Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01-12-2014 | Research

Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals

Authors: Yan Li, Monzurul Alam, Shanshan Guo, KH Ting, Jufang He

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2014

Login to get access

Abstract

Background

Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural “intent”. A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of “intent” may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements.

Methods

We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called “Motolink”, which detects these neural patterns and triggers a “spinal” stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for “Motolink” hardware.

Results

We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the “Motolink” system to detect the neural “intent” of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements.

Conclusion

We present a direct cortical “intent”-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thrasher TA, Popovic MR: Functional electrical stimulation of walking: function, exercise and rehabilitation. Ann Readapt Med Phys 2008,51(6):452-460.CrossRefPubMed Thrasher TA, Popovic MR: Functional electrical stimulation of walking: function, exercise and rehabilitation. Ann Readapt Med Phys 2008,51(6):452-460.CrossRefPubMed
2.
go back to reference Ming D, Bai Y, Liu X, Qi H, Cheng L, Wan B, Hu Y, Wong Y, Luk KD, Leong JC: A gait stability investigation into FES-assisted paraplegic walking based on the walker tipping index. J Neural Eng 2009,6(6):066007.CrossRefPubMed Ming D, Bai Y, Liu X, Qi H, Cheng L, Wan B, Hu Y, Wong Y, Luk KD, Leong JC: A gait stability investigation into FES-assisted paraplegic walking based on the walker tipping index. J Neural Eng 2009,6(6):066007.CrossRefPubMed
3.
go back to reference Ming D, Hu Y, Wong Y, Wan B, Luk KD, Leong JC: Risk-tendency graph (RTG): a new gait-analysis technique for monitoring FES-assisted paraplegic walking stability. Med Sci Monit 2009,15(8):MT105-MT112.PubMed Ming D, Hu Y, Wong Y, Wan B, Luk KD, Leong JC: Risk-tendency graph (RTG): a new gait-analysis technique for monitoring FES-assisted paraplegic walking stability. Med Sci Monit 2009,15(8):MT105-MT112.PubMed
4.
go back to reference Marsolais EB, Kobetic R: Functional electrical stimulation for walking in paraplegia. J Bone Joint Surg Am 1987,69(5):728-733.PubMed Marsolais EB, Kobetic R: Functional electrical stimulation for walking in paraplegia. J Bone Joint Surg Am 1987,69(5):728-733.PubMed
5.
go back to reference Ming D, Wan B: Progress in researches on application of functional electrical stimulation technique in paraplegic walking. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2007,24(4):932-936.PubMed Ming D, Wan B: Progress in researches on application of functional electrical stimulation technique in paraplegic walking. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2007,24(4):932-936.PubMed
6.
go back to reference Guiraud D, Stieglitz T, Koch KP, Divoux JL, Rabischong P: An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up. J Neural Eng 2006,3(4):268-275.CrossRefPubMed Guiraud D, Stieglitz T, Koch KP, Divoux JL, Rabischong P: An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up. J Neural Eng 2006,3(4):268-275.CrossRefPubMed
7.
go back to reference Nightingale EJ, Raymond J, Middleton JW, Crosbie J, Davis GM: Benefits of FES gait in a spinal cord injured population. Spinal Cord 2007,45(10):646-657.CrossRefPubMed Nightingale EJ, Raymond J, Middleton JW, Crosbie J, Davis GM: Benefits of FES gait in a spinal cord injured population. Spinal Cord 2007,45(10):646-657.CrossRefPubMed
8.
go back to reference Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 2011,377(9781):1938-1947.CrossRefPubMedPubMedCentral Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 2011,377(9781):1938-1947.CrossRefPubMedPubMedCentral
9.
go back to reference Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z: PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010,13(9):1075-1081.CrossRefPubMedPubMedCentral Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z: PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010,13(9):1075-1081.CrossRefPubMedPubMedCentral
10.
go back to reference Park KK, Liu K, Hu Y, Kanter JL, He Z: PTEN/mTOR and axon regeneration. Exp Neurol 2010,223(1):45-50.CrossRefPubMed Park KK, Liu K, Hu Y, Kanter JL, He Z: PTEN/mTOR and axon regeneration. Exp Neurol 2010,223(1):45-50.CrossRefPubMed
11.
go back to reference Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z: Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008,322(5903):963-966.CrossRefPubMedPubMedCentral Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z: Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008,322(5903):963-966.CrossRefPubMedPubMedCentral
12.
go back to reference Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH: Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012,150(6):1264-1273.CrossRefPubMedPubMedCentral Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH: Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012,150(6):1264-1273.CrossRefPubMedPubMedCentral
13.
go back to reference Coutts M, Keirstead HS: Stem cells for the treatment of spinal cord injury. Exp Neurol 2008,209(2):368-377.CrossRefPubMed Coutts M, Keirstead HS: Stem cells for the treatment of spinal cord injury. Exp Neurol 2008,209(2):368-377.CrossRefPubMed
14.
go back to reference Harrop JS, Hashimoto R, Norvell D, Raich A, Aarabi B, Grossman RG, Guest JD, Tator CH, Chapman J, Fehlings MG: Evaluation of clinical experience using cell-based therapies in patients with spinal cord injury: a systematic review. J Neurosurg Spine 2012,17(1):230-246.CrossRefPubMed Harrop JS, Hashimoto R, Norvell D, Raich A, Aarabi B, Grossman RG, Guest JD, Tator CH, Chapman J, Fehlings MG: Evaluation of clinical experience using cell-based therapies in patients with spinal cord injury: a systematic review. J Neurosurg Spine 2012,17(1):230-246.CrossRefPubMed
15.
go back to reference Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E: Regenerative medicine for the treatment of spinal cord injury: more than just promises? J Cell Mol Med 2012,16(11):2564-2582.CrossRefPubMedPubMedCentral Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E: Regenerative medicine for the treatment of spinal cord injury: more than just promises? J Cell Mol Med 2012,16(11):2564-2582.CrossRefPubMedPubMedCentral
16.
go back to reference Thrasher A, Graham GM, Popovic MR: Reducing muscle fatigue Due to functional electrical stimulation using random modulation of stimulation parameters. Artif Organs 2005,29(6):453-458.CrossRefPubMed Thrasher A, Graham GM, Popovic MR: Reducing muscle fatigue Due to functional electrical stimulation using random modulation of stimulation parameters. Artif Organs 2005,29(6):453-458.CrossRefPubMed
17.
go back to reference Malešević NM, Popović LZ, Schwirtlich L, Popović DB: Distributed low-frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation. Muscle Nerve 2010,42(4):556-562.CrossRefPubMed Malešević NM, Popović LZ, Schwirtlich L, Popović DB: Distributed low-frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation. Muscle Nerve 2010,42(4):556-562.CrossRefPubMed
18.
go back to reference Guevremont L, Renzi CG, Norton JA, Kowalczewski J, Saigal R, Mushahwar VK: Locomotor-related networks in the lumbosacral enlargement of the adult spinal Cat: activation through intraspinal microstimulation. IEEE Trans Neural Syst Rehabil Eng 2006,14(3):266-272.CrossRefPubMed Guevremont L, Renzi CG, Norton JA, Kowalczewski J, Saigal R, Mushahwar VK: Locomotor-related networks in the lumbosacral enlargement of the adult spinal Cat: activation through intraspinal microstimulation. IEEE Trans Neural Syst Rehabil Eng 2006,14(3):266-272.CrossRefPubMed
19.
20.
go back to reference Mushahwar VK, Collins DF, Prochazka A: Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp Neurol 2000,163(2):422-429.CrossRefPubMed Mushahwar VK, Collins DF, Prochazka A: Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp Neurol 2000,163(2):422-429.CrossRefPubMed
21.
go back to reference Mushahwar VK, Jacobs PL, Normann RA, Triolo RJ, Kleitman N: New functional electrical stimulation approaches to standing and walking. J Neural Eng 2007,4(3):S181-S197.CrossRefPubMed Mushahwar VK, Jacobs PL, Normann RA, Triolo RJ, Kleitman N: New functional electrical stimulation approaches to standing and walking. J Neural Eng 2007,4(3):S181-S197.CrossRefPubMed
22.
go back to reference Saigal R, Renzi C, Mushahwar VK: Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng 2004,12(4):430-440.CrossRefPubMed Saigal R, Renzi C, Mushahwar VK: Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng 2004,12(4):430-440.CrossRefPubMed
23.
go back to reference Chapin JK: Using multi-neuron population recordings for neural prosthetics. Nat Neurosci 2004,7(5):452-455.CrossRefPubMed Chapin JK: Using multi-neuron population recordings for neural prosthetics. Nat Neurosci 2004,7(5):452-455.CrossRefPubMed
24.
go back to reference Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 1999,2(7):664-670.CrossRefPubMed Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 1999,2(7):664-670.CrossRefPubMed
25.
go back to reference Linderman MD, Santhanam G, Kemere CT, Gilja V, O'Driscoll S, Yu BM, Afshar A, Ryu SI, Shenoy KV, Meng TH: Signal processing challenges for neural prostheses. IEEE Signal Process Mag 2008,25(1):18-28.CrossRef Linderman MD, Santhanam G, Kemere CT, Gilja V, O'Driscoll S, Yu BM, Afshar A, Ryu SI, Shenoy KV, Meng TH: Signal processing challenges for neural prostheses. IEEE Signal Process Mag 2008,25(1):18-28.CrossRef
26.
go back to reference Quian Quiroga R, Panzeri S: Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 2009,10(3):173-185.CrossRefPubMed Quian Quiroga R, Panzeri S: Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 2009,10(3):173-185.CrossRefPubMed
28.
go back to reference Schwartz AB, Taylor DM, Tillery SI: Extraction algorithms for cortical control of arm prosthetics. Curr Opin Neurobiol 2001,11(6):701-707.CrossRefPubMed Schwartz AB, Taylor DM, Tillery SI: Extraction algorithms for cortical control of arm prosthetics. Curr Opin Neurobiol 2001,11(6):701-707.CrossRefPubMed
29.
go back to reference Scott SH: Cortical-based neuroprosthetics: when less may be more. Nat Neurosci 2008,11(11):1245-1246.CrossRefPubMed Scott SH: Cortical-based neuroprosthetics: when less may be more. Nat Neurosci 2008,11(11):1245-1246.CrossRefPubMed
30.
go back to reference Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006,442(7099):164-171.CrossRefPubMed Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006,442(7099):164-171.CrossRefPubMed
31.
go back to reference Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 2012,485(7398):372-375.CrossRefPubMedPubMedCentral Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 2012,485(7398):372-375.CrossRefPubMedPubMedCentral
33.
go back to reference Pohlmeyer EA, Oby ER, Perreault EJ, Solla SA, Kilgore KL, Kirsch RF, Miller LE: Toward the restoration of hand Use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles. PLoS One 2009,4(6):e5924.CrossRefPubMedPubMedCentral Pohlmeyer EA, Oby ER, Perreault EJ, Solla SA, Kilgore KL, Kirsch RF, Miller LE: Toward the restoration of hand Use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles. PLoS One 2009,4(6):e5924.CrossRefPubMedPubMedCentral
34.
go back to reference Alam M, He J: Cortically Controlled Electrical Stimulation for Locomotion of the Spinal Cord Injured. In Converging Clinical and Engineering Research on Neurorehabilitation. Volume 1 edition. Edited by: Pons JL, Torricelli D, Pajaro M. Berlin Heidelberg: Springer; 2013:35-40.CrossRef Alam M, He J: Cortically Controlled Electrical Stimulation for Locomotion of the Spinal Cord Injured. In Converging Clinical and Engineering Research on Neurorehabilitation. Volume 1 edition. Edited by: Pons JL, Torricelli D, Pajaro M. Berlin Heidelberg: Springer; 2013:35-40.CrossRef
35.
go back to reference Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA: Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity. Front Integr Neurosci 2009, 3: 3.CrossRefPubMedPubMedCentral Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA: Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity. Front Integr Neurosci 2009, 3: 3.CrossRefPubMedPubMedCentral
36.
go back to reference Weiguo S, Ramakrishnan A, Udoekwere UI, Giszter SF: Multiple types of movement-related information encoded in hindlimb/trunk cortex in rats and potentially available for brain–machine interface controls. IEEE Trans Biomed Eng 2009,56(11):2712-2716.CrossRef Weiguo S, Ramakrishnan A, Udoekwere UI, Giszter SF: Multiple types of movement-related information encoded in hindlimb/trunk cortex in rats and potentially available for brain–machine interface controls. IEEE Trans Biomed Eng 2009,56(11):2712-2716.CrossRef
37.
go back to reference Manohar A, Flint RD, Knudsen E, Moxon KA: Decoding hindlimb movement for a brain machine interface after a complete spinal transection. PLoS One 2012,7(12):e52173.CrossRefPubMedPubMedCentral Manohar A, Flint RD, Knudsen E, Moxon KA: Decoding hindlimb movement for a brain machine interface after a complete spinal transection. PLoS One 2012,7(12):e52173.CrossRefPubMedPubMedCentral
38.
go back to reference Jiping H, Chaolin M, Herman R: Engineering neural interfaces for rehabilitation of lower limb function in spinal cord injured. Proc IEEE 2008,96(7):1152-1166.CrossRef Jiping H, Chaolin M, Herman R: Engineering neural interfaces for rehabilitation of lower limb function in spinal cord injured. Proc IEEE 2008,96(7):1152-1166.CrossRef
39.
go back to reference Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA: Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol 2003,33(3):247-254.CrossRefPubMed Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA: Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol 2003,33(3):247-254.CrossRefPubMed
40.
go back to reference Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009,12(10):1333-1342.CrossRefPubMedPubMedCentral Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR: Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 2009,12(10):1333-1342.CrossRefPubMedPubMedCentral
41.
go back to reference Gerasimenko YP, Ichiyama RM, Lavrov IA, Courtine G, Cai L, Zhong H, Roy RR, Edgerton VR: Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats. J Neurophysiol 2007,98(5):2525-2536.CrossRefPubMed Gerasimenko YP, Ichiyama RM, Lavrov IA, Courtine G, Cai L, Zhong H, Roy RR, Edgerton VR: Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats. J Neurophysiol 2007,98(5):2525-2536.CrossRefPubMed
42.
go back to reference Lavrov I, Dy CJ, Fong AJ, Gerasimenko Y, Courtine G, Zhong H, Roy RR, Edgerton VR: Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci 2008,28(23):6022-6029.CrossRefPubMedPubMedCentral Lavrov I, Dy CJ, Fong AJ, Gerasimenko Y, Courtine G, Zhong H, Roy RR, Edgerton VR: Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci 2008,28(23):6022-6029.CrossRefPubMedPubMedCentral
43.
go back to reference Van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G: Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 2012,336(6085):1182-1185.CrossRefPubMed Van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G: Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 2012,336(6085):1182-1185.CrossRefPubMed
44.
go back to reference Gerasimenko Y, Roy RR, Edgerton VR: Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Exp Neurol 2008,209(2):417-425.CrossRefPubMedPubMedCentral Gerasimenko Y, Roy RR, Edgerton VR: Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Exp Neurol 2008,209(2):417-425.CrossRefPubMedPubMedCentral
45.
go back to reference Gad P, Woodbridge J, Lavrov I, Zhong H, Roy R, Sarrafzadeh M, Edgerton V: Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats. J Neuroeng Rehabil 2012,9(1):38.CrossRefPubMedPubMedCentral Gad P, Woodbridge J, Lavrov I, Zhong H, Roy R, Sarrafzadeh M, Edgerton V: Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats. J Neuroeng Rehabil 2012,9(1):38.CrossRefPubMedPubMedCentral
46.
go back to reference Sharpe AN, Jackson A: Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord. J Neural Eng 2014,11(1):016005.CrossRefPubMedPubMedCentral Sharpe AN, Jackson A: Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord. J Neural Eng 2014,11(1):016005.CrossRefPubMedPubMedCentral
47.
go back to reference Kasten MR, Sunshine MD, Secrist ES, Horner PJ, Moritz CT: Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury. J Neural Eng 2013,10(4):044001.CrossRefPubMedPubMedCentral Kasten MR, Sunshine MD, Secrist ES, Horner PJ, Moritz CT: Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury. J Neural Eng 2013,10(4):044001.CrossRefPubMedPubMedCentral
48.
go back to reference Mushahwar VK, Guevremont L, Saigal R: Could cortical signals control intraspinal stimulators? a theoretical evaluation. IEEE Trans Neural Syst Rehabil Eng 2006,14(2):198-201.CrossRefPubMed Mushahwar VK, Guevremont L, Saigal R: Could cortical signals control intraspinal stimulators? a theoretical evaluation. IEEE Trans Neural Syst Rehabil Eng 2006,14(2):198-201.CrossRefPubMed
49.
go back to reference Li X, Yu K, Zhang Z, Sun W, Yang Z, Feng J, Chen X, Liu CH, Wang H, Guo YP, He J: Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex. Cell Res 2014,24(3):307-330.CrossRefPubMedPubMedCentral Li X, Yu K, Zhang Z, Sun W, Yang Z, Feng J, Chen X, Liu CH, Wang H, Guo YP, He J: Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex. Cell Res 2014,24(3):307-330.CrossRefPubMedPubMedCentral
50.
go back to reference Chen X, Guo Y, Feng J, Liao Z, Li X, Wang H, Li X, He J: Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex. J Neurosci 2013,33(24):9963-9974.CrossRefPubMed Chen X, Guo Y, Feng J, Liao Z, Li X, Wang H, Li X, He J: Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex. J Neurosci 2013,33(24):9963-9974.CrossRefPubMed
51.
go back to reference Roy RR, Hutchison DL, Pierotti DJ, Hodgson JA, Edgerton VR: EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming. J Appl Physiol (1985) 1991,70(6):2522-2529. Roy RR, Hutchison DL, Pierotti DJ, Hodgson JA, Edgerton VR: EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming. J Appl Physiol (1985) 1991,70(6):2522-2529.
52.
go back to reference Yakovenko S, McCrea DA, Stecina K, Prochazka A: Control of locomotor cycle durations. J Neurophysiol 2005,94(2):1057-1065.CrossRefPubMed Yakovenko S, McCrea DA, Stecina K, Prochazka A: Control of locomotor cycle durations. J Neurophysiol 2005,94(2):1057-1065.CrossRefPubMed
54.
go back to reference Jackson A, Moritz CT, Mavoori J, Lucas TH, Fetz EE: The neurochip BCI: towards a neural prosthesis for upper limb function. IEEE Trans Neural Syst Rehabil Eng 2006,14(2):187-190.CrossRefPubMed Jackson A, Moritz CT, Mavoori J, Lucas TH, Fetz EE: The neurochip BCI: towards a neural prosthesis for upper limb function. IEEE Trans Neural Syst Rehabil Eng 2006,14(2):187-190.CrossRefPubMed
55.
go back to reference Xiong Y, Yu Y-Q, Chan Y-S, He J: Effects of cortical stimulation on auditory-responsive thalamic neurones in anaesthetized guinea pigs. J Physiol 2004,560(1):207-217.CrossRefPubMedPubMedCentral Xiong Y, Yu Y-Q, Chan Y-S, He J: Effects of cortical stimulation on auditory-responsive thalamic neurones in anaesthetized guinea pigs. J Physiol 2004,560(1):207-217.CrossRefPubMedPubMedCentral
56.
go back to reference He J, Yu Y-Q, Xiong Y, Hashikawa T, Chan Y-S: Modulatory effect of cortical activation on the lemniscal auditory thalamus of the guinea Pig. J Neurophysiol 2002,88(2):1040-1050.PubMed He J, Yu Y-Q, Xiong Y, Hashikawa T, Chan Y-S: Modulatory effect of cortical activation on the lemniscal auditory thalamus of the guinea Pig. J Neurophysiol 2002,88(2):1040-1050.PubMed
57.
go back to reference Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR: Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 2005,383(3):339-344.CrossRefPubMed Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR: Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 2005,383(3):339-344.CrossRefPubMed
58.
go back to reference Polikov VS, Tresco PA, Reichert WM: Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 2005,148(1):1-18.CrossRefPubMed Polikov VS, Tresco PA, Reichert WM: Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 2005,148(1):1-18.CrossRefPubMed
60.
go back to reference Simeral JD, Kim S-P, Black MJ, Donoghue JP, Hochberg LR: Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng 2011,8(2):025027.CrossRefPubMedPubMedCentral Simeral JD, Kim S-P, Black MJ, Donoghue JP, Hochberg LR: Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng 2011,8(2):025027.CrossRefPubMedPubMedCentral
61.
go back to reference Alam M, Chen X, Fernandez E: A low-cost multichannel wireless neural stimulation system for freely roaming animals. J Neural Eng 2013,10(6):066010.CrossRefPubMed Alam M, Chen X, Fernandez E: A low-cost multichannel wireless neural stimulation system for freely roaming animals. J Neural Eng 2013,10(6):066010.CrossRefPubMed
62.
go back to reference Zelenin PV, Deliagina TG, Orlovsky GN, Karayannidou A, Dasgupta NM, Sirota MG, Beloozerova IN: Contribution of different limb controllers to modulation of motor cortex neurons during locomotion. J Neurosci 2011,31(12):4636-4649.CrossRefPubMedPubMedCentral Zelenin PV, Deliagina TG, Orlovsky GN, Karayannidou A, Dasgupta NM, Sirota MG, Beloozerova IN: Contribution of different limb controllers to modulation of motor cortex neurons during locomotion. J Neurosci 2011,31(12):4636-4649.CrossRefPubMedPubMedCentral
63.
64.
go back to reference Mushahwar VK, Horch KW: Proposed specifications for a lumbar spinal cord electrode array for control of lower extremities in paraplegia. IEEE Trans Rehabil Eng 1997,5(3):237-243.CrossRefPubMed Mushahwar VK, Horch KW: Proposed specifications for a lumbar spinal cord electrode array for control of lower extremities in paraplegia. IEEE Trans Rehabil Eng 1997,5(3):237-243.CrossRefPubMed
65.
go back to reference Mushahwar VK, Horch KW: Selective activation and graded recruitment of functional muscle groups through spinal cord stimulation. Ann N Y Acad Sci 1998, 860: 531-535.CrossRefPubMed Mushahwar VK, Horch KW: Selective activation and graded recruitment of functional muscle groups through spinal cord stimulation. Ann N Y Acad Sci 1998, 860: 531-535.CrossRefPubMed
66.
go back to reference Mushahwar VK, Horch KW: Selective activation of muscle groups in the feline hindlimb through electrical microstimulation of the ventral lumbo-sacral spinal cord. IEEE Trans Rehabil Eng 2000,8(1):11-21.CrossRefPubMed Mushahwar VK, Horch KW: Selective activation of muscle groups in the feline hindlimb through electrical microstimulation of the ventral lumbo-sacral spinal cord. IEEE Trans Rehabil Eng 2000,8(1):11-21.CrossRefPubMed
67.
go back to reference Roy RR, Harkema SJ, Edgerton VR: Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Arch Phys Med Rehabil 2012,93(9):1487-1497.CrossRefPubMed Roy RR, Harkema SJ, Edgerton VR: Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Arch Phys Med Rehabil 2012,93(9):1487-1497.CrossRefPubMed
68.
go back to reference Sunshine MD, Cho FS, Lockwood DR, Fechko AS, Kasten MR, Moritz CT: Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury. J Neural Eng 2013,10(3):036001.CrossRefPubMedPubMedCentral Sunshine MD, Cho FS, Lockwood DR, Fechko AS, Kasten MR, Moritz CT: Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury. J Neural Eng 2013,10(3):036001.CrossRefPubMedPubMedCentral
69.
go back to reference Sayenko DG, Angeli CA, Harkema SJ, Edgerton VR, Gerasimenko YP: Neuromodulation of evoked muscle potentials induced by epidural spinal cord stimulation in paralyzed individuals. J Neurophysiol 2014,111(5):1088-1099.CrossRefPubMedPubMedCentral Sayenko DG, Angeli CA, Harkema SJ, Edgerton VR, Gerasimenko YP: Neuromodulation of evoked muscle potentials induced by epidural spinal cord stimulation in paralyzed individuals. J Neurophysiol 2014,111(5):1088-1099.CrossRefPubMedPubMedCentral
Metadata
Title
Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals
Authors
Yan Li
Monzurul Alam
Shanshan Guo
KH Ting
Jufang He
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2014
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-107

Other articles of this Issue 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Go to the issue