Skip to main content
Top
Published in: Neurological Sciences 5/2019

01-05-2019 | Electroencephalography | Original Article

Source localization of epileptiform discharges in childhood absence epilepsy using a distributed source model: a standardized, low-resolution, brain electromagnetic tomography (sLORETA) study

Authors: Ye-Hwa Jun, Tae-Hoon Eom, Young-Hoon Kim, Seung-Yun Chung, In-Goo Lee, Jung-Min Kim

Published in: Neurological Sciences | Issue 5/2019

Login to get access

Abstract

Localizing the source of epileptiform discharges in generalized epilepsy has been controversial for the past few decades. Recent neuroimaging studies have shown that epileptiform discharges in generalized epilepsy can be localized to a particular region. Childhood absence epilepsy (CAE) is the most common generalized epilepsy in childhood and is considered the prototype of idiopathic generalized epilepsy (IGE). To better understand electrophysiological changes and their development in CAE, we investigated the origin of epileptiform discharges. We performed distributed source localization with standardized, low-resolution, brain electromagnetic tomography (sLORETA). In 16 children with CAE, sLORETA images corresponding to the midpoint of the ascending phase and the negative peak of the spike were obtained from a total of 242 EEG epochs (121 epochs at each timepoint). Maximal current source density (CSD) was mostly located in the frontal lobe (69.4%). At the gyral level, maximal CSD was most commonly in the superior frontal gyrus (39.3%) followed by the middle frontal gyrus (14.0%) and medial frontal gyrus (8.7%). At the hemisphere level, maximal CSD was dominant in the right cerebral hemisphere (63.6%). These results were consistent at the midpoint of the ascending phase and the negative peak of the spike. Our results demonstrated that the major source of epileptiform discharges in CAE was the frontal lobe. These results suggest that the frontal lobe is involved in generating CAE. This finding is consistent with recent studies that have suggested selective cortical involvement, especially in the frontal regions, in IGE.
Appendix
Available only for authorised users
Literature
1.
go back to reference Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521CrossRefPubMedPubMedCentral Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521CrossRefPubMedPubMedCentral
2.
go back to reference Panayiotopoulos CP (2010) Idiopathic generalised epilepsies. In: Panayiotopoulos CP (ed) A clinical guide to epileptic syndromes and their treatment, revised, 2nd edn. Springer, London, pp 377–422CrossRef Panayiotopoulos CP (2010) Idiopathic generalised epilepsies. In: Panayiotopoulos CP (ed) A clinical guide to epileptic syndromes and their treatment, revised, 2nd edn. Springer, London, pp 377–422CrossRef
3.
go back to reference Morison RS, Dempsey EW (1941) A study of thalamo-cortical relations. Am J Phys 135:281–292CrossRef Morison RS, Dempsey EW (1941) A study of thalamo-cortical relations. Am J Phys 135:281–292CrossRef
4.
go back to reference Jasper HH, Droogleever-Fortuyn J (1946) Experimental studies on the functional anatomy of petit mal epilepsy. Res Publ Assoc Res Nerv Ment Dis 26:272–298 Jasper HH, Droogleever-Fortuyn J (1946) Experimental studies on the functional anatomy of petit mal epilepsy. Res Publ Assoc Res Nerv Ment Dis 26:272–298
5.
go back to reference McCormick DA (2002) Cortical and subcortical generators of normal and abnormal rhythmicity. Int Rev Neurobiol 49:99–114CrossRefPubMed McCormick DA (2002) Cortical and subcortical generators of normal and abnormal rhythmicity. Int Rev Neurobiol 49:99–114CrossRefPubMed
6.
go back to reference Slaght SJ, Leresche N, Deniau JM, Crunelli V, Charpier S (2002) Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges. J Neurosci 22:2323–2334CrossRefPubMedPubMedCentral Slaght SJ, Leresche N, Deniau JM, Crunelli V, Charpier S (2002) Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges. J Neurosci 22:2323–2334CrossRefPubMedPubMedCentral
7.
go back to reference Shahar E, Andraus J, Sagie-Lerman T, Savitzki D (2002) Valproic acid therapy inducing absence status evolving into generalized seizures. Pediatr Neurol 26:402–404CrossRefPubMed Shahar E, Andraus J, Sagie-Lerman T, Savitzki D (2002) Valproic acid therapy inducing absence status evolving into generalized seizures. Pediatr Neurol 26:402–404CrossRefPubMed
8.
go back to reference Holmes MD, Brown M, Tucker DM (2004) Are “generalized” seizures truly generalized? Evidence of localized mesial frontal and frontopolar discharges in absence. Epilepsia 45:1568–1579CrossRefPubMed Holmes MD, Brown M, Tucker DM (2004) Are “generalized” seizures truly generalized? Evidence of localized mesial frontal and frontopolar discharges in absence. Epilepsia 45:1568–1579CrossRefPubMed
9.
go back to reference Niedermeyer E (2005) Epileptic seizure disorders. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 505–620 Niedermeyer E (2005) Epileptic seizure disorders. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 505–620
10.
go back to reference Goldensohn ES, Legatt AD, Koszer S, Wolf SM (1999) Goldensohn’s EEG interpretation: problems of overreading and underreading, 2nd edn. Futura Publishing, New York Goldensohn ES, Legatt AD, Koszer S, Wolf SM (1999) Goldensohn’s EEG interpretation: problems of overreading and underreading, 2nd edn. Futura Publishing, New York
11.
go back to reference Panayiotopoulos CP (1994) The clinical spectrum of typical absence seizures and absence epilepsies. In: Malafosse A, Genton P, Hirsch E et al (eds) Idiopathic generalized epilepsies: clinical, experimental, genetic aspects. John Libbey, London, pp 75–85 Panayiotopoulos CP (1994) The clinical spectrum of typical absence seizures and absence epilepsies. In: Malafosse A, Genton P, Hirsch E et al (eds) Idiopathic generalized epilepsies: clinical, experimental, genetic aspects. John Libbey, London, pp 75–85
12.
go back to reference Gadad V, Sinha S, Mariyappa N, Velmurugan J, Chaitanya G, Saini J, Thennarasu K, Satishchandra P (2018) Source analysis of epileptiform discharges in absence epilepsy using magnetoencephalography (MEG). Epilepsy Res 140:46–52CrossRefPubMed Gadad V, Sinha S, Mariyappa N, Velmurugan J, Chaitanya G, Saini J, Thennarasu K, Satishchandra P (2018) Source analysis of epileptiform discharges in absence epilepsy using magnetoencephalography (MEG). Epilepsy Res 140:46–52CrossRefPubMed
13.
go back to reference Cortez MA, Kostopoulos GK, Snead OC 3rd (2016) Acute and chronic pharmacological models of generalized absence seizures. J Neurosci Methods 260:175–184CrossRefPubMed Cortez MA, Kostopoulos GK, Snead OC 3rd (2016) Acute and chronic pharmacological models of generalized absence seizures. J Neurosci Methods 260:175–184CrossRefPubMed
14.
go back to reference Yeni SN, Kabasakal L, Yalçinkaya C, Nisli C, Dervent A (2000) Ictal and interictal SPECT findings in childhood absence epilepsy. Seizure 9:265–269CrossRefPubMed Yeni SN, Kabasakal L, Yalçinkaya C, Nisli C, Dervent A (2000) Ictal and interictal SPECT findings in childhood absence epilepsy. Seizure 9:265–269CrossRefPubMed
15.
go back to reference Plummer C, Wagner M, Fuchs M, Vogrin S, Litewka L, Farish S, Bailey C, Harvey AS, Cook MJ (2010) Clinical utility of distributed source modelling of interictal scalp EEG in focal epilepsy. Clin Neurophysiol 121:1726–1739CrossRefPubMed Plummer C, Wagner M, Fuchs M, Vogrin S, Litewka L, Farish S, Bailey C, Harvey AS, Cook MJ (2010) Clinical utility of distributed source modelling of interictal scalp EEG in focal epilepsy. Clin Neurophysiol 121:1726–1739CrossRefPubMed
16.
go back to reference Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12PubMed Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12PubMed
17.
go back to reference Wagner M, Fuchs M, Kastner J (2004) Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topogr 16:277–280CrossRefPubMed Wagner M, Fuchs M, Kastner J (2004) Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topogr 16:277–280CrossRefPubMed
18.
go back to reference Sekihara K, Sahani M, Nagarajan SS (2005) Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuroimage 25:1056–1067CrossRefPubMed Sekihara K, Sahani M, Nagarajan SS (2005) Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuroimage 25:1056–1067CrossRefPubMed
19.
go back to reference Shin JH, Eom TH, Kim YH, Chung SY, Lee IG, Kim JM (2017) Comparative analysis of background EEG activity in childhood absence epilepsy during valproate treatment: a standardized, low-resolution, brain electromagnetic tomography (sLORETA) study. Neurol Sci 38:1293–1298CrossRefPubMed Shin JH, Eom TH, Kim YH, Chung SY, Lee IG, Kim JM (2017) Comparative analysis of background EEG activity in childhood absence epilepsy during valproate treatment: a standardized, low-resolution, brain electromagnetic tomography (sLORETA) study. Neurol Sci 38:1293–1298CrossRefPubMed
20.
go back to reference Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712CrossRefPubMed Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712CrossRefPubMed
21.
go back to reference Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611CrossRefPubMed Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611CrossRefPubMed
22.
go back to reference Lantz G, Spinelli L, Seeck M, de Peralta Menendez RG, Sottas CC, Michel CM (2003) Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128-channel EEG mapping study. J Clin Neurophysiol 20:311–319CrossRefPubMed Lantz G, Spinelli L, Seeck M, de Peralta Menendez RG, Sottas CC, Michel CM (2003) Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128-channel EEG mapping study. J Clin Neurophysiol 20:311–319CrossRefPubMed
23.
go back to reference Gadad V, Sinha S, Mariyappa N, Chaithanya G, Jayabal V, Saini J, Thennarasu K, Satishchandra P (2017) Source localization of epileptiform discharges in juvenile myoclonic epilepsy (JME) using magnetoencephalography (MEG). Epilepsy Res 129:67–73CrossRefPubMed Gadad V, Sinha S, Mariyappa N, Chaithanya G, Jayabal V, Saini J, Thennarasu K, Satishchandra P (2017) Source localization of epileptiform discharges in juvenile myoclonic epilepsy (JME) using magnetoencephalography (MEG). Epilepsy Res 129:67–73CrossRefPubMed
24.
go back to reference Clemens B, Bessenyei M, Piros P, Tóth M, Seress L, Kondákor I (2007) Characteristic distribution of interictal brain electrical activity in idiopathic generalized epilepsy. Epilepsia 48:941–949CrossRefPubMed Clemens B, Bessenyei M, Piros P, Tóth M, Seress L, Kondákor I (2007) Characteristic distribution of interictal brain electrical activity in idiopathic generalized epilepsy. Epilepsia 48:941–949CrossRefPubMed
26.
go back to reference Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, Desalvo M, Novotny EJ, Constable RT, Blumenfeld H (2010) Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci 30:5884–5893CrossRefPubMedPubMedCentral Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, Desalvo M, Novotny EJ, Constable RT, Blumenfeld H (2010) Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci 30:5884–5893CrossRefPubMedPubMedCentral
27.
go back to reference Carney PW, Masterton RA, Harvey AS et al (2010) The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology 75:904–911CrossRefPubMed Carney PW, Masterton RA, Harvey AS et al (2010) The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology 75:904–911CrossRefPubMed
28.
go back to reference Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M, Gotman J (2010) Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia 51:2000–2010CrossRefPubMedPubMedCentral Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M, Gotman J (2010) Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia 51:2000–2010CrossRefPubMedPubMedCentral
29.
go back to reference Benuzzi F, Mirandola L, Pugnaghi M, Farinelli V, Tassinari CA, Capovilla G, Cantalupo G, Beccaria F, Nichelli P, Meletti S (2012) Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia 53:622–630CrossRefPubMed Benuzzi F, Mirandola L, Pugnaghi M, Farinelli V, Tassinari CA, Capovilla G, Cantalupo G, Beccaria F, Nichelli P, Meletti S (2012) Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia 53:622–630CrossRefPubMed
30.
go back to reference Anderson J, Hamandi K (2011) Understanding juvenile myoclonic epilepsy: contributions from neuroimaging. Epilepsy Res 94:127–137CrossRefPubMed Anderson J, Hamandi K (2011) Understanding juvenile myoclonic epilepsy: contributions from neuroimaging. Epilepsy Res 94:127–137CrossRefPubMed
31.
go back to reference Wandschneider B, Thompson PJ, Vollmar C, Koepp MJ (2012) Frontal lobe function and structure in juvenile myoclonic epilepsy: a comprehensive review of neuropsychological and imaging data. Epilepsia 53:2091–2098CrossRefPubMed Wandschneider B, Thompson PJ, Vollmar C, Koepp MJ (2012) Frontal lobe function and structure in juvenile myoclonic epilepsy: a comprehensive review of neuropsychological and imaging data. Epilepsia 53:2091–2098CrossRefPubMed
32.
go back to reference Kim JB, Suh SI, Seo WK, Oh K, Koh SB, Kim JH (2014) Altered thalamocortical functional connectivity in idiopathic generalized epilepsy. Epilepsia 55:592–600CrossRefPubMed Kim JB, Suh SI, Seo WK, Oh K, Koh SB, Kim JH (2014) Altered thalamocortical functional connectivity in idiopathic generalized epilepsy. Epilepsia 55:592–600CrossRefPubMed
33.
go back to reference Betting LE, Mory SB, Lopes-Cendes I, Li LM, Guerreiro MM, Guerreiro CAM, Cendes F (2006) MRI reveals structural abnormalities in patients with idiopathic generalized epilepsy. Neurology 67:848–852CrossRefPubMed Betting LE, Mory SB, Lopes-Cendes I, Li LM, Guerreiro MM, Guerreiro CAM, Cendes F (2006) MRI reveals structural abnormalities in patients with idiopathic generalized epilepsy. Neurology 67:848–852CrossRefPubMed
34.
go back to reference Pardoe H, Pell GS, Abbott DF, Berg AT, Jackson GD (2008) Multi-site voxel-based morphometry: methods and a feasibility demonstration with childhood absence epilepsy. Neuroimage 42:611–616CrossRefPubMed Pardoe H, Pell GS, Abbott DF, Berg AT, Jackson GD (2008) Multi-site voxel-based morphometry: methods and a feasibility demonstration with childhood absence epilepsy. Neuroimage 42:611–616CrossRefPubMed
35.
go back to reference Caplan R, Levitt J, Siddarth P, Wu KN, Gurbani S, Sankar R, Shields WD (2009) Frontal and temporal volumes in childhood absence epilepsy. Epilepsia 50:2466–2472CrossRefPubMed Caplan R, Levitt J, Siddarth P, Wu KN, Gurbani S, Sankar R, Shields WD (2009) Frontal and temporal volumes in childhood absence epilepsy. Epilepsia 50:2466–2472CrossRefPubMed
36.
go back to reference Tondelli M, Vaudano AE, Ruggieri A, Meletti S (2016) Cortical and subcortical brain alterations in juvenile absence epilepsy. Neuroimage Clin 12:306–311CrossRefPubMedPubMedCentral Tondelli M, Vaudano AE, Ruggieri A, Meletti S (2016) Cortical and subcortical brain alterations in juvenile absence epilepsy. Neuroimage Clin 12:306–311CrossRefPubMedPubMedCentral
37.
go back to reference Morrison R, Dempesy E (1942) A study of thalamocortical relations. Am J Phys 135:281–292CrossRef Morrison R, Dempesy E (1942) A study of thalamocortical relations. Am J Phys 135:281–292CrossRef
38.
go back to reference Morrison R, Dempesy E (1943) Mechanism of thalamocortical augmentation and repetition. Am J Phys 138:297–308CrossRef Morrison R, Dempesy E (1943) Mechanism of thalamocortical augmentation and repetition. Am J Phys 138:297–308CrossRef
39.
go back to reference Stefan H, Paulini-Ruf A, Hopfengärtner R, Rampp S (2009) Network characteristics of idiopathic generalized epilepsies in combined MEG/EEG. Epilepsy Res 85:187–198CrossRefPubMed Stefan H, Paulini-Ruf A, Hopfengärtner R, Rampp S (2009) Network characteristics of idiopathic generalized epilepsies in combined MEG/EEG. Epilepsy Res 85:187–198CrossRefPubMed
Metadata
Title
Source localization of epileptiform discharges in childhood absence epilepsy using a distributed source model: a standardized, low-resolution, brain electromagnetic tomography (sLORETA) study
Authors
Ye-Hwa Jun
Tae-Hoon Eom
Young-Hoon Kim
Seung-Yun Chung
In-Goo Lee
Jung-Min Kim
Publication date
01-05-2019
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 5/2019
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-019-03751-4

Other articles of this Issue 5/2019

Neurological Sciences 5/2019 Go to the issue