Skip to main content
Top
Published in: Acta Neurochirurgica 10/2016

01-10-2016 | Clinical Article - Functional

Electrophysiological interpretations of the clinical response to stimulation parameters of pallidal deep brain stimulation for cervical dystonia

Authors: Ryoong Huh, Moonyoung Chung

Published in: Acta Neurochirurgica | Issue 10/2016

Login to get access

Abstract

Objective

Deep brain stimulation (DBS) at the posterolateral ventral portion of the globus pallidus internus (GPi) has been regarded as a good therapeutic modality. Because the theoretical principle behind the stimulation parameters is yet to be determined, this study aimed to interpret analyses of the stimulation parameters used in our department based on an electrophysiological review.

Methods

Nineteen patients with medically refractory idiopathic cervical dystonia who underwent GPi DBS were enrolled. The baseline and follow-up parameters were analyzed according to their dependence on time after DBS. The pattern of changes in the stimulation parameters over time, the differences across the four active contacts, and the relationship between the stimulation parameters and clinical benefits were evaluated.

Results

Mean age and disease duration were 50.9 years and 54.7 months, respectively. Mean follow-up duration was 22.6 months. The amplitude and frequency exhibited significant increasing temporal patterns, i.e., a mean amplitude and frequency of 3.1 V and 132.2 Hz at the initial setting and 4.0 V and 142.6 Hz at the last follow-up, respectively. The better clinical response group (clinical improvement rate of 65–100 %) used a narrower pulse width (mean value of 78.4 μs) than the worse clinical response group (clinical improvement rate of 5–60 %, mean of value of 88.6 μs). Active contact at the GPe was used more often in the worse clinical response group than in the better response group.

Conclusions

Based on electrophysiological considerations, these patterns of stimulation parameters could be interpreted. This interpretation was based on a theoretical understanding of the mechanisms of action of DBS, i.e., that the abnormal neural signal is substituted by an induced neural signal, which is generated by therapeutic DBS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alterman RL, Miravite J, Weisz D, Shils JL, Bressman SB, Tagliati M (2007) Sixty hertz pallidal deep brain stimulation for primary torsion dystonia. Neurology 69:681–688CrossRefPubMed Alterman RL, Miravite J, Weisz D, Shils JL, Bressman SB, Tagliati M (2007) Sixty hertz pallidal deep brain stimulation for primary torsion dystonia. Neurology 69:681–688CrossRefPubMed
2.
go back to reference Alterman RL, Shils JL, Miravite J, Tagliati M (2007) Lower stimulation frequency can enhance tolerability and efficacy of pallidal deep brain stimulation for dystonia. Mov Disord 22:366–368CrossRefPubMed Alterman RL, Shils JL, Miravite J, Tagliati M (2007) Lower stimulation frequency can enhance tolerability and efficacy of pallidal deep brain stimulation for dystonia. Mov Disord 22:366–368CrossRefPubMed
3.
go back to reference Anderson ME, Postupna N, Ruffo M (2003) Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol 89:1150–1160CrossRefPubMed Anderson ME, Postupna N, Ruffo M (2003) Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol 89:1150–1160CrossRefPubMed
4.
go back to reference Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL (2000) Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99:289–295CrossRefPubMed Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL (2000) Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99:289–295CrossRefPubMed
5.
go back to reference Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356PubMed Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356PubMed
6.
go back to reference Bittar RG, Yianni J, Wang S, Liu X, Nandi D, Joint C, Scott R, Bain PG, Gregory R, Stein J, Aziz TZ (2005) Deep brain stimulation for generalised dystonia and spasmodic torticollis. J Clin Neurosci 12:12–16CrossRefPubMed Bittar RG, Yianni J, Wang S, Liu X, Nandi D, Joint C, Scott R, Bain PG, Gregory R, Stein J, Aziz TZ (2005) Deep brain stimulation for generalised dystonia and spasmodic torticollis. J Clin Neurosci 12:12–16CrossRefPubMed
7.
go back to reference Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038PubMed Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038PubMed
8.
go back to reference Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34:661–670CrossRefPubMed Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34:661–670CrossRefPubMed
9.
go back to reference Butson CR, McIntyre CC (2005) Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin Neurophysiol 116:2490–2500CrossRefPubMed Butson CR, McIntyre CC (2005) Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin Neurophysiol 116:2490–2500CrossRefPubMed
10.
go back to reference Capelle HH, Blahak C, Schrader C, Baezner H, Hariz MI, Bergenheim T, Krauss JK (2012) Bilateral deep brain stimulation for cervical dystonia in patients with previous peripheral surgery. Mov Disord 27:301–304CrossRefPubMed Capelle HH, Blahak C, Schrader C, Baezner H, Hariz MI, Bergenheim T, Krauss JK (2012) Bilateral deep brain stimulation for cervical dystonia in patients with previous peripheral surgery. Mov Disord 27:301–304CrossRefPubMed
11.
go back to reference Cheung T, Noecker AM, Alterman RL, McIntyre CC, Tagliati M (2014) Defining a therapeutic target for pallidal deep brain stimulation for dystonia. Ann Neurol 76:22–30CrossRefPubMed Cheung T, Noecker AM, Alterman RL, McIntyre CC, Tagliati M (2014) Defining a therapeutic target for pallidal deep brain stimulation for dystonia. Ann Neurol 76:22–30CrossRefPubMed
12.
go back to reference Cheung T, Zhang C, Rudolph J, Alterman RL, Tagliati M (2013) Sustained relief of generalized dystonia despite prolonged interruption of deep brain stimulation. Mov Disord 28:1431–1434CrossRefPubMed Cheung T, Zhang C, Rudolph J, Alterman RL, Tagliati M (2013) Sustained relief of generalized dystonia despite prolonged interruption of deep brain stimulation. Mov Disord 28:1431–1434CrossRefPubMed
13.
go back to reference Chung M, Huh R (2016) Different clinical course of pallidal deep brain stimulation for phasic- and tonic-type cervical dystonia. Acta Neurochir (Wien) 158:171–180CrossRef Chung M, Huh R (2016) Different clinical course of pallidal deep brain stimulation for phasic- and tonic-type cervical dystonia. Acta Neurochir (Wien) 158:171–180CrossRef
14.
go back to reference Cleary DR, Raslan AM, Rubin JE, Bahgat D, Viswanathan A, Heinricher MM, Burchiel KJ (2013) Deep brain stimulation entrains local neuronal firing in human globus pallidus internus. J Neurophysiol 109:978–987CrossRefPubMed Cleary DR, Raslan AM, Rubin JE, Bahgat D, Viswanathan A, Heinricher MM, Burchiel KJ (2013) Deep brain stimulation entrains local neuronal firing in human globus pallidus internus. J Neurophysiol 109:978–987CrossRefPubMed
15.
go back to reference de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, Ostrem JL, Galifianakis NB, Starr PA (2013) Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A 110:4780–4785CrossRefPubMedPubMedCentral de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, Ostrem JL, Galifianakis NB, Starr PA (2013) Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A 110:4780–4785CrossRefPubMedPubMedCentral
16.
go back to reference DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285CrossRefPubMed DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285CrossRefPubMed
17.
go back to reference Eltahawy HA, Saint-Cyr J, Poon YY, Moro E, Lang AE, Lozano AM (2004) Pallidal deep brain stimulation in cervical dystonia: clinical outcome in four cases. Can J Neurol Sci 31:328–332CrossRefPubMed Eltahawy HA, Saint-Cyr J, Poon YY, Moro E, Lang AE, Lozano AM (2004) Pallidal deep brain stimulation in cervical dystonia: clinical outcome in four cases. Can J Neurol Sci 31:328–332CrossRefPubMed
18.
go back to reference Garcia L, Audin J, D’Alessandro G, Bioulac B, Hammond C (2003) Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci 23:8743–8751PubMed Garcia L, Audin J, D’Alessandro G, Bioulac B, Hammond C (2003) Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci 23:8743–8751PubMed
19.
go back to reference Godinho F, Thobois S, Magnin M, Guenot M, Polo G, Benatru I, Xie J, Salvetti A, Garcia-Larrea L, Broussolle E, Mertens P (2006) Subthalamic nucleus stimulation in Parkinson’s disease: anatomical and electrophysiological localization of active contacts. J Neurol 253:1347–1355CrossRefPubMed Godinho F, Thobois S, Magnin M, Guenot M, Polo G, Benatru I, Xie J, Salvetti A, Garcia-Larrea L, Broussolle E, Mertens P (2006) Subthalamic nucleus stimulation in Parkinson’s disease: anatomical and electrophysiological localization of active contacts. J Neurol 253:1347–1355CrossRefPubMed
20.
go back to reference Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359CrossRefPubMed Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359CrossRefPubMed
21.
go back to reference Grill WM Jr, Mortimer JT (1996) The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans Biomed Eng 43:161–166CrossRefPubMed Grill WM Jr, Mortimer JT (1996) The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans Biomed Eng 43:161–166CrossRefPubMed
22.
go back to reference Hammond C, Ammari R, Bioulac B, Garcia L (2008) Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23:2111–2121CrossRefPubMed Hammond C, Ammari R, Bioulac B, Garcia L (2008) Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23:2111–2121CrossRefPubMed
23.
go back to reference Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23:1916–1923PubMed Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23:1916–1923PubMed
24.
go back to reference Hung SW, Hamani C, Lozano AM, Poon YY, Piboolnurak P, Miyasaki JM, Lang AE, Dostrovsky JO, Hutchison WD, Moro E (2007) Long-term outcome of bilateral pallidal deep brain stimulation for primary cervical dystonia. Neurology 68:457–459CrossRefPubMed Hung SW, Hamani C, Lozano AM, Poon YY, Piboolnurak P, Miyasaki JM, Lang AE, Dostrovsky JO, Hutchison WD, Moro E (2007) Long-term outcome of bilateral pallidal deep brain stimulation for primary cervical dystonia. Neurology 68:457–459CrossRefPubMed
25.
go back to reference Isaias IU, Alterman RL, Tagliati M (2008) Outcome predictors of pallidal stimulation in patients with primary dystonia: the role of disease duration. Brain 131:1895–1902CrossRefPubMed Isaias IU, Alterman RL, Tagliati M (2008) Outcome predictors of pallidal stimulation in patients with primary dystonia: the role of disease duration. Brain 131:1895–1902CrossRefPubMed
26.
go back to reference Johnson MD, Miocinovic S, McIntyre CC, Vitek JL (2008) Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 5:294–308CrossRefPubMedPubMedCentral Johnson MD, Miocinovic S, McIntyre CC, Vitek JL (2008) Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 5:294–308CrossRefPubMedPubMedCentral
27.
go back to reference Kang G, Lowery MM (2014) Effects of antidromic and orthodromic activation of STN afferent axons during DBS in Parkinson’s disease: a simulation study. Front Comput Neurosci 8:32CrossRefPubMedPubMedCentral Kang G, Lowery MM (2014) Effects of antidromic and orthodromic activation of STN afferent axons during DBS in Parkinson’s disease: a simulation study. Front Comput Neurosci 8:32CrossRefPubMedPubMedCentral
28.
go back to reference Khoo HM, Kishima H, Hosomi K, Maruo T, Tani N, Oshino S, Shimokawa T, Yokoe M, Mochizuki H, Saitoh Y, Yoshimine T (2014) Low-frequency subthalamic nucleus stimulation in Parkinson’s disease: a randomized clinical trial. Mov Disord 29:270–274CrossRefPubMed Khoo HM, Kishima H, Hosomi K, Maruo T, Tani N, Oshino S, Shimokawa T, Yokoe M, Mochizuki H, Saitoh Y, Yoshimine T (2014) Low-frequency subthalamic nucleus stimulation in Parkinson’s disease: a randomized clinical trial. Mov Disord 29:270–274CrossRefPubMed
29.
go back to reference Kiss ZH, Doig-Beyaert K, Eliasziw M, Tsui J, Haffenden A, Suchowersky O (2007) The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain 130:2879–2886CrossRefPubMed Kiss ZH, Doig-Beyaert K, Eliasziw M, Tsui J, Haffenden A, Suchowersky O (2007) The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain 130:2879–2886CrossRefPubMed
31.
go back to reference Krauss JK, Loher TJ, Pohle T, Weber S, Taub E, Barlocher CB, Burgunder JM (2002) Pallidal deep brain stimulation in patients with cervical dystonia and severe cervical dyskinesias with cervical myelopathy. J Neurol Neurosurg Psychiatry 72:249–256CrossRefPubMedPubMedCentral Krauss JK, Loher TJ, Pohle T, Weber S, Taub E, Barlocher CB, Burgunder JM (2002) Pallidal deep brain stimulation in patients with cervical dystonia and severe cervical dyskinesias with cervical myelopathy. J Neurol Neurosurg Psychiatry 72:249–256CrossRefPubMedPubMedCentral
32.
go back to reference Kuhn AA, Brandt SA, Kupsch A, Trottenberg T, Brocke J, Irlbacher K, Schneider GH, Meyer BU (2004) Comparison of motor effects following subcortical electrical stimulation through electrodes in the globus pallidus internus and cortical transcranial magnetic stimulation. Exp Brain Res 155:48–55CrossRefPubMed Kuhn AA, Brandt SA, Kupsch A, Trottenberg T, Brocke J, Irlbacher K, Schneider GH, Meyer BU (2004) Comparison of motor effects following subcortical electrical stimulation through electrodes in the globus pallidus internus and cortical transcranial magnetic stimulation. Exp Brain Res 155:48–55CrossRefPubMed
33.
go back to reference Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115:2431–2441CrossRefPubMed Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115:2431–2441CrossRefPubMed
34.
go back to reference Li Q, Ke Y, Chan DC, Qian ZM, Yung KK, Ko H, Arbuthnott GW, Yung WH (2012) Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76:1030–1041CrossRefPubMed Li Q, Ke Y, Chan DC, Qian ZM, Yung KK, Ko H, Arbuthnott GW, Yung WH (2012) Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76:1030–1041CrossRefPubMed
35.
go back to reference Li Q, Qian ZM, Arbuthnott GW, Ke Y, Yung WH (2014) Cortical effects of deep brain stimulation: implications for pathogenesis and treatment of Parkinson disease. JAMA Neurol 71:100–103CrossRefPubMed Li Q, Qian ZM, Arbuthnott GW, Ke Y, Yung WH (2014) Cortical effects of deep brain stimulation: implications for pathogenesis and treatment of Parkinson disease. JAMA Neurol 71:100–103CrossRefPubMed
36.
go back to reference Lozano AM, Lipsman N (2013) Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77:406–424CrossRefPubMed Lozano AM, Lipsman N (2013) Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77:406–424CrossRefPubMed
37.
go back to reference McIntyre CC, Savasta M, Walter BL, Vitek JL (2004) How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 21:40–50CrossRefPubMed McIntyre CC, Savasta M, Walter BL, Vitek JL (2004) How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 21:40–50CrossRefPubMed
38.
go back to reference Miocinovic S, Lempka SF, Russo GS, Maks CB, Butson CR, Sakaie KE, Vitek JL, McIntyre CC (2009) Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp Neurol 216:166–176CrossRefPubMed Miocinovic S, Lempka SF, Russo GS, Maks CB, Butson CR, Sakaie KE, Vitek JL, McIntyre CC (2009) Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp Neurol 216:166–176CrossRefPubMed
39.
go back to reference Molnar G, Barolat G (2014) Principles of cord activation during spinal cord stimulation. Neuromodulation 17(Suppl 1):12–21CrossRefPubMed Molnar G, Barolat G (2014) Principles of cord activation during spinal cord stimulation. Neuromodulation 17(Suppl 1):12–21CrossRefPubMed
40.
go back to reference Montgomery EB Jr (2006) Effects of GPi stimulation on human thalamic neuronal activity. Clin Neurophysiol 117:2691–2702CrossRefPubMed Montgomery EB Jr (2006) Effects of GPi stimulation on human thalamic neuronal activity. Clin Neurophysiol 117:2691–2702CrossRefPubMed
41.
go back to reference Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P (2002) The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 59:706–713CrossRefPubMed Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P (2002) The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 59:706–713CrossRefPubMed
42.
go back to reference Ostrem JL, Starr PA (2008) Treatment of dystonia with deep brain stimulation. Neurotherapeutics 5:320–330CrossRefPubMed Ostrem JL, Starr PA (2008) Treatment of dystonia with deep brain stimulation. Neurotherapeutics 5:320–330CrossRefPubMed
43.
go back to reference Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127CrossRefPubMed Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127CrossRefPubMed
44.
go back to reference Parent M, Parent A (2004) The pallidofugal motor fiber system in primates. Parkinsonism Relat Disord 10:203–211CrossRefPubMed Parent M, Parent A (2004) The pallidofugal motor fiber system in primates. Parkinsonism Relat Disord 10:203–211CrossRefPubMed
45.
go back to reference Plaha P, Ben-Shlomo Y, Patel NK, Gill SS (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 129:1732–1747CrossRefPubMed Plaha P, Ben-Shlomo Y, Patel NK, Gill SS (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 129:1732–1747CrossRefPubMed
46.
go back to reference Pretto TE, Dalvi A, Kang UJ, Penn RD (2008) A prospective blinded evaluation of deep brain stimulation for the treatment of secondary dystonia and primary torticollis syndromes. J Neurosurg 109:405–409CrossRefPubMed Pretto TE, Dalvi A, Kang UJ, Penn RD (2008) A prospective blinded evaluation of deep brain stimulation for the treatment of secondary dystonia and primary torticollis syndromes. J Neurosurg 109:405–409CrossRefPubMed
47.
go back to reference Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440CrossRefPubMed Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440CrossRefPubMed
48.
go back to reference Rattay F (1999) The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89:335–346CrossRefPubMed Rattay F (1999) The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89:335–346CrossRefPubMed
49.
go back to reference Saint-Cyr JA, Hoque T, Pereira LC, Dostrovsky JO, Hutchison WD, Mikulis DJ, Abosch A, Sime E, Lang AE, Lozano AM (2002) Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 97:1152–1166CrossRefPubMed Saint-Cyr JA, Hoque T, Pereira LC, Dostrovsky JO, Hutchison WD, Mikulis DJ, Abosch A, Sime E, Lang AE, Lozano AM (2002) Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 97:1152–1166CrossRefPubMed
50.
go back to reference Schaltenbrand G, Wahren W, Hassler R (1977) Atlas for stereotaxy of the human brain. Thieme Rüdigerstraße 14, D-70469 Stuttgart Schaltenbrand G, Wahren W, Hassler R (1977) Atlas for stereotaxy of the human brain. Thieme Rüdigerstraße 14, D-70469 Stuttgart
51.
go back to reference Skogseid IM (2014) Dystonia–new advances in classification, genetics, pathophysiology and treatment. Acta Neurol Scand Suppl:13–19 Skogseid IM (2014) Dystonia–new advances in classification, genetics, pathophysiology and treatment. Acta Neurol Scand Suppl:13–19
52.
go back to reference Starr PA, Turner RS, Rau G, Lindsey N, Heath S, Volz M, Ostrem JL, Marks WJ Jr (2006) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. J Neurosurg 104:488–501CrossRefPubMed Starr PA, Turner RS, Rau G, Lindsey N, Heath S, Volz M, Ostrem JL, Marks WJ Jr (2006) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. J Neurosurg 104:488–501CrossRefPubMed
53.
go back to reference Tisch S, Zrinzo L, Limousin P, Bhatia KP, Quinn N, Ashkan K, Hariz M (2007) Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. J Neurol Neurosurg Psychiatry 78:1314–1319CrossRefPubMedPubMedCentral Tisch S, Zrinzo L, Limousin P, Bhatia KP, Quinn N, Ashkan K, Hariz M (2007) Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. J Neurol Neurosurg Psychiatry 78:1314–1319CrossRefPubMedPubMedCentral
54.
go back to reference Tolleson C, Pallavaram S, Li C, Fang J, Phibbs F, Konrad P, Hedera P, D’Haese PF, Dawant BM, Davis TL (2015) The optimal pallidal target in deep brain stimulation for dystonia: a study using a functional atlas based on nonlinear image registration. Stereotact Funct Neurosurg 93:17–24CrossRefPubMed Tolleson C, Pallavaram S, Li C, Fang J, Phibbs F, Konrad P, Hedera P, D’Haese PF, Dawant BM, Davis TL (2015) The optimal pallidal target in deep brain stimulation for dystonia: a study using a functional atlas based on nonlinear image registration. Stereotact Funct Neurosurg 93:17–24CrossRefPubMed
55.
go back to reference Udupa K, Chen R (2015) The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol 133:27–49CrossRefPubMed Udupa K, Chen R (2015) The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol 133:27–49CrossRefPubMed
56.
go back to reference Vallabhajosula S, Haq IU, Hwynn N, Oyama G, Okun M, Tillman MD, Hass CJ (2015) Low-frequency versus high-frequency subthalamic nucleus deep brain stimulation on postural control and gait in Parkinson’s disease: a quantitative study. Brain Stimul 8:64–75CrossRefPubMed Vallabhajosula S, Haq IU, Hwynn N, Oyama G, Okun M, Tillman MD, Hass CJ (2015) Low-frequency versus high-frequency subthalamic nucleus deep brain stimulation on postural control and gait in Parkinson’s disease: a quantitative study. Brain Stimul 8:64–75CrossRefPubMed
57.
go back to reference Vercueil L, Houeto JL, Krystkowiak P, Lagrange C, Cassim F, Benazzouz A, Pidoux B, Destee A, Agid Y, Cornu P, Blond S, Benabid AL, Pollak P, Vidailhet M (2007) Effects of pulse width variations in pallidal stimulation for primary generalized dystonia. J Neurol 254:1533–1537CrossRefPubMed Vercueil L, Houeto JL, Krystkowiak P, Lagrange C, Cassim F, Benazzouz A, Pidoux B, Destee A, Agid Y, Cornu P, Blond S, Benabid AL, Pollak P, Vidailhet M (2007) Effects of pulse width variations in pallidal stimulation for primary generalized dystonia. J Neurol 254:1533–1537CrossRefPubMed
59.
go back to reference Weinberger M, Hutchison WD, Alavi M, Hodaie M, Lozano AM, Moro E, Dostrovsky JO (2012) Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia. Clin Neurophysiol 123:358–368CrossRefPubMed Weinberger M, Hutchison WD, Alavi M, Hodaie M, Lozano AM, Moro E, Dostrovsky JO (2012) Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia. Clin Neurophysiol 123:358–368CrossRefPubMed
60.
go back to reference Windels F, Bruet N, Poupard A, Feuerstein C, Bertrand A, Savasta M (2003) Influence of the frequency parameter on extracellular glutamate and gamma-aminobutyric acid in substantia nigra and globus pallidus during electrical stimulation of subthalamic nucleus in rats. J Neurosci Res 72:259–267CrossRefPubMed Windels F, Bruet N, Poupard A, Feuerstein C, Bertrand A, Savasta M (2003) Influence of the frequency parameter on extracellular glutamate and gamma-aminobutyric acid in substantia nigra and globus pallidus during electrical stimulation of subthalamic nucleus in rats. J Neurosci Res 72:259–267CrossRefPubMed
Metadata
Title
Electrophysiological interpretations of the clinical response to stimulation parameters of pallidal deep brain stimulation for cervical dystonia
Authors
Ryoong Huh
Moonyoung Chung
Publication date
01-10-2016
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 10/2016
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-016-2942-x

Other articles of this Issue 10/2016

Acta Neurochirurgica 10/2016 Go to the issue

Editorial (by Invitation)

Are happy residents better residents?