Skip to main content
Top
Published in: Neurological Sciences 4/2019

01-04-2019 | Electroencephalography | Original Article

Methylphenidate modifies activity in the prefrontal and parietal cortex accelerating the time judgment

Authors: Tiago Lopes Farias, Victor Marinho, Valécia Carvalho, Kaline Rocha, Paulo Ramiler Alves da Silva, Francisca Silva, Ariel Soares Teles, Daya Gupta, Pedro Ribeiro, Bruna Velasques, Mauricio Cagy, Victor Hugo Bastos, Fernando Silva-Junior, Silmar Teixeira

Published in: Neurological Sciences | Issue 4/2019

Login to get access

Abstract

Methylphenidate produces its effects via actions on cortical areas involved with attention and working memory, which have a direct role in time estimation judgment tasks. In particular, the prefrontal and parietal cortex has been the target of several studies to understand the effect of methylphenidate on executive functions and time interval perception. However, it has not yet been studied whether acute administration of methylphenidate influences performance in time estimation task and the changes in alpha band absolute power in the prefrontal and parietal cortex. The current study investigates the influence of the acute use of methylphenidate in both performance and judgment in the time estimation interpretation through the alpha band absolute power activity in the prefrontal and parietal cortex. This is a double-blind, crossover study with a sample of 32 subjects under control (placebo) and experimental (methylphenidate) conditions with absolute alpha band power analysis during a time estimation task. We observed that methylphenidate does not influence task performance (p > 0.05), but it increases the time interval underestimation by over 7 s (p < 0.001) with a concomitant decrease in absolute alpha band power in the ventrolateral prefrontal cortex and dorsolateral prefrontal cortex and parietal cortex (p < 0.001). Acute use of methylphenidate increases the time interval underestimation, consistent with reduced accuracy of the internal clock mechanisms. Furthermore, acute use of methylphenidate influences the absolute alpha band power over the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, and parietal cortex.
Literature
1.
go back to reference Batistela S, Bueno OFA, Vaz LJ, Galduróz JCF (2016) Methylphenidate as a cognitive enhancer in healthy young people. Dement Neuropsychol 10(2):134–142PubMedPubMedCentralCrossRef Batistela S, Bueno OFA, Vaz LJ, Galduróz JCF (2016) Methylphenidate as a cognitive enhancer in healthy young people. Dement Neuropsychol 10(2):134–142PubMedPubMedCentralCrossRef
2.
go back to reference Newcorn JH, Nagy P, Childress AC, Frick G, Yan B, Pliszka S (2017) Randomized, double-blind, placebo-controlled acute comparator trials of Lisdexamfetamine and extended-release methylphenidate in adolescents with attention-deficit/hyperactivity disorder. CNS Drugs 31(11):999–1014PubMedPubMedCentralCrossRef Newcorn JH, Nagy P, Childress AC, Frick G, Yan B, Pliszka S (2017) Randomized, double-blind, placebo-controlled acute comparator trials of Lisdexamfetamine and extended-release methylphenidate in adolescents with attention-deficit/hyperactivity disorder. CNS Drugs 31(11):999–1014PubMedPubMedCentralCrossRef
3.
go back to reference Grünblatt E, Bartl J, Walitza S (2018) Methylphenidate enhances neuronal differentiation and reduces proliferation concomitant to activation of Wnt signal transduction pathways. Transl Psychiatry 8(1):51PubMedPubMedCentralCrossRef Grünblatt E, Bartl J, Walitza S (2018) Methylphenidate enhances neuronal differentiation and reduces proliferation concomitant to activation of Wnt signal transduction pathways. Transl Psychiatry 8(1):51PubMedPubMedCentralCrossRef
4.
go back to reference Righi S, Galli L, Paganini M, Bertini E, Viggiano MP, Piacentini S (2016) Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits. Neurol Sci 37(1):97–104PubMedCrossRef Righi S, Galli L, Paganini M, Bertini E, Viggiano MP, Piacentini S (2016) Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits. Neurol Sci 37(1):97–104PubMedCrossRef
5.
go back to reference Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20(6):RC65PubMedCrossRefPubMedCentral Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20(6):RC65PubMedCrossRefPubMedCentral
6.
go back to reference Linssen AM, Vuurman EF, Sambeth A, Riedel WJ (2012) Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers. Psychopharmacology 221(4):611–619PubMedCrossRef Linssen AM, Vuurman EF, Sambeth A, Riedel WJ (2012) Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers. Psychopharmacology 221(4):611–619PubMedCrossRef
7.
go back to reference Busardò FP, Kyriakou C, Cipolloni L, Zaami S, Frati P (2016) From clinical application to cognitive enhancement: the example of methylphenidate. Curr Neuropharmacol 14(1):17–27PubMedPubMedCentralCrossRef Busardò FP, Kyriakou C, Cipolloni L, Zaami S, Frati P (2016) From clinical application to cognitive enhancement: the example of methylphenidate. Curr Neuropharmacol 14(1):17–27PubMedPubMedCentralCrossRef
8.
go back to reference Storebø OJ, Pedersen N, Ramstad E, Kielsholm ML, Nielsen SS, Krogh HB, Moreira-Maia CR, Magnusson FL, Holmskov M, Gerner T, Skoog M, Rosendal S, Groth C, Gillies D, Buch Rasmussen K, Gauci D, Zwi M, Kirubakaran R, Håkonsen SJ, Aagaard L, Simonsen E, Gluud C. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents – assessment of adverse events in non-randomised studies. Cochrane Database of Syst Rev 2018, Issue 5. Art. No.: CD012069 Storebø OJ, Pedersen N, Ramstad E, Kielsholm ML, Nielsen SS, Krogh HB, Moreira-Maia CR, Magnusson FL, Holmskov M, Gerner T, Skoog M, Rosendal S, Groth C, Gillies D, Buch Rasmussen K, Gauci D, Zwi M, Kirubakaran R, Håkonsen SJ, Aagaard L, Simonsen E, Gluud C. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents – assessment of adverse events in non-randomised studies. Cochrane Database of Syst Rev 2018, Issue 5. Art. No.: CD012069
9.
go back to reference Jenson D, Yang K, Acevedo-Rodriguez A, Levine A, Broussard JI, Tang J, Dani JA (2015) Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity. Neuropharmacology 90:23–32PubMedCrossRef Jenson D, Yang K, Acevedo-Rodriguez A, Levine A, Broussard JI, Tang J, Dani JA (2015) Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity. Neuropharmacology 90:23–32PubMedCrossRef
10.
go back to reference Janssen TW, Bink M, Geladé K, van Mourik R, Maras A, Oosterlaan J (2016) A randomized controlled trial investigating the effects of neurofeedback, methylphenidate, and physical activity on event-related potentials in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 26(4):344–353CrossRefPubMed Janssen TW, Bink M, Geladé K, van Mourik R, Maras A, Oosterlaan J (2016) A randomized controlled trial investigating the effects of neurofeedback, methylphenidate, and physical activity on event-related potentials in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 26(4):344–353CrossRefPubMed
11.
go back to reference Sauseng P, Klimesch W, Schabus M, Doppelmayr M (2005) Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol 57(2):97–103PubMedCrossRef Sauseng P, Klimesch W, Schabus M, Doppelmayr M (2005) Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol 57(2):97–103PubMedCrossRef
12.
go back to reference Tomasi D, Volkow ND, Wang GJ, Wang R, Telang F, Caparelli EC, Wong C, Jayne M, Fowler JS (2011) Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. NeuroImage 54(4):3101–3110PubMedCrossRef Tomasi D, Volkow ND, Wang GJ, Wang R, Telang F, Caparelli EC, Wong C, Jayne M, Fowler JS (2011) Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. NeuroImage 54(4):3101–3110PubMedCrossRef
13.
go back to reference Murty VP, Sambataro F, Radulescu E, Altamura M, Iudicello J, Zoltick B, Weinberger DR, Goldberg TE, Mattay VS (2011) Selective updating of working memory content modulates meso-cortico-striatal activity. NeuroImage 57(3):1264–1272PubMedCrossRef Murty VP, Sambataro F, Radulescu E, Altamura M, Iudicello J, Zoltick B, Weinberger DR, Goldberg TE, Mattay VS (2011) Selective updating of working memory content modulates meso-cortico-striatal activity. NeuroImage 57(3):1264–1272PubMedCrossRef
14.
go back to reference Coull JT, Cheng RK, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36(1):3–25CrossRefPubMed Coull JT, Cheng RK, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36(1):3–25CrossRefPubMed
15.
go back to reference Fontes R, Ribeiro J, Gupta DS, Machado D, Lopes-Júnior F, Magalhães F, Bastos VH, Rocha K, Marinho V, Lima G, Velasques B, Ribeiro P, Orsini M, Pessoa B, Leite MA, Teixeira S (2016) Time perception mechanisms at central nervous system. Neurol Int 8(1):5939PubMedPubMedCentralCrossRef Fontes R, Ribeiro J, Gupta DS, Machado D, Lopes-Júnior F, Magalhães F, Bastos VH, Rocha K, Marinho V, Lima G, Velasques B, Ribeiro P, Orsini M, Pessoa B, Leite MA, Teixeira S (2016) Time perception mechanisms at central nervous system. Neurol Int 8(1):5939PubMedPubMedCentralCrossRef
16.
go back to reference Meck WH (1984) Attentional bias between modalities: effect on the internal clock, memory, and decision stages used in animal time discrimination. Ann N Y Acad Sci 423:528–541PubMedCrossRef Meck WH (1984) Attentional bias between modalities: effect on the internal clock, memory, and decision stages used in animal time discrimination. Ann N Y Acad Sci 423:528–541PubMedCrossRef
17.
go back to reference Matell MS, Meck WH (2000) Neuropsychological mechanisms of interval timing behavior. BioEssays 22(1):94–103PubMedCrossRef Matell MS, Meck WH (2000) Neuropsychological mechanisms of interval timing behavior. BioEssays 22(1):94–103PubMedCrossRef
18.
19.
go back to reference Pfeuty M, Ragot R, Pouthas V (2003) When time is up: CNV time course differentiates the roles of the hemispheres in the discrimination of short tone durations. Exp Brain Res 151(3):372–379PubMedCrossRef Pfeuty M, Ragot R, Pouthas V (2003) When time is up: CNV time course differentiates the roles of the hemispheres in the discrimination of short tone durations. Exp Brain Res 151(3):372–379PubMedCrossRef
20.
go back to reference Lewis PA, Miall RC (2006) A right hemispheric prefrontal system for cognitive time measurement. Behav Process 71(2–3):226–234CrossRef Lewis PA, Miall RC (2006) A right hemispheric prefrontal system for cognitive time measurement. Behav Process 71(2–3):226–234CrossRef
23.
go back to reference Lee HY, Yang EL (2018) Exploring the effects of working memory on time perception in attention deficit hyperactivity disorder. Psychol Rep 1:33294118755674 Lee HY, Yang EL (2018) Exploring the effects of working memory on time perception in attention deficit hyperactivity disorder. Psychol Rep 1:33294118755674
24.
go back to reference Broadway JM, Engle RW (2011) Lapsed attention to elapsed time? Individual differences in working memory capacity and temporal reproduction. Acta Psychol 137(1):115–126CrossRef Broadway JM, Engle RW (2011) Lapsed attention to elapsed time? Individual differences in working memory capacity and temporal reproduction. Acta Psychol 137(1):115–126CrossRef
25.
go back to reference Volkow ND, Wang GJ, Tomasi D, Telang F, Fowler JS, Pradhan K, Jayne M, Logan J, Goldstein RZ, Alia-Klein N, Wong C (2010) Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers. PLoS One 5(7):e11509PubMedPubMedCentralCrossRef Volkow ND, Wang GJ, Tomasi D, Telang F, Fowler JS, Pradhan K, Jayne M, Logan J, Goldstein RZ, Alia-Klein N, Wong C (2010) Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers. PLoS One 5(7):e11509PubMedPubMedCentralCrossRef
26.
go back to reference Coghill DR, Seth S, Pedroso S, Usala T, Currie J, Gagliano A (2014) Effects of methylphenidate on cognitive functions in children and adolescents with attention-deficit/hyperactivity disorder: evidence from a systematic review and a meta-analysis. Biol Psychiatry 76(8):603–615PubMedCrossRef Coghill DR, Seth S, Pedroso S, Usala T, Currie J, Gagliano A (2014) Effects of methylphenidate on cognitive functions in children and adolescents with attention-deficit/hyperactivity disorder: evidence from a systematic review and a meta-analysis. Biol Psychiatry 76(8):603–615PubMedCrossRef
27.
go back to reference García-Avilés Á, Albert-Gascó H, Arnal-Vicente I, Elhajj E, Sanjuan-Arias J, Sanchez-Perez AM, Olucha-Bordonau F (2015) Acute oral administration of low doses of methylphenidate targets calretinin neurons in the rat septal area. Front Neuroanat 9:33PubMedPubMedCentral García-Avilés Á, Albert-Gascó H, Arnal-Vicente I, Elhajj E, Sanjuan-Arias J, Sanchez-Perez AM, Olucha-Bordonau F (2015) Acute oral administration of low doses of methylphenidate targets calretinin neurons in the rat septal area. Front Neuroanat 9:33PubMedPubMedCentral
28.
go back to reference Kovshoff H, Banaschewski T, Buitelaar JK, Carucci S, Coghill D, Danckaerts M, Dittmann RW, Falissard B, Grimshaw DG, Hollis C, Inglis S, Konrad K, Liddle E, McCarthy S, Nagy P, Thompson M, Wong IC, Zuddas A, Sonuga-Barke EJ (2016) Reports of perceived adverse events of stimulant medication on cognition, motivation, and mood: qualitative investigation and the generation of items for the medication and cognition rating scale. J Child Adolesc Psychopharmacol 26(6):537–547PubMedPubMedCentralCrossRef Kovshoff H, Banaschewski T, Buitelaar JK, Carucci S, Coghill D, Danckaerts M, Dittmann RW, Falissard B, Grimshaw DG, Hollis C, Inglis S, Konrad K, Liddle E, McCarthy S, Nagy P, Thompson M, Wong IC, Zuddas A, Sonuga-Barke EJ (2016) Reports of perceived adverse events of stimulant medication on cognition, motivation, and mood: qualitative investigation and the generation of items for the medication and cognition rating scale. J Child Adolesc Psychopharmacol 26(6):537–547PubMedPubMedCentralCrossRef
29.
go back to reference Baldwin RL, Chelonis JJ, Flake RA, Edwards MC, Feild CR, Meaux JB, Paule MG (2004) Effect of methylphenidate on time perception in children with attention-deficit/hyperactivity disorder. Exp Clin Psychopharmacol 12(1):57–64PubMedCrossRef Baldwin RL, Chelonis JJ, Flake RA, Edwards MC, Feild CR, Meaux JB, Paule MG (2004) Effect of methylphenidate on time perception in children with attention-deficit/hyperactivity disorder. Exp Clin Psychopharmacol 12(1):57–64PubMedCrossRef
30.
go back to reference Teki S, Grube M, Kumar S, Griffiths TD (2011) Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci 31(10):3805–3812PubMedPubMedCentralCrossRef Teki S, Grube M, Kumar S, Griffiths TD (2011) Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci 31(10):3805–3812PubMedPubMedCentralCrossRef
31.
go back to reference Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S (2018) The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 128(3):262–282CrossRefPubMed Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S (2018) The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 128(3):262–282CrossRefPubMed
32.
go back to reference Zilles D, Meyer J, Schneider-Axmann T, Ekawardhani S, Gruber E, Falkai P, Gruber O (2012) Genetic polymorphisms of 5-HTT and DAT but not COMT differentially affect verbal and visuospatial working memory functioning. Eur Arch Psychiatry Clin Neurosci 262(8):667–676PubMedPubMedCentralCrossRef Zilles D, Meyer J, Schneider-Axmann T, Ekawardhani S, Gruber E, Falkai P, Gruber O (2012) Genetic polymorphisms of 5-HTT and DAT but not COMT differentially affect verbal and visuospatial working memory functioning. Eur Arch Psychiatry Clin Neurosci 262(8):667–676PubMedPubMedCentralCrossRef
33.
go back to reference Cirulli ET, Kasperaviciūte D, Attix DK, Need AC, Ge D, Gibson G, Goldstein DB (2010) Common genetic variation and performance on standardized cognitive tests. Eur J Hum Genet 18(7):815–820PubMedPubMedCentralCrossRef Cirulli ET, Kasperaviciūte D, Attix DK, Need AC, Ge D, Gibson G, Goldstein DB (2010) Common genetic variation and performance on standardized cognitive tests. Eur J Hum Genet 18(7):815–820PubMedPubMedCentralCrossRef
34.
go back to reference Davidson RJ (2004) What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biol Psychol 67:219–233PubMedCrossRef Davidson RJ (2004) What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biol Psychol 67:219–233PubMedCrossRef
35.
go back to reference Tomer R, Goldstein RZ, Wang GJ, Wong C, Volkow ND (2008) Incentive motivation is associated with striatal dopamine asymmetry. Biol Psychol 77(1):98–101PubMedCrossRef Tomer R, Goldstein RZ, Wang GJ, Wong C, Volkow ND (2008) Incentive motivation is associated with striatal dopamine asymmetry. Biol Psychol 77(1):98–101PubMedCrossRef
36.
go back to reference Dockree PM, Barnes JJ, Matthews N, Dean AJ, Abe R, Nandam LS, Kelly SP, Bellgrove MA, O'Connell RG (2017) The effects of methylphenidate on the neural signatures of sustained attention. Biol Psychiatry 82(9):687–694PubMedCrossRef Dockree PM, Barnes JJ, Matthews N, Dean AJ, Abe R, Nandam LS, Kelly SP, Bellgrove MA, O'Connell RG (2017) The effects of methylphenidate on the neural signatures of sustained attention. Biol Psychiatry 82(9):687–694PubMedCrossRef
37.
go back to reference Paes F, Machado S, Arias-Carrión O, Domingues CA, Teixeira S, Velasques B, Cunha M, Minc D, Basile LF, Budde H, Cagy M, Piedade R, Kerick S, Menéndez-González M, Skaper SD, Norwood BA, Ribeiro P, Nardi AE (2011) Effects of methylphenidate on performance of a practical pistol shooting task: a quantitative electroencephalography (qEEG) study. Int Arch Med 4(1):6PubMedPubMedCentralCrossRef Paes F, Machado S, Arias-Carrión O, Domingues CA, Teixeira S, Velasques B, Cunha M, Minc D, Basile LF, Budde H, Cagy M, Piedade R, Kerick S, Menéndez-González M, Skaper SD, Norwood BA, Ribeiro P, Nardi AE (2011) Effects of methylphenidate on performance of a practical pistol shooting task: a quantitative electroencephalography (qEEG) study. Int Arch Med 4(1):6PubMedPubMedCentralCrossRef
38.
go back to reference Loo SK, Bilder RM, Cho AL, Sturm A, Cowen J, Walshaw P, Levitt J, Del'Homme M, Piacentini J, McGough JJ, McCracken JT (2016) Effects of d-Methylphenidate, Guanfacine, and Their Combination on Electroencephalogram Resting State Spectral Power in Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 55(8):674–682.e1PubMedPubMedCentralCrossRef Loo SK, Bilder RM, Cho AL, Sturm A, Cowen J, Walshaw P, Levitt J, Del'Homme M, Piacentini J, McGough JJ, McCracken JT (2016) Effects of d-Methylphenidate, Guanfacine, and Their Combination on Electroencephalogram Resting State Spectral Power in Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 55(8):674–682.e1PubMedPubMedCentralCrossRef
39.
go back to reference Rosenberg MD, Zhang S, Hsu WT, Scheinost D, Finn ES, Shen X, Constable RT, Li CS, Chun MM (2016) Methylphenidate modulates functional network connectivity to enhance attention. J Neurosci 36(37):9547–9557PubMedPubMedCentralCrossRef Rosenberg MD, Zhang S, Hsu WT, Scheinost D, Finn ES, Shen X, Constable RT, Li CS, Chun MM (2016) Methylphenidate modulates functional network connectivity to enhance attention. J Neurosci 36(37):9547–9557PubMedPubMedCentralCrossRef
40.
go back to reference Chu R, Shumsky J, Waterhouse BD (2016) Differentiation of rodent behavioral phenotypes and methylphenidate action in sustained and flexible attention tasks. Brain Res 1641(Pt B):306–319PubMedCrossRef Chu R, Shumsky J, Waterhouse BD (2016) Differentiation of rodent behavioral phenotypes and methylphenidate action in sustained and flexible attention tasks. Brain Res 1641(Pt B):306–319PubMedCrossRef
41.
go back to reference Manktelow AE, Menon DK, Sahakian BJ, Stamatakis EA (2017) Working memory after traumatic brain injury: the neural basis of improved performance with methylphenidate. Front Behav Neurosci 11:58PubMedPubMedCentralCrossRef Manktelow AE, Menon DK, Sahakian BJ, Stamatakis EA (2017) Working memory after traumatic brain injury: the neural basis of improved performance with methylphenidate. Front Behav Neurosci 11:58PubMedPubMedCentralCrossRef
42.
go back to reference Wu ZM, Bralten J, An L, Cao QJ, Cao XH, Sun L, Liu L, Yang L, Mennes M, Zang YF, Franke B, Hoogman M, Wang YF (2017) Verbal working memory-related functional connectivity alterations in boys with attention-deficit/hyperactivity disorder and the effects of methylphenidate. J Psychopharmacol 31(8):1061–1069PubMedCrossRef Wu ZM, Bralten J, An L, Cao QJ, Cao XH, Sun L, Liu L, Yang L, Mennes M, Zang YF, Franke B, Hoogman M, Wang YF (2017) Verbal working memory-related functional connectivity alterations in boys with attention-deficit/hyperactivity disorder and the effects of methylphenidate. J Psychopharmacol 31(8):1061–1069PubMedCrossRef
43.
go back to reference Rubia K, Halari R, Christakou A, Taylor E (2009) Impulsiveness as a timing disturbance: neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1919–1931CrossRef Rubia K, Halari R, Christakou A, Taylor E (2009) Impulsiveness as a timing disturbance: neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1919–1931CrossRef
44.
go back to reference Nandam LS, Hester R, Wagner J, Cummins TD, Garner K, Dean AJ, Kim BN, Nathan PJ, Mattingley JB, Bellgrove MA (2011) Methylphenidate but not atomoxetine or citalopram modulates inhibitory control and response time variability. Biol Psychiatry 69(9):902–904PubMedCrossRef Nandam LS, Hester R, Wagner J, Cummins TD, Garner K, Dean AJ, Kim BN, Nathan PJ, Mattingley JB, Bellgrove MA (2011) Methylphenidate but not atomoxetine or citalopram modulates inhibitory control and response time variability. Biol Psychiatry 69(9):902–904PubMedCrossRef
45.
go back to reference Marx I, Weirich S, Berger C, Herpertz SC, Cohrs S, Wandschneider R, Höppner J, Häßler F (2017) Living in the fast lane: evidence for a global perceptual timing deficit in childhood ADHD caused by distinct but partially overlapping task-dependent cognitive mechanisms. Front Hum Neurosci 11:122PubMedPubMedCentralCrossRef Marx I, Weirich S, Berger C, Herpertz SC, Cohrs S, Wandschneider R, Höppner J, Häßler F (2017) Living in the fast lane: evidence for a global perceptual timing deficit in childhood ADHD caused by distinct but partially overlapping task-dependent cognitive mechanisms. Front Hum Neurosci 11:122PubMedPubMedCentralCrossRef
46.
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed
47.
go back to reference Nikolaus S, Wirrwar A, Antke C, Arkian S, Schramm N, Müller HW, Larisch R (2005) Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [123I]FP-CIT and a dedicated small animal SPECT. Eur J Nucl Med Mol Imaging 32(3):308–313PubMedCrossRef Nikolaus S, Wirrwar A, Antke C, Arkian S, Schramm N, Müller HW, Larisch R (2005) Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [123I]FP-CIT and a dedicated small animal SPECT. Eur J Nucl Med Mol Imaging 32(3):308–313PubMedCrossRef
48.
go back to reference Nikolaus S, Antke C, Beu M, Kley K, Larisch R, Wirrwar A, Müller HW (2007) In-vivo quantification of dose-dependent dopamine transporter blockade in the rat striatum with small animal SPECT. Nucl Med Commun 28(3):207–213PubMedCrossRef Nikolaus S, Antke C, Beu M, Kley K, Larisch R, Wirrwar A, Müller HW (2007) In-vivo quantification of dose-dependent dopamine transporter blockade in the rat striatum with small animal SPECT. Nucl Med Commun 28(3):207–213PubMedCrossRef
49.
go back to reference Ribeiro JA, Marinho FVC, Rocha K, Magalhães F, Baptista AF, Velasques B, Ribeiro P, Cagy M, Bastos VH, Gupta D, Teixeira S (2018) Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance. Neurol Sci 39(3):527–532PubMedCrossRef Ribeiro JA, Marinho FVC, Rocha K, Magalhães F, Baptista AF, Velasques B, Ribeiro P, Cagy M, Bastos VH, Gupta D, Teixeira S (2018) Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance. Neurol Sci 39(3):527–532PubMedCrossRef
50.
go back to reference Marinho FVC, Pinto GR, Oliveira T, Gomes A, Lima V, Ferreira-Fernandes H, Rocha K, Magalhães F, Velasques B, Ribeiro P, Cagy M, Gupta D, Bastos VH, Teixeira S (2018) The SLC6A3 3'-UTR VNTR and intron 8 VNTR polymorphisms association in the time estimation. Brain Struct Funct. https://doi.org/10.1007/s00429-018-1773-3 Marinho FVC, Pinto GR, Oliveira T, Gomes A, Lima V, Ferreira-Fernandes H, Rocha K, Magalhães F, Velasques B, Ribeiro P, Cagy M, Gupta D, Bastos VH, Teixeira S (2018) The SLC6A3 3'-UTR VNTR and intron 8 VNTR polymorphisms association in the time estimation. Brain Struct Funct. https://​doi.​org/​10.​1007/​s00429-018-1773-3
51.
go back to reference Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38(2):317–327PubMedCrossRef Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38(2):317–327PubMedCrossRef
52.
go back to reference Cohen J (1988) Statistical power analysis for the behavioral sciences. New York, Routledge Academic Cohen J (1988) Statistical power analysis for the behavioral sciences. New York, Routledge Academic
55.
go back to reference Jozefowiez J, Polack CW, Machado A, Miller RR (2014) Trial frequency effects in human temporal bisection: implications for theories of timing. Behav Process 101:81–88CrossRef Jozefowiez J, Polack CW, Machado A, Miller RR (2014) Trial frequency effects in human temporal bisection: implications for theories of timing. Behav Process 101:81–88CrossRef
57.
go back to reference Chen Z, Treisman A (2009) Implicit perception and level of processing in object-substitution masking. Psychol Sci 20(5):560–567PubMedCrossRef Chen Z, Treisman A (2009) Implicit perception and level of processing in object-substitution masking. Psychol Sci 20(5):560–567PubMedCrossRef
58.
go back to reference Agay N, Yechiam E, Carmel Z, Levkovitz Y (2010) Non-specific effects of methylphenidate (Ritalin) on cognitive ability and decision-making of ADHD and healthy adults. Psychopharmacology 210(4):511–519PubMedCrossRef Agay N, Yechiam E, Carmel Z, Levkovitz Y (2010) Non-specific effects of methylphenidate (Ritalin) on cognitive ability and decision-making of ADHD and healthy adults. Psychopharmacology 210(4):511–519PubMedCrossRef
59.
go back to reference Allman MJ, Meck WH (2012) Pathophysiological distortions in time perception and timed performance. Brain 135(Pt 3):656–677PubMedCrossRef Allman MJ, Meck WH (2012) Pathophysiological distortions in time perception and timed performance. Brain 135(Pt 3):656–677PubMedCrossRef
60.
go back to reference Howlett JR, Huang H, Hysek CM, Paulus MP (2017) The effect of single-dose methylphenidate on the rate of error-driven learning in healthy males: a randomized controlled trial. Psychopharmacology 234(22):3353–3360PubMedPubMedCentralCrossRef Howlett JR, Huang H, Hysek CM, Paulus MP (2017) The effect of single-dose methylphenidate on the rate of error-driven learning in healthy males: a randomized controlled trial. Psychopharmacology 234(22):3353–3360PubMedPubMedCentralCrossRef
61.
go back to reference Rammsayer T, Lustnauer S (1989) Sex differences in time perception. Percept Mot Skills 68(1):195–198PubMedCrossRef Rammsayer T, Lustnauer S (1989) Sex differences in time perception. Percept Mot Skills 68(1):195–198PubMedCrossRef
62.
go back to reference Dolu N, Golgeli A, Suer C, Ascioglu M, Ozesmi C, Sahin O (2004) Sex-related differences in time estimation and the role of expectancy. Int J Neurosci 114(7):805–815PubMedCrossRef Dolu N, Golgeli A, Suer C, Ascioglu M, Ozesmi C, Sahin O (2004) Sex-related differences in time estimation and the role of expectancy. Int J Neurosci 114(7):805–815PubMedCrossRef
63.
go back to reference Zhang M, Zhang L, Yu Y, Liu T, Luo W (2017) Women overestimate temporal duration: evidence from Chinese emotional words. Front Psychol 8:4PubMedPubMedCentral Zhang M, Zhang L, Yu Y, Liu T, Luo W (2017) Women overestimate temporal duration: evidence from Chinese emotional words. Front Psychol 8:4PubMedPubMedCentral
64.
go back to reference Deng Y, Chang L, Yang M, Huo M, Zhou R (2016) Gender differences in emotional response: inconsistency between experience and expressivity. PLoS One 11(6):e0158666PubMedPubMedCentralCrossRef Deng Y, Chang L, Yang M, Huo M, Zhou R (2016) Gender differences in emotional response: inconsistency between experience and expressivity. PLoS One 11(6):e0158666PubMedPubMedCentralCrossRef
66.
go back to reference Ballotta D, Lui F, Porro CA, Nichelli PF, Benuzzi F (2018) Modulation of neural circuits underlying temporal production by facial expressions of pain. PLoS One 13(2):e0193100PubMedPubMedCentralCrossRef Ballotta D, Lui F, Porro CA, Nichelli PF, Benuzzi F (2018) Modulation of neural circuits underlying temporal production by facial expressions of pain. PLoS One 13(2):e0193100PubMedPubMedCentralCrossRef
67.
go back to reference Zakay D, Block RA (2004) Prospective and retrospective duration judgments: an executive-control perspective. Acta Neurobiol Exp (Wars) 64(3):319–328 Zakay D, Block RA (2004) Prospective and retrospective duration judgments: an executive-control perspective. Acta Neurobiol Exp (Wars) 64(3):319–328
68.
go back to reference Tamm M, Uusberg A, Allik J, Kreegipuu K (2014) Emotional modulation of attention affects time perception: evidence from event-related potentials. Acta Psychol 149:148–156CrossRef Tamm M, Uusberg A, Allik J, Kreegipuu K (2014) Emotional modulation of attention affects time perception: evidence from event-related potentials. Acta Psychol 149:148–156CrossRef
69.
go back to reference Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 1(1):2PubMedPubMedCentralCrossRef Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 1(1):2PubMedPubMedCentralCrossRef
70.
go back to reference Rammsayer TH (1999) Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol B 52(3):273–286PubMed Rammsayer TH (1999) Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol B 52(3):273–286PubMed
71.
go back to reference Pouthas V, Perbal S (2004) Time perception depends on accurate clock mechanisms as well as unimpaired attention and memory processes. Acta Neurobiol Exp (Wars) 64(3):367–385 Pouthas V, Perbal S (2004) Time perception depends on accurate clock mechanisms as well as unimpaired attention and memory processes. Acta Neurobiol Exp (Wars) 64(3):367–385
72.
go back to reference Minkwitz J, Trenner MU, Sander C, Olbrich S, Sheldrick AJ, Hegerl U, Himmerich H (2012) Time perception at diferente EEG-vigilance levels. Behav Brain Funct 8:50PubMedPubMedCentralCrossRef Minkwitz J, Trenner MU, Sander C, Olbrich S, Sheldrick AJ, Hegerl U, Himmerich H (2012) Time perception at diferente EEG-vigilance levels. Behav Brain Funct 8:50PubMedPubMedCentralCrossRef
74.
go back to reference Coull JT, Vidal F, Nazarian B, Macar F (2004) Functional anatomy of the attentional modulation of time estimation. Science 5:1506–1508CrossRef Coull JT, Vidal F, Nazarian B, Macar F (2004) Functional anatomy of the attentional modulation of time estimation. Science 5:1506–1508CrossRef
75.
go back to reference Harmon-Jones E, Gable PA, Peterson CK (2010) The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update. Biol Psychol 84:451–462PubMedCrossRef Harmon-Jones E, Gable PA, Peterson CK (2010) The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update. Biol Psychol 84:451–462PubMedCrossRef
76.
go back to reference Babiloni C, Miniussi C, Babiloni F, Carducci F, Cincotti F, Del Percio C, Rossini PM (2004) Sub-second “temporal attention” modulates alpha rhythms. A high-resolution EEG study. Cogn Brain Res 19(3):259–268CrossRef Babiloni C, Miniussi C, Babiloni F, Carducci F, Cincotti F, Del Percio C, Rossini PM (2004) Sub-second “temporal attention” modulates alpha rhythms. A high-resolution EEG study. Cogn Brain Res 19(3):259–268CrossRef
77.
go back to reference Wittmann M, van Wassenhove V (2009) The experience of time: neural mechanisms and the interplay of emotion, cognition and embodiment. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1809–1813CrossRef Wittmann M, van Wassenhove V (2009) The experience of time: neural mechanisms and the interplay of emotion, cognition and embodiment. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1809–1813CrossRef
78.
go back to reference Levy BJ, Wagner AD (2011) Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 1224(1):40–62PubMedPubMedCentralCrossRef Levy BJ, Wagner AD (2011) Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 1224(1):40–62PubMedPubMedCentralCrossRef
79.
go back to reference Volkow ND, Wang GJ, Fowler JS, Logan J, Franceschi D, Maynard L, Ding YS, Gatley SJ, Gifford A, Zhu W, Swanson JM (2002) Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 43(3):181–187PubMedCrossRef Volkow ND, Wang GJ, Fowler JS, Logan J, Franceschi D, Maynard L, Ding YS, Gatley SJ, Gifford A, Zhu W, Swanson JM (2002) Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 43(3):181–187PubMedCrossRef
Metadata
Title
Methylphenidate modifies activity in the prefrontal and parietal cortex accelerating the time judgment
Authors
Tiago Lopes Farias
Victor Marinho
Valécia Carvalho
Kaline Rocha
Paulo Ramiler Alves da Silva
Francisca Silva
Ariel Soares Teles
Daya Gupta
Pedro Ribeiro
Bruna Velasques
Mauricio Cagy
Victor Hugo Bastos
Fernando Silva-Junior
Silmar Teixeira
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 4/2019
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-018-3699-1

Other articles of this Issue 4/2019

Neurological Sciences 4/2019 Go to the issue