PubMedPubMedCentralCrossRef
74.
go back to reference Leng Y, Stone KL, Yaffe K. Race differences in the association between sleep medication use and risk of dementia. J Alzheimers Dis JAD. 2023;91:1133–9.PubMedCrossRef Leng Y, Stone KL, Yaffe K. Race differences in the association between sleep medication use and risk of dementia. J Alzheimers Dis JAD. 2023;91:1133–9.PubMedCrossRef
75.
go back to reference Osler M, Jørgensen MB. Associations of benzodiazepines, Z-drugs, and other anxiolytics with subsequent dementia in patients with affective disorders: a nationwide cohort and nested case-control study. Am J Psychiatry. 2020;177:497–505.PubMedCrossRef Osler M, Jørgensen MB. Associations of benzodiazepines, Z-drugs, and other anxiolytics with subsequent dementia in patients with affective disorders: a nationwide cohort and nested case-control study. Am J Psychiatry. 2020;177:497–505.PubMedCrossRef
76.
go back to reference Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3.PubMedCrossRef Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3.PubMedCrossRef
77.
go back to reference Paßmann S, Külzow N, Ladenbauer J, Antonenko D, Grittner U, Tamm S, et al. Boosting slow oscillatory activity using tDCS during early nocturnal slow wave sleep does not improve memory consolidation in healthy older adults. Brain Stimulat. 2016;9:730–9.CrossRef Paßmann S, Külzow N, Ladenbauer J, Antonenko D, Grittner U, Tamm S, et al. Boosting slow oscillatory activity using tDCS during early nocturnal slow wave sleep does not improve memory consolidation in healthy older adults. Brain Stimulat. 2016;9:730–9.CrossRef
78.
go back to reference Ladenbauer J, Ladenbauer J, Külzow N, de Boor R, Avramova E, Grittner U, et al. Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. J Neurosci. 2017;37:7111–24.PubMedPubMedCentralCrossRef Ladenbauer J, Ladenbauer J, Külzow N, de Boor R, Avramova E, Grittner U, et al. Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. J Neurosci. 2017;37:7111–24.PubMedPubMedCentralCrossRef
79.
go back to reference Barham MP, Enticott PG, Conduit R, Lum JAG. Transcranial electrical stimulation during sleep enhances declarative (but not procedural) memory consolidation: Evidence from a meta-analysis. Neurosci Biobehav Rev. 2016;63:65–77.PubMedCrossRef Barham MP, Enticott PG, Conduit R, Lum JAG. Transcranial electrical stimulation during sleep enhances declarative (but not procedural) memory consolidation: Evidence from a meta-analysis. Neurosci Biobehav Rev. 2016;63:65–77.PubMedCrossRef
80.
go back to reference Ngo H-VV, Martinetz T, Born J, Mölle M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron. 2013;78:545–53.PubMedCrossRef Ngo H-VV, Martinetz T, Born J, Mölle M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron. 2013;78:545–53.PubMedCrossRef
81.
go back to reference Stanyer EC, Baniqued PDE, Awais M, Kouara L, Davies AG, Killan EC, et al. The impact of acoustic stimulation during sleep on memory and sleep architecture: a meta-analysis. J Sleep Res. 2022;31:e13385.PubMedCrossRef Stanyer EC, Baniqued PDE, Awais M, Kouara L, Davies AG, Killan EC, et al. The impact of acoustic stimulation during sleep on memory and sleep architecture: a meta-analysis. J Sleep Res. 2022;31:e13385.PubMedCrossRef
82.
go back to reference Wunderlin M, Züst MA, Hertenstein E, Fehér KD, Schneider CL, Klöppel S, et al. Modulating overnight memory consolidation by acoustic stimulation during slow-wave sleep: a systematic review and meta-analysis. Sleep. 2021;44:zsaa296.PubMedCrossRef Wunderlin M, Züst MA, Hertenstein E, Fehér KD, Schneider CL, Klöppel S, et al. Modulating overnight memory consolidation by acoustic stimulation during slow-wave sleep: a systematic review and meta-analysis. Sleep. 2021;44:zsaa296.PubMedCrossRef
83.
go back to reference Harrington MO, Ngo H-VV, Cairney SA. No benefit of auditory closed-loop stimulation on memory for semantically-incongruent associations. Neurobiol Learn Mem. 2021;183:107482.PubMedCrossRef Harrington MO, Ngo H-VV, Cairney SA. No benefit of auditory closed-loop stimulation on memory for semantically-incongruent associations. Neurobiol Learn Mem. 2021;183:107482.PubMedCrossRef
84.
go back to reference Harlow TJ, Jané MB, Read HL, Chrobak JJ. Memory retention following acoustic stimulation in slow-wave sleep: A meta analytic review of replicability and measurement quality. Front in Sleep. 2023;2:1082253.CrossRef Harlow TJ, Jané MB, Read HL, Chrobak JJ. Memory retention following acoustic stimulation in slow-wave sleep: A meta analytic review of replicability and measurement quality. Front in Sleep. 2023;2:1082253.CrossRef
85.
go back to reference Ladenbauer J, Khakimova L, Malinowski R, Obst D, Tönnies E, Antonenko D, Obermayer K, Hanna J, Flöel A. Towards optimization of oscillatory stimulation during sleep. Neuromodulation. 2023;26:1592–601.PubMedCrossRef Ladenbauer J, Khakimova L, Malinowski R, Obst D, Tönnies E, Antonenko D, Obermayer K, Hanna J, Flöel A. Towards optimization of oscillatory stimulation during sleep. Neuromodulation. 2023;26:1592–601.PubMedCrossRef
86.
go back to reference Navarrete M, Arthur S, Treder MS, Lewis PA. Ongoing neural oscillations predict the post-stimulus outcome of closed loop auditory stimulation during slow-wave sleep. Neuroimage. 2022;253:119055.PubMedCrossRef Navarrete M, Arthur S, Treder MS, Lewis PA. Ongoing neural oscillations predict the post-stimulus outcome of closed loop auditory stimulation during slow-wave sleep. Neuroimage. 2022;253:119055.PubMedCrossRef
87.
go back to reference Kocevska D, Lysen TS, Dotinga A, Koopman-Verhoeff ME, Luijk MPCM, Antypa N, et al. Sleep characteristics across the lifespan in 1.1 million people from the Netherlands, United Kingdom and United States: a systematic review and meta-analysis. Nat Hum Behav. 2021;5:113–22.PubMedCrossRef Kocevska D, Lysen TS, Dotinga A, Koopman-Verhoeff ME, Luijk MPCM, Antypa N, et al. Sleep characteristics across the lifespan in 1.1 million people from the Netherlands, United Kingdom and United States: a systematic review and meta-analysis. Nat Hum Behav. 2021;5:113–22.PubMedCrossRef
89.
go back to reference Joechner A-K, Wehmeier S, Werkle-Bergner M. Electrophysiological indicators of sleep-associated memory consolidation in 5- to 6-year-old children. Psychophysiology. 2021;58:e13829.PubMedCrossRef Joechner A-K, Wehmeier S, Werkle-Bergner M. Electrophysiological indicators of sleep-associated memory consolidation in 5- to 6-year-old children. Psychophysiology. 2021;58:e13829.PubMedCrossRef
90.
go back to reference Joechner AK, Hahn MA, Gruber G, Hoedlmoser K, Werkle-Bergner M. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development. eLife. 2023;12:e83565 Joechner AK, Hahn MA, Gruber G, Hoedlmoser K, Werkle-Bergner M. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development. eLife. 2023;12:e83565
91.
go back to reference Kurz E-M, Zinke K, Born J. Sleep electroencephalogram (EEG) oscillations and associated memory processing during childhood and early adolescence. Dev Psychol. 2023;59(2):297–311.PubMedCrossRef Kurz E-M, Zinke K, Born J. Sleep electroencephalogram (EEG) oscillations and associated memory processing during childhood and early adolescence. Dev Psychol. 2023;59(2):297–311.PubMedCrossRef
92.•
go back to reference Hahn MA, Heib D, Schabus M, Hoedlmoser K, Helfrich RF. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. eLife. 2020;9:e53730. Longitudinal evidence that the development of robust SO-spindle coupling across adolescence tracks memory consolidation ability.PubMedPubMedCentralCrossRef Hahn MA, Heib D, Schabus M, Hoedlmoser K, Helfrich RF. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. eLife. 2020;9:e53730. Longitudinal evidence that the development of robust SO-spindle coupling across adolescence tracks memory consolidation ability.PubMedPubMedCentralCrossRef
93.
go back to reference Chylinski D, Van Egroo M, Narbutas J, Muto V, Bahri MA, Berthomier C, et al. Timely coupling of sleep spindles and slow waves is linked to early amyloid-β burden and predicts memory decline. eLife. 2022;11:e78191.PubMedPubMedCentralCrossRef Chylinski D, Van Egroo M, Narbutas J, Muto V, Bahri MA, Berthomier C, et al. Timely coupling of sleep spindles and slow waves is linked to early amyloid-β burden and predicts memory decline. eLife. 2022;11:e78191.PubMedPubMedCentralCrossRef
94.••
go back to reference Bar E, Marmelshtein A, Arzi A, Perl O, Livne E, Hizmi E, et al. Local targeted memory reactivation in human sleep. Curr Biol. 2020;30:1435-1446.e5. Showed that memory reactivation during sleep modulates SO-spindle coupling in cortical regions involved in initial learning.PubMedCrossRef Bar E, Marmelshtein A, Arzi A, Perl O, Livne E, Hizmi E, et al. Local targeted memory reactivation in human sleep. Curr Biol. 2020;30:1435-1446.e5. Showed that memory reactivation during sleep modulates SO-spindle coupling in cortical regions involved in initial learning.PubMedCrossRef
95.
go back to reference Cox R, Hofman WF, de Boer M, Talamini LM. Local sleep spindle modulations in relation to specific memory cues. Neuroimage. 2014;99:103–10.PubMedCrossRef Cox R, Hofman WF, de Boer M, Talamini LM. Local sleep spindle modulations in relation to specific memory cues. Neuroimage. 2014;99:103–10.PubMedCrossRef
97.
go back to reference Petzka M, Chatburn A, Charest I, Balanos GM, Staresina BP. Sleep spindles track cortical learning patterns for memory consolidation. Curr Biol. 2022;32:2349–56.PubMedPubMedCentralCrossRef Petzka M, Chatburn A, Charest I, Balanos GM, Staresina BP. Sleep spindles track cortical learning patterns for memory consolidation. Curr Biol. 2022;32:2349–56.PubMedPubMedCentralCrossRef
98.
go back to reference Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron. 2004;44:535–45.PubMedCrossRef Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron. 2004;44:535–45.PubMedCrossRef
99.
go back to reference Peigneux P, Laureys S, Fuchs S, Destrebecqz A, Collette F, Delbeuck X, et al. Learned material content and acquisition level modulate cerebral reactivation during posttraining rapid-eye-movements sleep. Neuroimage. 2003;20:125–34.PubMedCrossRef Peigneux P, Laureys S, Fuchs S, Destrebecqz A, Collette F, Delbeuck X, et al. Learned material content and acquisition level modulate cerebral reactivation during posttraining rapid-eye-movements sleep. Neuroimage. 2003;20:125–34.PubMedCrossRef
100.
go back to reference Bergmann TO, Mölle M, Diedrichs J, Born J, Siebner HR. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Neuroimage. 2012;59:2733–42.PubMedCrossRef Bergmann TO, Mölle M, Diedrichs J, Born J, Siebner HR. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Neuroimage. 2012;59:2733–42.PubMedCrossRef
101.
go back to reference Fogel S, Albouy G, King BR, Lungu O, Vien C, Bore A, et al. Reactivation or transformation? Motor memory consolidation associated with cerebral activation time-locked to sleep spindles. PLoS ONE. 2017;12:e0174755.PubMedPubMedCentralCrossRef Fogel S, Albouy G, King BR, Lungu O, Vien C, Bore A, et al. Reactivation or transformation? Motor memory consolidation associated with cerebral activation time-locked to sleep spindles. PLoS ONE. 2017;12:e0174755.PubMedPubMedCentralCrossRef
102.
go back to reference Boutin A, Pinsard B, Boré A, Carrier J, Fogel SM, Doyon J. Transient synchronization of hippocampo-striato-thalamo-cortical networks during sleep spindle oscillations induces motor memory consolidation. Neuroimage. 2018;169:419–30.PubMedCrossRef Boutin A, Pinsard B, Boré A, Carrier J, Fogel SM, Doyon J. Transient synchronization of hippocampo-striato-thalamo-cortical networks during sleep spindle oscillations induces motor memory consolidation. Neuroimage. 2018;169:419–30.PubMedCrossRef
103.
go back to reference Shanahan LK, Gjorgieva E, Paller KA, Kahnt T, Gottfried JA. Odor-evoked category reactivation in human ventromedial prefrontal cortex during sleep promotes memory consolidation. eLife. 2018;7:e39681.PubMedPubMedCentralCrossRef Shanahan LK, Gjorgieva E, Paller KA, Kahnt T, Gottfried JA. Odor-evoked category reactivation in human ventromedial prefrontal cortex during sleep promotes memory consolidation. eLife. 2018;7:e39681.PubMedPubMedCentralCrossRef
104.
go back to reference Sterpenich V, van Schie MKM, Catsiyannis M, Ramyead A, Perrig S, Yang H-D, et al. Reward biases spontaneous neural reactivation during sleep. Nat Commun. 2021;12:4162.PubMedPubMedCentralCrossRef Sterpenich V, van Schie MKM, Catsiyannis M, Ramyead A, Perrig S, Yang H-D, et al. Reward biases spontaneous neural reactivation during sleep. Nat Commun. 2021;12:4162.PubMedPubMedCentralCrossRef
105.
go back to reference Deuker L, Olligs J, Fell J, Kranz TA, Mormann F, Montag C, et al. Memory consolidation by replay of stimulus-specific neural activity. J Neurosci. 2013;33:19373–83.PubMedPubMedCentralCrossRef Deuker L, Olligs J, Fell J, Kranz TA, Mormann F, Montag C, et al. Memory consolidation by replay of stimulus-specific neural activity. J Neurosci. 2013;33:19373–83.PubMedPubMedCentralCrossRef
106.
107.
go back to reference Piantoni G, Halgren E, Cash SS. Spatiotemporal characteristics of sleep spindles depend on cortical location. Neuroimage. 2017;146:236–45.PubMedCrossRef Piantoni G, Halgren E, Cash SS. Spatiotemporal characteristics of sleep spindles depend on cortical location. Neuroimage. 2017;146:236–45.PubMedCrossRef
108.
go back to reference Murphy M, Stickgold R, Parr ME, Callahan C, Wamsley EJ. Recurrence of task-related electroencephalographic activity during post-training quiet rest and sleep. Sci Rep. 2018;8:5398.PubMedPubMedCentralCrossRef Murphy M, Stickgold R, Parr ME, Callahan C, Wamsley EJ. Recurrence of task-related electroencephalographic activity during post-training quiet rest and sleep. Sci Rep. 2018;8:5398.PubMedPubMedCentralCrossRef
109.
go back to reference Schönauer M, Alizadeh S, Jamalabadi H, Abraham A, Pawlizki A, Gais S. Decoding material-specific memory reprocessing during sleep in humans. Nat Commun. 2017;8:15404.PubMedPubMedCentralCrossRef Schönauer M, Alizadeh S, Jamalabadi H, Abraham A, Pawlizki A, Gais S. Decoding material-specific memory reprocessing during sleep in humans. Nat Commun. 2017;8:15404.PubMedPubMedCentralCrossRef
111.
go back to reference Hu X, Cheng LY, Chiu MH, Paller KA. Promoting memory consolidation during sleep: a meta-analysis of targeted memory reactivation. Psychol Bull. 2020;146:218–44.PubMedPubMedCentralCrossRef Hu X, Cheng LY, Chiu MH, Paller KA. Promoting memory consolidation during sleep: a meta-analysis of targeted memory reactivation. Psychol Bull. 2020;146:218–44.PubMedPubMedCentralCrossRef
112.
go back to reference Antony JW, Piloto L, Wang M, Pacheco P, Norman KA, Paller KA. Sleep spindle refractoriness segregates periods of memory reactivation. Curr Biol. 2018;28:1736-1743.e4.PubMedPubMedCentralCrossRef Antony JW, Piloto L, Wang M, Pacheco P, Norman KA, Paller KA. Sleep spindle refractoriness segregates periods of memory reactivation. Curr Biol. 2018;28:1736-1743.e4.PubMedPubMedCentralCrossRef
113.
go back to reference Farthouat J, Gilson M, Peigneux P. New evidence for the necessity of a silent plastic period during sleep for a memory benefit of targeted memory reactivation. Sleep Spindl Cortical States. 2017;1:14–26.CrossRef Farthouat J, Gilson M, Peigneux P. New evidence for the necessity of a silent plastic period during sleep for a memory benefit of targeted memory reactivation. Sleep Spindl Cortical States. 2017;1:14–26.CrossRef
114.
go back to reference Groch S, Schreiner T, Rasch B, Huber R, Wilhelm I. Prior knowledge is essential for the beneficial effect of targeted memory reactivation during sleep. Sci Rep. 2017;7:39763.PubMedPubMedCentralCrossRef Groch S, Schreiner T, Rasch B, Huber R, Wilhelm I. Prior knowledge is essential for the beneficial effect of targeted memory reactivation during sleep. Sci Rep. 2017;7:39763.PubMedPubMedCentralCrossRef
115.
go back to reference Laventure S, Pinsard B, Lungu O, Carrier J, Fogel S, Benali H, et al. Beyond spindles: interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations. Sleep. 2018;41:zsy142.PubMedPubMedCentralCrossRef Laventure S, Pinsard B, Lungu O, Carrier J, Fogel S, Benali H, et al. Beyond spindles: interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations. Sleep. 2018;41:zsy142.PubMedPubMedCentralCrossRef
116.
go back to reference Lehmann M, Schreiner T, Seifritz E, Rasch B. Emotional arousal modulates oscillatory correlates of targeted memory reactivation during NREM, but not REM sleep. Sci Rep. 2016;6:39229.PubMedPubMedCentralCrossRef Lehmann M, Schreiner T, Seifritz E, Rasch B. Emotional arousal modulates oscillatory correlates of targeted memory reactivation during NREM, but not REM sleep. Sci Rep. 2016;6:39229.PubMedPubMedCentralCrossRef
117.
go back to reference Schechtman E, Antony JW, Lampe A, Wilson BJ, Norman KA, Paller KA. Multiple memories can be simultaneously reactivated during sleep as effectively as a single memory. Commun Biol. 2021;4:1–13.CrossRef Schechtman E, Antony JW, Lampe A, Wilson BJ, Norman KA, Paller KA. Multiple memories can be simultaneously reactivated during sleep as effectively as a single memory. Commun Biol. 2021;4:1–13.CrossRef
118.
go back to reference Schreiner T, Lehmann M, Rasch B. Auditory feedback blocks memory benefits of cueing during sleep. Nat Commun. 2015;6:8729.PubMedCrossRef Schreiner T, Lehmann M, Rasch B. Auditory feedback blocks memory benefits of cueing during sleep. Nat Commun. 2015;6:8729.PubMedCrossRef
119.
go back to reference Wang B, Antony JW, Lurie S, Brooks PP, Paller KA, Norman KA. Targeted memory reactivation during sleep elicits neural signals related to learning content. J Neurosci. 2019;39:6728–36.PubMedPubMedCentralCrossRef Wang B, Antony JW, Lurie S, Brooks PP, Paller KA, Norman KA. Targeted memory reactivation during sleep elicits neural signals related to learning content. J Neurosci. 2019;39:6728–36.PubMedPubMedCentralCrossRef
120.
go back to reference Guttesen A á V, Gaskell MG, Cairney SA. Delineating memory reactivation in sleep with verbal and non-verbal retrieval cues. bioRxiv; 2023; 2023.03.02.530762. Guttesen A á V, Gaskell MG, Cairney SA. Delineating memory reactivation in sleep with verbal and non-verbal retrieval cues. bioRxiv; 2023; 2023.03.02.530762.
121.
go back to reference Yuksel C, Denis D, Coleman J, Oh A, Cox R, Morgan A, et al. Emotional memories are enhanced when reactivated in slow wave sleep, but impaired when reactivated in REM. bioRxiv; 2023; 2023.03.01.530661. Yuksel C, Denis D, Coleman J, Oh A, Cox R, Morgan A, et al. Emotional memories are enhanced when reactivated in slow wave sleep, but impaired when reactivated in REM. bioRxiv; 2023; 2023.03.01.530661.
122.
go back to reference Denis D, Payne JD. Targeted memory reactivation during non-rapid eye movement sleep enhances neutral, but not negative, components of memory. bioRxiv; 2023; 2023.05.26.542120. Denis D, Payne JD. Targeted memory reactivation during non-rapid eye movement sleep enhances neutral, but not negative, components of memory. bioRxiv; 2023; 2023.05.26.542120.
123.
go back to reference Joensen BH, Harrington MO, Berens SC, Cairney SA, Gaskell MG, Horner AJ. Targeted memory reactivation during sleep can induce forgetting of overlapping memories. Learn Mem. 2022;29:401–11.PubMedPubMedCentralCrossRef Joensen BH, Harrington MO, Berens SC, Cairney SA, Gaskell MG, Horner AJ. Targeted memory reactivation during sleep can induce forgetting of overlapping memories. Learn Mem. 2022;29:401–11.PubMedPubMedCentralCrossRef
124.
go back to reference Oyarzún JP, Morís J, Luque D, de Diego-Balaguer R, Fuentemilla L. Targeted memory reactivation during sleep adaptively promotes the strengthening or weakening of overlapping memories. J Neurosci. 2017;37:7748–58.PubMedPubMedCentralCrossRef Oyarzún JP, Morís J, Luque D, de Diego-Balaguer R, Fuentemilla L. Targeted memory reactivation during sleep adaptively promotes the strengthening or weakening of overlapping memories. J Neurosci. 2017;37:7748–58.PubMedPubMedCentralCrossRef
125.
go back to reference Schreiner T, Doeller CF, Jensen O, Rasch B, Staudigl T. Theta phase-coordinated memory reactivation reoccurs in a slow-oscillatory rhythm during NREM sleep. Cell Rep. 2018;25:296–301.PubMedPubMedCentralCrossRef Schreiner T, Doeller CF, Jensen O, Rasch B, Staudigl T. Theta phase-coordinated memory reactivation reoccurs in a slow-oscillatory rhythm during NREM sleep. Cell Rep. 2018;25:296–301.PubMedPubMedCentralCrossRef
126.
go back to reference Antony JW, Schönauer M, Staresina BP, Cairney SA. Sleep spindles and memory reprocessing. Trends Neurosci. 2019;42:1–3.PubMedCrossRef Antony JW, Schönauer M, Staresina BP, Cairney SA. Sleep spindles and memory reprocessing. Trends Neurosci. 2019;42:1–3.PubMedCrossRef
127.
go back to reference Belal S, Cousins J, El-Deredy W, Parkes L, Schneider J, Tsujimura H, et al. Identification of memory reactivation during sleep by EEG classification. Neuroimage. 2018;176:203–14.PubMedCrossRef Belal S, Cousins J, El-Deredy W, Parkes L, Schneider J, Tsujimura H, et al. Identification of memory reactivation during sleep by EEG classification. Neuroimage. 2018;176:203–14.PubMedCrossRef
128.
129.
go back to reference Göldi M, van Poppel EAM, Rasch B, Schreiner T. Increased neuronal signatures of targeted memory reactivation during slow-wave up states. Sci Rep. 2019;9:2715.PubMedPubMedCentralCrossRef Göldi M, van Poppel EAM, Rasch B, Schreiner T. Increased neuronal signatures of targeted memory reactivation during slow-wave up states. Sci Rep. 2019;9:2715.PubMedPubMedCentralCrossRef
130.
go back to reference Shimizu RE, Connolly PM, Cellini N, Armstrong DM, Hernandez LT, Estrada R, et al. Closed-loop targeted memory reactivation during sleep improves spatial navigation. Front Hum Neurosci. 2018;12:28.PubMedPubMedCentralCrossRef Shimizu RE, Connolly PM, Cellini N, Armstrong DM, Hernandez LT, Estrada R, et al. Closed-loop targeted memory reactivation during sleep improves spatial navigation. Front Hum Neurosci. 2018;12:28.PubMedPubMedCentralCrossRef
131.
go back to reference Batterink LJ, Creery JD, Paller KA. Phase of spontaneous slow oscillations during sleep influences memory-related processing of auditory cues. J Neurosci. 2016;36:1401–9.PubMedPubMedCentralCrossRef Batterink LJ, Creery JD, Paller KA. Phase of spontaneous slow oscillations during sleep influences memory-related processing of auditory cues. J Neurosci. 2016;36:1401–9.PubMedPubMedCentralCrossRef
132.•
go back to reference Ngo H-VV, Staresina BP. Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proc Natl Acad Sci. 2022;119:e2123428119. Found that playing memory cues during sleep only elicits a reactivation of memory content when cues are delivered in the excitable upstate of slow oscillations.PubMedPubMedCentralCrossRef Ngo H-VV, Staresina BP. Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proc Natl Acad Sci. 2022;119:e2123428119. Found that playing memory cues during sleep only elicits a reactivation of memory content when cues are delivered in the excitable upstate of slow oscillations.PubMedPubMedCentralCrossRef
133.••
go back to reference Schreiner T, Petzka M, Staudigl T, Staresina BP. Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes. Nat Commun. 2021;12:3112. The first evidence in humans that endogenous memory reactivation occurs within SO-spindle events.PubMedPubMedCentralCrossRef Schreiner T, Petzka M, Staudigl T, Staresina BP. Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes. Nat Commun. 2021;12:3112. The first evidence in humans that endogenous memory reactivation occurs within SO-spindle events.PubMedPubMedCentralCrossRef
135.••
go back to reference Rubin DB, Hosman T, Kelemen JN, Kapitonava A, Willett FR, Coughlin BF, et al. Learned motor patterns are replayed in human motor cortex during sleep. J Neurosci. 2022;42:5007–20. The first human evidence of single unit memory reactivation in the human motor cortex during the consolidation of a procedural memory task.PubMedPubMedCentralCrossRef Rubin DB, Hosman T, Kelemen JN, Kapitonava A, Willett FR, Coughlin BF, et al. Learned motor patterns are replayed in human motor cortex during sleep. J Neurosci. 2022;42:5007–20. The first human evidence of single unit memory reactivation in the human motor cortex during the consolidation of a procedural memory task.PubMedPubMedCentralCrossRef
136.
go back to reference Boutin A, Doyon J. A sleep spindle framework for motor memory consolidation. Philos Trans R Soc B Biol Sci. 2020;375:20190232.CrossRef Boutin A, Doyon J. A sleep spindle framework for motor memory consolidation. Philos Trans R Soc B Biol Sci. 2020;375:20190232.CrossRef
137.
go back to reference Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Visuomotor adaptation modulates the clustering of sleep spindles into trains. Front Neurosci. 2022;16:803387.PubMedPubMedCentralCrossRef Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Visuomotor adaptation modulates the clustering of sleep spindles into trains. Front Neurosci. 2022;16:803387.PubMedPubMedCentralCrossRef
138.
go back to reference Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron. 2001;29:145–56.PubMedCrossRef Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron. 2001;29:145–56.PubMedCrossRef
140.
go back to reference Nishida M, Pearsall J, Buckner RL, Walker MP. REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex. 2009;19:1158–66.PubMedCrossRef Nishida M, Pearsall J, Buckner RL, Walker MP. REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex. 2009;19:1158–66.PubMedCrossRef
141.
go back to reference Sopp MR, Michael T, Weeß H-G, Mecklinger A. Remembering specific features of emotional events across time: the role of REM sleep and prefrontal theta oscillations. Cogn Affect Behav Neurosci. 2017;17:1186–209.PubMedCrossRef Sopp MR, Michael T, Weeß H-G, Mecklinger A. Remembering specific features of emotional events across time: the role of REM sleep and prefrontal theta oscillations. Cogn Affect Behav Neurosci. 2017;17:1186–209.PubMedCrossRef
142.
go back to reference Kim SY, Kark SM, Daley RT, Alger SE, Rebouças D, Kensinger EA, et al. Interactive effects of stress reactivity and rapid eye movement sleep theta activity on emotional memory formation. Hippocampus. 2020;30:829–41.PubMedCrossRef Kim SY, Kark SM, Daley RT, Alger SE, Rebouças D, Kensinger EA, et al. Interactive effects of stress reactivity and rapid eye movement sleep theta activity on emotional memory formation. Hippocampus. 2020;30:829–41.PubMedCrossRef
143.
go back to reference Harrington MO, Ashton JE, Ngo H-VV, Cairney SA. Phase-locked auditory stimulation of theta oscillations during rapid eye movement sleep. Sleep. 2020;44:zsaa227.CrossRef Harrington MO, Ashton JE, Ngo H-VV, Cairney SA. Phase-locked auditory stimulation of theta oscillations during rapid eye movement sleep. Sleep. 2020;44:zsaa227.CrossRef
144.
go back to reference Brokaw K, Tishler W, Manceor S, Hamilton K, Gaulden A, Parr E, et al. Resting state EEG correlates of memory consolidation. Neurobiol Learn Mem. 2016;130:17–25.PubMedCrossRef Brokaw K, Tishler W, Manceor S, Hamilton K, Gaulden A, Parr E, et al. Resting state EEG correlates of memory consolidation. Neurobiol Learn Mem. 2016;130:17–25.PubMedCrossRef
145.
go back to reference Eichenlaub J-B, Jarosiewicz B, Saab J, Franco B, Kelemen J, Halgren E, et al. Replay of learned neural firing sequences during rest in human motor cortex. Cell Rep. 2020;31:107581.PubMedPubMedCentralCrossRef Eichenlaub J-B, Jarosiewicz B, Saab J, Franco B, Kelemen J, Halgren E, et al. Replay of learned neural firing sequences during rest in human motor cortex. Cell Rep. 2020;31:107581.PubMedPubMedCentralCrossRef
146.
go back to reference Humiston GB, Tucker MA, Summer T, Wamsley EJ. Resting states and memory consolidation: a preregistered replication and meta-analysis. Sci Rep. 2019;9:1–9.CrossRef Humiston GB, Tucker MA, Summer T, Wamsley EJ. Resting states and memory consolidation: a preregistered replication and meta-analysis. Sci Rep. 2019;9:1–9.CrossRef
147.
go back to reference Wang SY, Baker KC, Culbreth JL, Tracy O, Arora M, Liu T, et al. ‘Sleep-dependent’ memory consolidation? Brief periods of post-training rest and sleep provide an equivalent benefit for both declarative and procedural memory. Learn Mem. 2021;28:195–203.PubMedPubMedCentralCrossRef Wang SY, Baker KC, Culbreth JL, Tracy O, Arora M, Liu T, et al. ‘Sleep-dependent’ memory consolidation? Brief periods of post-training rest and sleep provide an equivalent benefit for both declarative and procedural memory. Learn Mem. 2021;28:195–203.PubMedPubMedCentralCrossRef
Metadata
Title
Electrophysiological Mechanisms of Memory Consolidation in Human Non-rapid Eye Movement Sleep
Authors
Dan Denis
Scott A. Cairney
Publication date
18-03-2024
Publisher
Springer International Publishing
Published in
Current Sleep Medicine Reports / Issue 2/2024
Electronic ISSN: 2198-6401
DOI
https://doi.org/10.1007/s40675-024-00291-y

Other articles of this Issue 2/2024

Current Sleep Medicine Reports 2/2024 Go to the issue