Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2015

Open Access 01-12-2015 | Research article

Electronic medical record-based multicondition models to predict the risk of 30 day readmission or death among adult medicine patients: validation and comparison to existing models

Authors: Ruben Amarasingham, Ferdinand Velasco, Bin Xie, Christopher Clark, Ying Ma, Song Zhang, Deepa Bhat, Brian Lucena, Marco Huesch, Ethan A. Halm

Published in: BMC Medical Informatics and Decision Making | Issue 1/2015

Login to get access

Abstract

Background

There is increasing interest in using prediction models to identify patients at risk of readmission or death after hospital discharge, but existing models have significant limitations. Electronic medical record (EMR) based models that can be used to predict risk on multiple disease conditions among a wide range of patient demographics early in the hospitalization are needed. The objective of this study was to evaluate the degree to which EMR-based risk models for 30-day readmission or mortality accurately identify high risk patients and to compare these models with published claims-based models.

Methods

Data were analyzed from all consecutive adult patients admitted to internal medicine services at 7 large hospitals belonging to 3 health systems in Dallas/Fort Worth between November 2009 and October 2010 and split randomly into derivation and validation cohorts. Performance of the model was evaluated against the Canadian LACE mortality or readmission model and the Centers for Medicare and Medicaid Services (CMS) Hospital Wide Readmission model.

Results

Among the 39,604 adults hospitalized for a broad range of medical reasons, 2.8 % of patients died, 12.7 % were readmitted, and 14.7 % were readmitted or died within 30 days after discharge. The electronic multicondition models for the composite outcome of 30-day mortality or readmission had good discrimination using data available within 24 h of admission (C statistic 0.69; 95 % CI, 0.68-0.70), or at discharge (0.71; 95 % CI, 0.70-0.72), and were significantly better than the LACE model (0.65; 95 % CI, 0.64-0.66; P =0.02) with significant NRI (0.16) and IDI (0.039, 95 % CI, 0.035-0.044). The electronic multicondition model for 30-day readmission alone had good discrimination using data available within 24 h of admission (C statistic 0.66; 95 % CI, 0.65-0.67) or at discharge (0.68; 95 % CI, 0.67-0.69), and performed significantly better than the CMS model (0.61; 95 % CI, 0.59-0.62; P < 0.01) with significant NRI (0.20) and IDI (0.037, 95 % CI, 0.033-0.041).

Conclusions

A new electronic multicondition model based on information derived from the EMR predicted mortality and readmission at 30 days, and was superior to previously published claims-based models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the medicare fee-for-service program. New Engl J Med. 2009;360(14):1418–28.CrossRefPubMed Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the medicare fee-for-service program. New Engl J Med. 2009;360(14):1418–28.CrossRefPubMed
3.
go back to reference Seow H, Phillips CO, Rich MW, Spertus JA, Krumholz HM, Lynn J. Isolation of health services research from practice and policy: the example of chronic heart failure management. J Am Geriatr Soc. 2006;54(3):535–40.CrossRefPubMed Seow H, Phillips CO, Rich MW, Spertus JA, Krumholz HM, Lynn J. Isolation of health services research from practice and policy: the example of chronic heart failure management. J Am Geriatr Soc. 2006;54(3):535–40.CrossRefPubMed
4.
go back to reference Goodman DC, Fisher ES, Chang C-H. After Hospitalization: A Dartmouth Atlas Report on Post-Acute Care for Medicare Beneficiaries. Hanover, NH: The Dartmouth Institute for Health Policy and Clinical Practice; 2011. Goodman DC, Fisher ES, Chang C-H. After Hospitalization: A Dartmouth Atlas Report on Post-Acute Care for Medicare Beneficiaries. Hanover, NH: The Dartmouth Institute for Health Policy and Clinical Practice; 2011.
5.
go back to reference Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk Prediction Models for Hospital Readmission: A Systematic Review. Washington (DC): Department of Veterans Affairs (US); 2011. Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk Prediction Models for Hospital Readmission: A Systematic Review. Washington (DC): Department of Veterans Affairs (US); 2011.
6.
go back to reference van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ. 2010;182(6):551(557). van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ. 2010;182(6):551(557).
7.
go back to reference Amarasingham R, Moore B, Tabak Y, Drazner MH, Clark CA, Zhang S, et al. An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Med Care. 2010;48(11):981–8.CrossRefPubMed Amarasingham R, Moore B, Tabak Y, Drazner MH, Clark CA, Zhang S, et al. An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Med Care. 2010;48(11):981–8.CrossRefPubMed
8.
go back to reference Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk prediction models for hospital readmission. JAMA. 2011;306(15):1688–98.CrossRefPubMedPubMedCentral Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk prediction models for hospital readmission. JAMA. 2011;306(15):1688–98.CrossRefPubMedPubMedCentral
9.
go back to reference Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA. Intern Med. 2013;173(8):632–8. Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA. Intern Med. 2013;173(8):632–8.
10.
go back to reference Shadmi E, Flaks-Manov N, Hoshen M, Goldman O, Bitterman H, Balicer RD. Predicting 30-day readmissions with preadmission electronic health record data. Med Care. 2015;53(3):283–9.CrossRefPubMed Shadmi E, Flaks-Manov N, Hoshen M, Goldman O, Bitterman H, Balicer RD. Predicting 30-day readmissions with preadmission electronic health record data. Med Care. 2015;53(3):283–9.CrossRefPubMed
13.
go back to reference Ni H, Nauman D, Burgess D, Wise K, Crispell K, Hershberger RE. Factors influencing knowledge of and adherence to self-care among patients with heart failure. Arch Intern Med. 1999;159(14):1613–9.CrossRefPubMed Ni H, Nauman D, Burgess D, Wise K, Crispell K, Hershberger RE. Factors influencing knowledge of and adherence to self-care among patients with heart failure. Arch Intern Med. 1999;159(14):1613–9.CrossRefPubMed
14.
go back to reference Huynh QL, Saito M, Blizzard CL, Eskandari M, Johnson B, Adabi G, et al. Roles of nonclinical and clinical data in prediction of 30-day rehospitalization or death among heart failure patients. J Card Fail. 2015;21(5):374–81.CrossRefPubMed Huynh QL, Saito M, Blizzard CL, Eskandari M, Johnson B, Adabi G, et al. Roles of nonclinical and clinical data in prediction of 30-day rehospitalization or death among heart failure patients. J Card Fail. 2015;21(5):374–81.CrossRefPubMed
15.
go back to reference Gwadry-Sridhar F, Flintoft V, Lee DS, Lee H, Guyatt GH. A systematic review and meta-analysis of studies comparing readmission rates and mortality rates in patients with heart failure. Arch Intern Med. 2004;164(21):2315–20.CrossRefPubMed Gwadry-Sridhar F, Flintoft V, Lee DS, Lee H, Guyatt GH. A systematic review and meta-analysis of studies comparing readmission rates and mortality rates in patients with heart failure. Arch Intern Med. 2004;164(21):2315–20.CrossRefPubMed
16.
go back to reference Phillips CO, Wright SM, Kern DE, Singa RM, Shepperd S, Rubin HR. Comprehensive discharge planning with postdischarge support for older patients with congestive heart failure. JAMA. 2004;291(11):1358–67.CrossRefPubMed Phillips CO, Wright SM, Kern DE, Singa RM, Shepperd S, Rubin HR. Comprehensive discharge planning with postdischarge support for older patients with congestive heart failure. JAMA. 2004;291(11):1358–67.CrossRefPubMed
17.
go back to reference Keenan P, Normand S, Lin Z, Drye EE, Bhat KR, Ross JS, et al. An administrative claims measure suitable for profiling hospital performance on the basis of 30-Day all-cause readmission rates among patients with heart failure. Circ Cardiovasc Qual Outcomes. 2008;1:29–37.CrossRefPubMed Keenan P, Normand S, Lin Z, Drye EE, Bhat KR, Ross JS, et al. An administrative claims measure suitable for profiling hospital performance on the basis of 30-Day all-cause readmission rates among patients with heart failure. Circ Cardiovasc Qual Outcomes. 2008;1:29–37.CrossRefPubMed
18.
go back to reference Hersh AM, Masoudi FA, Allen LA. Post-discharge environment following heart failure hospitalization: expanding the view of hospital readmission. J Am Heart Assoc. 2013;2:e000116.CrossRefPubMedPubMedCentral Hersh AM, Masoudi FA, Allen LA. Post-discharge environment following heart failure hospitalization: expanding the view of hospital readmission. J Am Heart Assoc. 2013;2:e000116.CrossRefPubMedPubMedCentral
19.
go back to reference Arbaje AI, Wolff JL, Yu Q, Powe NR, Anderson GF, Boult C. Post-discharge environmental and socioeconomic factors and the likelihood of early hospital readmission among community‐dwelling medicare beneficiaries. Gerontologist. 2008;48:495–504.CrossRefPubMed Arbaje AI, Wolff JL, Yu Q, Powe NR, Anderson GF, Boult C. Post-discharge environmental and socioeconomic factors and the likelihood of early hospital readmission among community‐dwelling medicare beneficiaries. Gerontologist. 2008;48:495–504.CrossRefPubMed
20.
go back to reference Peterson PN, Shetterly SM, Clarke CL, Bekelman DB, Chan PS, Allen LA, et al. Health literacy and outcomes among patients with heart failure. JAMA. 2011;305:1695–701.CrossRefPubMedPubMedCentral Peterson PN, Shetterly SM, Clarke CL, Bekelman DB, Chan PS, Allen LA, et al. Health literacy and outcomes among patients with heart failure. JAMA. 2011;305:1695–701.CrossRefPubMedPubMedCentral
21.
go back to reference Cook EF, Goldman L. Empiric comparison of multivariate analytic techniques: advantages and disadvantages of recursive partitioning analysis. J Chronic Dis. 1984;37(9-10):721–31.CrossRefPubMed Cook EF, Goldman L. Empiric comparison of multivariate analytic techniques: advantages and disadvantages of recursive partitioning analysis. J Chronic Dis. 1984;37(9-10):721–31.CrossRefPubMed
22.
go back to reference Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.CrossRefPubMed Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.CrossRefPubMed
23.
go back to reference Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med. 2007;35(9):2052–6.CrossRefPubMed Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med. 2007;35(9):2052–6.CrossRefPubMed
24.
go back to reference Pencina MJ, D’ Agostino RB, D’Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–72.CrossRefPubMed Pencina MJ, D’ Agostino RB, D’Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–72.CrossRefPubMed
25.
go back to reference Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiol. 1990;1:43–6.CrossRef Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiol. 1990;1:43–6.CrossRef
26.
go back to reference Cotter PE, Bhalla VK, Wallis SJ, Biram RW. Predicting readmissions: poor performance of the LACE index in an Older UK population. Age Ageing. 2012;41(6):784–9.CrossRefPubMed Cotter PE, Bhalla VK, Wallis SJ, Biram RW. Predicting readmissions: poor performance of the LACE index in an Older UK population. Age Ageing. 2012;41(6):784–9.CrossRefPubMed
28.
go back to reference Huesch MD. Payment policy by measurement of health care spending and outcomes. JAMA. 2010;303:2405–6.CrossRefPubMed Huesch MD. Payment policy by measurement of health care spending and outcomes. JAMA. 2010;303:2405–6.CrossRefPubMed
Metadata
Title
Electronic medical record-based multicondition models to predict the risk of 30 day readmission or death among adult medicine patients: validation and comparison to existing models
Authors
Ruben Amarasingham
Ferdinand Velasco
Bin Xie
Christopher Clark
Ying Ma
Song Zhang
Deepa Bhat
Brian Lucena
Marco Huesch
Ethan A. Halm
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2015
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-015-0162-6

Other articles of this Issue 1/2015

BMC Medical Informatics and Decision Making 1/2015 Go to the issue