Skip to main content
Top
Published in: European Journal of Applied Physiology 5/2019

01-05-2019 | Electromyographic | Original Article

Efficacy of a new strength training design: the 3/7 method

Authors: Séverine Stragier, Stéphane Baudry, Alain Carpentier, Jacques Duchateau

Published in: European Journal of Applied Physiology | Issue 5/2019

Login to get access

Abstract

Aim

This study investigated the efficacy of a new strength training method on strength gain, hypertrophy, and neuromuscular fatigability.

Methods

The training exercise consisted of elbow flexion against a load of ~ 70% of one repetition maximal (1RM). A new method (3/7 method) consisting of five sets of an increasing number of repetitions (3 to 7) during successive sets and brief inter-set intervals (15 s) was repeated two times after 150 s of recovery and compared to a method consisting of eight sets of six repetitions with an inter-set interval of 150 s (8 × 6 method). Subjects trained two times per week during 12 weeks. Strength gain [1RM load and maximal isometric voluntary contraction (MVC)], EMG activity of biceps brachii and brachioradialis, as well as biceps’ brachii thickness were measured. Change in neuromuscular fatigability was assessed as the maximal number of repetitions performed at 70% of 1RM before and after training.

Results

Both 3/7 and 8 × 6 methods increased 1RM load (22.2 ± 7.4 and 12.1 ± 6.6%, respectively; p < 0.05) and MVC force (15.7 ± 8.2 and 9.5 ± 9.5%; p < 0.05) with a greater 1RM gain (p < 0.05) for the 3/7 method. Normalized (%Mmax) EMG activity of elbow flexors increased (p < 0.05) similarly (14.5 ± 23.2 vs. 8.1 ± 20.5%; p > 0.05) after both methods but biceps’ brachii thickness increased to a greater extent (9.6 ± 3.6 vs. 5.5 ± 3.7%; p < 0.05) for the 3/7 method. Despite subjects performing more repetitions with the same absolute load after training, neuromuscular fatigability increased (p < 0.05) after the two training methods.

Conclusion

The 3/7 method provides a better stimulus for strength gain and muscle hypertrophy than the 8 × 6 method.
Literature
go back to reference Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjaer-Kristensen J, Dyhre-Poulsen P (2000) Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol 89:2249–2257CrossRefPubMed Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjaer-Kristensen J, Dyhre-Poulsen P (2000) Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol 89:2249–2257CrossRefPubMed
go back to reference Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534:613–623CrossRefPubMedPubMedCentral Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534:613–623CrossRefPubMedPubMedCentral
go back to reference Abe T, DeHoyos DV, Pollock ML, Garzarella L (2000) Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol 81:174–180CrossRefPubMed Abe T, DeHoyos DV, Pollock ML, Garzarella L (2000) Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol 81:174–180CrossRefPubMed
go back to reference Baudry S, Sarrazin S, Duchateau J (2013) Effects of load magnitude on muscular activity and tissue oxygenation during repeated elbow flexions until failure. Eur J Appl Physiol 113:1895–1904CrossRefPubMed Baudry S, Sarrazin S, Duchateau J (2013) Effects of load magnitude on muscular activity and tissue oxygenation during repeated elbow flexions until failure. Eur J Appl Physiol 113:1895–1904CrossRefPubMed
go back to reference Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR, Phillips SM, Baker S, Parise G (2014) The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One 9:e109739CrossRefPubMedPubMedCentral Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR, Phillips SM, Baker S, Parise G (2014) The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One 9:e109739CrossRefPubMedPubMedCentral
go back to reference Bendahan D, Chatel B, Jue T (2017) Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles. Am J Physiol Regul Integr Comp Physiol 313:R740–R753CrossRefPubMedPubMedCentral Bendahan D, Chatel B, Jue T (2017) Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles. Am J Physiol Regul Integr Comp Physiol 313:R740–R753CrossRefPubMedPubMedCentral
go back to reference Blazevich AJ, Gill ND, Bronks R, Newton RU (2003) Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Exerc 35:2013–2022CrossRefPubMed Blazevich AJ, Gill ND, Bronks R, Newton RU (2003) Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Exerc 35:2013–2022CrossRefPubMed
go back to reference Bottaro M, Martins B, Gentil P, Wagner D (2009) Effects of rest duration between sets of resistance training on acute hormonal responses in trained women. J Sci Med Sport 12:73–78CrossRefPubMed Bottaro M, Martins B, Gentil P, Wagner D (2009) Effects of rest duration between sets of resistance training on acute hormonal responses in trained women. J Sci Med Sport 12:73–78CrossRefPubMed
go back to reference Brown JM, Solomon C, Paton M (1993) Further evidence of functional differentiation within biceps brachii. Electromyogr Clin Neurophysiol 33:301–309PubMed Brown JM, Solomon C, Paton M (1993) Further evidence of functional differentiation within biceps brachii. Electromyogr Clin Neurophysiol 33:301–309PubMed
go back to reference Carpentier A, Duchateau J, Hainaut K (2001) Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus. J Physiol 534:903–912CrossRefPubMedPubMedCentral Carpentier A, Duchateau J, Hainaut K (2001) Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus. J Physiol 534:903–912CrossRefPubMedPubMedCentral
go back to reference Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrão ME, Jannig PR, Costa LA, Bacurau AV, Snijders T, Parise G, Tricoli V, Roschel H, Ugrinowitsch C (2016) Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J Physiol 594:5209–5222CrossRefPubMedPubMedCentral Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrão ME, Jannig PR, Costa LA, Bacurau AV, Snijders T, Parise G, Tricoli V, Roschel H, Ugrinowitsch C (2016) Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J Physiol 594:5209–5222CrossRefPubMedPubMedCentral
go back to reference Dankel SJ, Mattocks KT, Jessee MB, Buckner SL, Mouser JG, Loenneke JP (2017) Do metabolites that are produced during resistance exercise enhance muscle hypertrophy? Eur J Appl Physiol 117:2125–2135CrossRefPubMed Dankel SJ, Mattocks KT, Jessee MB, Buckner SL, Mouser JG, Loenneke JP (2017) Do metabolites that are produced during resistance exercise enhance muscle hypertrophy? Eur J Appl Physiol 117:2125–2135CrossRefPubMed
go back to reference Davis ML, Barstow TJ (2013) Estimated contribution of haemoglobin and myoglobin to near infrared spectroscopy. Respir Physiol Neurobiol 186:180–187CrossRefPubMed Davis ML, Barstow TJ (2013) Estimated contribution of haemoglobin and myoglobin to near infrared spectroscopy. Respir Physiol Neurobiol 186:180–187CrossRefPubMed
go back to reference de Salles BF, Simão R, Miranda F, Novaes Jda S, Lemos A, Willardson JM (2009) Rest interval between sets in strength training. Sports Med 39:765–777CrossRefPubMed de Salles BF, Simão R, Miranda F, Novaes Jda S, Lemos A, Willardson JM (2009) Rest interval between sets in strength training. Sports Med 39:765–777CrossRefPubMed
go back to reference de Freitas MC, Gerosa-Neto J, Zanchi NE, Lira FS, Rossi FE (2017) Role of metabolic stress for enhancing muscle adaptations: practical applications. World J Methodol 7:46–54CrossRefPubMedPubMedCentral de Freitas MC, Gerosa-Neto J, Zanchi NE, Lira FS, Rossi FE (2017) Role of metabolic stress for enhancing muscle adaptations: practical applications. World J Methodol 7:46–54CrossRefPubMedPubMedCentral
go back to reference Duchateau J, Baudry S (2011) Training adaptation of the neuromuscular system. In: Komi PV (ed) Neuromuscular aspects of sport performance. Wiley-Blackwell, Oxford, pp 216–253 Duchateau J, Baudry S (2011) Training adaptation of the neuromuscular system. In: Komi PV (ed) Neuromuscular aspects of sport performance. Wiley-Blackwell, Oxford, pp 216–253
go back to reference Duchateau J, Hainaut K (1988) Training effects of sub-maximal electrostimulation in a human muscle. Med Sci Sports Exerc 20:99–104CrossRefPubMed Duchateau J, Hainaut K (1988) Training effects of sub-maximal electrostimulation in a human muscle. Med Sci Sports Exerc 20:99–104CrossRefPubMed
go back to reference Duchateau J, Semmler JG, Enoka RM (2006) Training adaptations in the behavior of human motor units. J Appl Physiol 101:1766–1775CrossRefPubMed Duchateau J, Semmler JG, Enoka RM (2006) Training adaptations in the behavior of human motor units. J Appl Physiol 101:1766–1775CrossRefPubMed
go back to reference Edgerton VR, Roy RR, Apor P (1986) Specific tension of human elbow flexor muscles. In: Saltin B (ed) Biochemistry of exercise VI. Human Kinetics, Champaign, pp 487–500 Edgerton VR, Roy RR, Apor P (1986) Specific tension of human elbow flexor muscles. In: Saltin B (ed) Biochemistry of exercise VI. Human Kinetics, Champaign, pp 487–500
go back to reference Erskine RM, Fletcher G, Folland JP (2014) The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol 114:1239–1249CrossRefPubMed Erskine RM, Fletcher G, Folland JP (2014) The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol 114:1239–1249CrossRefPubMed
go back to reference Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 29:463–487CrossRefPubMed Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 29:463–487CrossRefPubMed
go back to reference Goto K, Nagasawa M, Yanagisawa O, Kizuka T, Ishii N, Takamatsu K (2004) Muscular adaptations to combinations of high- and low-intensity resistance exercises. J Strength Cond Res 18:730–737PubMed Goto K, Nagasawa M, Yanagisawa O, Kizuka T, Ishii N, Takamatsu K (2004) Muscular adaptations to combinations of high- and low-intensity resistance exercises. J Strength Cond Res 18:730–737PubMed
go back to reference Goto K, Ishii N, Kizuka T, Takamatsu K (2005) The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc 37:955–963PubMed Goto K, Ishii N, Kizuka T, Takamatsu K (2005) The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc 37:955–963PubMed
go back to reference Häkkinen K, Newton RU, Gordon SE, McCormick M, Volek JS, Nindl BC, Gotshalk LA, Campbell WW, Evans WJ, Häkkinen A, Humphries BJ, Kraemer WJ (1998) Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci 53:415–423CrossRef Häkkinen K, Newton RU, Gordon SE, McCormick M, Volek JS, Nindl BC, Gotshalk LA, Campbell WW, Evans WJ, Häkkinen A, Humphries BJ, Kraemer WJ (1998) Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci 53:415–423CrossRef
go back to reference Henselmans M, Schoenfeld BJ (2014) The effect of inter-set rest intervals on resistance exercise-induced muscle hypertrophy. Sports Med 44:1635–1643CrossRefPubMed Henselmans M, Schoenfeld BJ (2014) The effect of inter-set rest intervals on resistance exercise-induced muscle hypertrophy. Sports Med 44:1635–1643CrossRefPubMed
go back to reference Hunter SK (2014) Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf) 210:768–789CrossRefPubMedCentral Hunter SK (2014) Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf) 210:768–789CrossRefPubMedCentral
go back to reference Izquierdo M, González-Izal M, Navarro-Amezqueta I, Calbet JA, Ibañez J, Malanda A, Mallor F, Häkkinen K, Kraemer WJ, Gorostiaga EM (2011) Effects of strength training on muscle fatigue mapping from surface EMG and blood metabolites. Med Sci Sports Exerc 43:303–311CrossRefPubMed Izquierdo M, González-Izal M, Navarro-Amezqueta I, Calbet JA, Ibañez J, Malanda A, Mallor F, Häkkinen K, Kraemer WJ, Gorostiaga EM (2011) Effects of strength training on muscle fatigue mapping from surface EMG and blood metabolites. Med Sci Sports Exerc 43:303–311CrossRefPubMed
go back to reference Kaufman MP, Forster HV (1996) Reflexes controlling circulatory, ventilatory and airway responses to exercise. In: Rowell LB, Shepherd JT (eds) Handbook of physiology section 12: exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 381–447 Kaufman MP, Forster HV (1996) Reflexes controlling circulatory, ventilatory and airway responses to exercise. In: Rowell LB, Shepherd JT (eds) Handbook of physiology section 12: exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 381–447
go back to reference Kawakami Y, Nakazawa K, Fujimoto T, Nozaki D, Miyashita M, Fukunaga T (1994) Specific tension of elbow flexor and extensor muscles based on magnetic resonance imaging. Eur J Appl Physiol Occup Physiol 68:139–147CrossRefPubMed Kawakami Y, Nakazawa K, Fujimoto T, Nozaki D, Miyashita M, Fukunaga T (1994) Specific tension of elbow flexor and extensor muscles based on magnetic resonance imaging. Eur J Appl Physiol Occup Physiol 68:139–147CrossRefPubMed
go back to reference Kawakami Y, Abe T, Kuno SY, Fukunaga T (1995) Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol 72:37–43CrossRefPubMed Kawakami Y, Abe T, Kuno SY, Fukunaga T (1995) Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol 72:37–43CrossRefPubMed
go back to reference Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM (2005) Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol 98:120–131CrossRefPubMed Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM (2005) Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol 98:120–131CrossRefPubMed
go back to reference Kraemer W, Ratamess N (2004) Fundamentals of resistance training: Progression and exercise prescription. Med Sci Sports Exerc 36:674–688CrossRefPubMed Kraemer W, Ratamess N (2004) Fundamentals of resistance training: Progression and exercise prescription. Med Sci Sports Exerc 36:674–688CrossRefPubMed
go back to reference Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, Frykman P, McCurry D, Fleck SJ (1990) Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 69:1442–1450CrossRefPubMed Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, Frykman P, McCurry D, Fleck SJ (1990) Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 69:1442–1450CrossRefPubMed
go back to reference Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, Fleck SJ, Franklin B, Fry AC, Hoffman JR, Newton RU, Potteiger J, Stone MH, Ratamess NA, Triplett-McBride T (2002) American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 34:364–380CrossRefPubMed Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, Fleck SJ, Franklin B, Fry AC, Hoffman JR, Newton RU, Potteiger J, Stone MH, Ratamess NA, Triplett-McBride T (2002) American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 34:364–380CrossRefPubMed
go back to reference Kulig K, Powers CM, Shellock FG, Terk M (2001) The effects of eccentric velocity on activation of elbow flexors: evaluation by magnetic resonance imaging. Med Sci Sports Exerc 33:196–200CrossRefPubMed Kulig K, Powers CM, Shellock FG, Terk M (2001) The effects of eccentric velocity on activation of elbow flexors: evaluation by magnetic resonance imaging. Med Sci Sports Exerc 33:196–200CrossRefPubMed
go back to reference Laurent C, Penzer F, Letroye B, Carpentier A, Baudry S, Duchateau J (2016) Effect of a strength training method characterized by an incremental number of repetitions across sets and a very short rest interval. Sci Sports 31:115–121CrossRef Laurent C, Penzer F, Letroye B, Carpentier A, Baudry S, Duchateau J (2016) Effect of a strength training method characterized by an incremental number of repetitions across sets and a very short rest interval. Sci Sports 31:115–121CrossRef
go back to reference Manini TM, Clark BC (2009) Blood flow restricted exercise and skeletal muscle health. Exerc Sport Sci Rev 37:78–85CrossRefPubMed Manini TM, Clark BC (2009) Blood flow restricted exercise and skeletal muscle health. Exerc Sport Sci Rev 37:78–85CrossRefPubMed
go back to reference Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58:115–130PubMed Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58:115–130PubMed
go back to reference Nalbandian M, Takeda M (2016) Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology (Basel) 5(4):38 Nalbandian M, Takeda M (2016) Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology (Basel) 5(4):38
go back to reference Ogborn D, Schoenfeld B (2014) The role of fiber types in muscle hypertrophy: implications for loading strategies. Strength Cond J 36:20–25CrossRef Ogborn D, Schoenfeld B (2014) The role of fiber types in muscle hypertrophy: implications for loading strategies. Strength Cond J 36:20–25CrossRef
go back to reference Ozaki H, Loenneke JP, Buckner SL, Abe T (2016) Muscle growth across a variety of exercise modalities and intensities: contributions of mechanical and metabolic stimuli. Med Hypotheses 88:22–26CrossRefPubMed Ozaki H, Loenneke JP, Buckner SL, Abe T (2016) Muscle growth across a variety of exercise modalities and intensities: contributions of mechanical and metabolic stimuli. Med Hypotheses 88:22–26CrossRefPubMed
go back to reference Penzer F, Cabrol A, Baudry S, Duchateau J (2016) Comparison of muscle activity and tissue oxygenation during strength training protocols that differ by their organisation, rest interval between sets, and volume. Eur J Appl Physiol 116:1795–1806CrossRefPubMed Penzer F, Cabrol A, Baudry S, Duchateau J (2016) Comparison of muscle activity and tissue oxygenation during strength training protocols that differ by their organisation, rest interval between sets, and volume. Eur J Appl Physiol 116:1795–1806CrossRefPubMed
go back to reference Rooney KJ, Herbert RD, Balnave RJ (1994) Fatigue contributes to the strength training stimulus. Med Sci Sports Exerc 26:1160–1164PubMed Rooney KJ, Herbert RD, Balnave RJ (1994) Fatigue contributes to the strength training stimulus. Med Sci Sports Exerc 26:1160–1164PubMed
go back to reference Russ DW, Kent-Braun JA (2003) Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol 94:2414–2422CrossRefPubMed Russ DW, Kent-Braun JA (2003) Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol 94:2414–2422CrossRefPubMed
go back to reference Sale D, MacDougall D (1981) Specificity in strength training: a review for the coach and athlete. Can J Appl Sport Sci 6:87–92PubMed Sale D, MacDougall D (1981) Specificity in strength training: a review for the coach and athlete. Can J Appl Sport Sci 6:87–92PubMed
go back to reference Schoenfeld BJ (2013) Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med 43:179–194CrossRefPubMed Schoenfeld BJ (2013) Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med 43:179–194CrossRefPubMed
go back to reference Schott J, McCully K, Rutherford OM (1995) The role of metabolites in strength training. II. Short versus long isometric contractions. Eur J Appl Physiol Occup Physiol 71:337–341CrossRefPubMed Schott J, McCully K, Rutherford OM (1995) The role of metabolites in strength training. II. Short versus long isometric contractions. Eur J Appl Physiol Occup Physiol 71:337–341CrossRefPubMed
go back to reference Shimano T, Kraemer WJ, Spiering BA, Volek JS, Hatfield DL, Silvestre R, Vingren JL, Fragala MS, Maresh CM, Fleck SJ, Newton RU, Spreuwenberg LP, Häkkinen K (2006) Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J Strength Cond Res 20:819–823PubMed Shimano T, Kraemer WJ, Spiering BA, Volek JS, Hatfield DL, Silvestre R, Vingren JL, Fragala MS, Maresh CM, Fleck SJ, Newton RU, Spreuwenberg LP, Häkkinen K (2006) Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J Strength Cond Res 20:819–823PubMed
go back to reference Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS, Maresh CM (2008) Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med 38:527–540CrossRefPubMed Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS, Maresh CM (2008) Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med 38:527–540CrossRefPubMed
go back to reference Stragier S, Baudry S, Poortmans J, Duchateau J, Carpentier A (2016) Leucine-enriched protein supplementation does not influence neuromuscular adaptations in response to a 6-month strength training programme in older adults. Exp Gerontol 82:58–66CrossRefPubMed Stragier S, Baudry S, Poortmans J, Duchateau J, Carpentier A (2016) Leucine-enriched protein supplementation does not influence neuromuscular adaptations in response to a 6-month strength training programme in older adults. Exp Gerontol 82:58–66CrossRefPubMed
go back to reference Takarada Y, Sato Y, Ishii N (2002) Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 86:308–314CrossRefPubMed Takarada Y, Sato Y, Ishii N (2002) Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 86:308–314CrossRefPubMed
go back to reference Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL (2016) Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc 48:2294–2306CrossRefPubMedPubMedCentral Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL (2016) Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc 48:2294–2306CrossRefPubMedPubMedCentral
go back to reference Vedsted P, Blangsted AK, Søgaard K, Orizio C, Sjøgaard G (2006) Muscle tissue oxygenation, pressure, electrical, and mechanical responses during dynamic and static voluntary contractions. Eur J Appl Physiol 96:165–177CrossRefPubMed Vedsted P, Blangsted AK, Søgaard K, Orizio C, Sjøgaard G (2006) Muscle tissue oxygenation, pressure, electrical, and mechanical responses during dynamic and static voluntary contractions. Eur J Appl Physiol 96:165–177CrossRefPubMed
go back to reference Vierck J, O’Reilly B, Hossner K, Antonio J, Byrne K, Bucci L, Dodson M (2000) Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int 24:263–272CrossRefPubMed Vierck J, O’Reilly B, Hossner K, Antonio J, Byrne K, Bucci L, Dodson M (2000) Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int 24:263–272CrossRefPubMed
go back to reference Wernbom M, Augustsson J, Raastad T (2008) Ischemic strength training: a low-load alternative to heavy resistance exercise? Scand J Med Sci Sports 18:401–416CrossRefPubMed Wernbom M, Augustsson J, Raastad T (2008) Ischemic strength training: a low-load alternative to heavy resistance exercise? Scand J Med Sci Sports 18:401–416CrossRefPubMed
Metadata
Title
Efficacy of a new strength training design: the 3/7 method
Authors
Séverine Stragier
Stéphane Baudry
Alain Carpentier
Jacques Duchateau
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 5/2019
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-019-04099-5

Other articles of this Issue 5/2019

European Journal of Applied Physiology 5/2019 Go to the issue