Skip to main content
Top
Published in: Journal of Medical Systems 6/2020

01-06-2020 | Electroencephalography | Image & Signal Processing

Intentions Recognition of EEG Signals with High Arousal Degree for Complex Task

Authors: Rongrong Fu, Mengmeng Han, Fuwang Wang, Peiming Shi

Published in: Journal of Medical Systems | Issue 6/2020

Login to get access

Abstract

This paper presents a novel electroencephalography (EEG) evoked paradigm based on neurological rehabilitation. By implementing a conceptual model “cup-and-ball” system, EEG signals in manipulating the dynamic constrained objects are generated. Based on the operational EEG signals, a method is proposed to recognize different mental intentions. Under the manipulating task with a high arousal level, common spatial patterns (CSP) is used to extract and optimize features of the EEG signals from ten participants. Quadratic discriminant analysis (QDA) is implemented on EEG signals in different dimensions to identify different EEG patterns. The cross-validation is used to make classifier adaptive to a given data set. The receiver operating characteristic (ROC) curves are presented to illustrate recognition performance. The classification effect of QDA is verified by paired t-test (P < 0.001). Based on the proposed method, the average accuracy of mental intentions is 0.9857 ± 0.0191 and the area under the ROC curve (AUC) is 0.9665 ± 0.0291. The performance of QDA is also compared with the other three classifiers such as the support vector machine (SVM), the decision tree (DT) and the k-nearest neighborhood (k-NN) rule. The results suggest that the proposed method is very competitive with other methods.
Literature
1.
go back to reference Maurice, P., Hogan, N., and Sternad, D., Predictability, force, and (anti)resonance in complex object control. J. Neurophysiol. 120(2):765-780, 2018.CrossRef Maurice, P., Hogan, N., and Sternad, D., Predictability, force, and (anti)resonance in complex object control. J. Neurophysiol. 120(2):765-780, 2018.CrossRef
2.
go back to reference Hasson, C. J., Shen, T., and Sternad, D., Energy margins in dynamic object manipulation. J. Neurophysiol. 108(5):1349-65, 2012.CrossRef Hasson, C. J., Shen, T., and Sternad, D., Energy margins in dynamic object manipulation. J. Neurophysiol. 108(5):1349-65, 2012.CrossRef
3.
go back to reference Dickinson, S., Christensen, H., Tsotsos, J., and Olofsson, G., Active object recognition integrating attention and viewpoint control. Comput. Vis. Image Und. 67(3):239–260, 1997.CrossRef Dickinson, S., Christensen, H., Tsotsos, J., and Olofsson, G., Active object recognition integrating attention and viewpoint control. Comput. Vis. Image Und. 67(3):239–260, 1997.CrossRef
4.
go back to reference Hasson, C. J., and Sternad, D., Safety margins in older adults increase with improved control of a dynamic object. Front. Aging Neurosci. 6(158):1–9, 2014. Hasson, C. J., and Sternad, D., Safety margins in older adults increase with improved control of a dynamic object. Front. Aging Neurosci. 6(158):1–9, 2014.
5.
go back to reference Daly, J. J., and Wolpaw, J., Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7(11):1032–43, 2008.CrossRef Daly, J. J., and Wolpaw, J., Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7(11):1032–43, 2008.CrossRef
6.
go back to reference Fu, R., Wang, H., Han, M., Han, D., Scaling analysis of phase fluctuations of brain networks in dynamic constrained object manipulation. Int. J. Neural Syst. 30(2):2050002, 2020.CrossRef Fu, R., Wang, H., Han, M., Han, D., Scaling analysis of phase fluctuations of brain networks in dynamic constrained object manipulation. Int. J. Neural Syst. 30(2):2050002, 2020.CrossRef
7.
go back to reference Faller, J., Cummings, J., Saproo, S., and Sajad, P., Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task. Proc. Natl. Acad. Sci. U. S. A. 116:6482–6490, 2019, 13.CrossRef Faller, J., Cummings, J., Saproo, S., and Sajad, P., Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task. Proc. Natl. Acad. Sci. U. S. A. 116:6482–6490, 2019, 13.CrossRef
8.
go back to reference Chen, J., Wang, H., Hua, C., Wang Q., Liu C. Graph analysis of functional brain network topology using minimum spanning tree in driver drowsiness. Cogn. Neurodyn. 2018;12(6):569–581.CrossRef Chen, J., Wang, H., Hua, C., Wang Q., Liu C. Graph analysis of functional brain network topology using minimum spanning tree in driver drowsiness. Cogn. Neurodyn. 2018;12(6):569–581.CrossRef
9.
go back to reference Kirar, J. S., Agrawal, R. K., Relevant feature selection from a combination of spectral-temporal and spatial features for classification of motor imagery EEG. J. Med. Syst. 42(5):78, 2018.CrossRef Kirar, J. S., Agrawal, R. K., Relevant feature selection from a combination of spectral-temporal and spatial features for classification of motor imagery EEG. J. Med. Syst. 42(5):78, 2018.CrossRef
10.
go back to reference Wu, W., Chen, Z., Gao, X. R., Li, Y. Q., et al., Probabilistic common spatial patterns for multichannel EEG analysis. IEEE T. Pattern Anal. 37(3):639–653, 2015.CrossRef Wu, W., Chen, Z., Gao, X. R., Li, Y. Q., et al., Probabilistic common spatial patterns for multichannel EEG analysis. IEEE T. Pattern Anal. 37(3):639–653, 2015.CrossRef
11.
go back to reference Lotte, F., and Guan, C., Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms. IEEE T. Biomed. Eng. 58(2), 2011.CrossRef Lotte, F., and Guan, C., Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms. IEEE T. Biomed. Eng. 58(2), 2011.CrossRef
12.
go back to reference Kevric, J., and Subasi, A., Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. 31:398–406, 2017.CrossRef Kevric, J., and Subasi, A., Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. 31:398–406, 2017.CrossRef
13.
go back to reference Loong, W., and Abbott, D., Automatic target recognition based on cross-plot. PLoS ONE 6(9):e25621, 2011.CrossRef Loong, W., and Abbott, D., Automatic target recognition based on cross-plot. PLoS ONE 6(9):e25621, 2011.CrossRef
14.
go back to reference Yan, S. Y., Wang, H., Liu, C., and Zhao, H. B., Electrocorticogram classification based on wavelet variance and fisher linear discriminant analysis, presented at the 27th Chin. Control Decis. Conf. IEEE, China, May 23–25, 2015. Yan, S. Y., Wang, H., Liu, C., and Zhao, H. B., Electrocorticogram classification based on wavelet variance and fisher linear discriminant analysis, presented at the 27th Chin. Control Decis. Conf. IEEE, China, May 23–25, 2015.
15.
go back to reference Fu R., Tian, Y., Bao, T., Meng, Z., and Shi, P. M., Improvement motor imagery EEG classification based on regularized linear discriminant analysis. J. Med. Syst. 43(6):169, 2019.CrossRef Fu R., Tian, Y., Bao, T., Meng, Z., and Shi, P. M., Improvement motor imagery EEG classification based on regularized linear discriminant analysis. J. Med. Syst. 43(6):169, 2019.CrossRef
16.
go back to reference Zhou, Y., Zhang, B., Li, G., Tong, T., and Wan, X., Gd-rda: A new regularized discriminant analysis for high-dimensional data. J. Comput. Biol. 24(11):1099–1111, 2017.CrossRef Zhou, Y., Zhang, B., Li, G., Tong, T., and Wan, X., Gd-rda: A new regularized discriminant analysis for high-dimensional data. J. Comput. Biol. 24(11):1099–1111, 2017.CrossRef
17.
go back to reference Rodriguez, J. D., Perez, A., and Lozano, J. A., Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE T. Pattern Anal. 32(3):569–575, 2010.CrossRef Rodriguez, J. D., Perez, A., and Lozano, J. A., Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE T. Pattern Anal. 32(3):569–575, 2010.CrossRef
18.
go back to reference Kang, H., and Seungjin, C., Bayesian common spatial patterns for multi-subject EEG classification. Neural Netw. 57:39–50, 2014.CrossRef Kang, H., and Seungjin, C., Bayesian common spatial patterns for multi-subject EEG classification. Neural Netw. 57:39–50, 2014.CrossRef
19.
go back to reference Cho, H., Ahn, M., Kim, K., and Jun, S. C., Increasing session-to-session transfer in a brain–computer interface with on-site background noise acquisition. J. Neural Eng. 12(6):066009, 2015.CrossRef Cho, H., Ahn, M., Kim, K., and Jun, S. C., Increasing session-to-session transfer in a brain–computer interface with on-site background noise acquisition. J. Neural Eng. 12(6):066009, 2015.CrossRef
20.
go back to reference Arvaneh, M., Guan, C., Ang, K. K., and Quek, C., EEG data space adaptation to reduce intersession nonstationarity in brain–computer interface. Neural Comput. 25:2146–2171, 2013, 8.CrossRef Arvaneh, M., Guan, C., Ang, K. K., and Quek, C., EEG data space adaptation to reduce intersession nonstationarity in brain–computer interface. Neural Comput. 25:2146–2171, 2013, 8.CrossRef
21.
go back to reference Yan, S. Y., Liu, C., Wang, H., and Zhao, H. B., ecog classification based on wavelet variance. J. Biomed. Eng. 30(3):460, 2013. Yan, S. Y., Liu, C., Wang, H., and Zhao, H. B., ecog classification based on wavelet variance. J. Biomed. Eng. 30(3):460, 2013.
22.
go back to reference Samuel, O. W., Geng, Y., Li, X., and Li, G., Towards efficient decoding of multiple classes of motor imagery limb movements based on EEG spectral and time domain descriptors. J. Med. Syst., 41(12):194, 2017.CrossRef Samuel, O. W., Geng, Y., Li, X., and Li, G., Towards efficient decoding of multiple classes of motor imagery limb movements based on EEG spectral and time domain descriptors. J. Med. Syst., 41(12):194, 2017.CrossRef
Metadata
Title
Intentions Recognition of EEG Signals with High Arousal Degree for Complex Task
Authors
Rongrong Fu
Mengmeng Han
Fuwang Wang
Peiming Shi
Publication date
01-06-2020
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 6/2020
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-020-01571-0

Other articles of this Issue 6/2020

Journal of Medical Systems 6/2020 Go to the issue