Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 3/2013

01-03-2013 | Pediatric Neurology (D Nordli, Section Editor)

Electroencephalographic Monitoring in the Pediatric Intensive Care Unit

Authors: Nicholas S. Abend, Kevin E. Chapman, William B. Gallentine, Joshua Goldstein, Ann E. Hyslop, Tobias Loddenkemper, Kendall B. Nash, James J. Riviello Jr., Cecil D. Hahn, On behalf of the Pediatric Critical Care EEG Group (PCCEG) and the Critical Care EEG Monitoring Research Consortium (CCEMRC)

Published in: Current Neurology and Neuroscience Reports | Issue 3/2013

Login to get access

Abstract

Continuous electroencephalographic (CEEG) monitoring is used with increasing frequency in critically ill children to provide insight into brain function and to identify electrographic seizures. CEEG monitoring use often impacts clinical management, most often by identifying electrographic seizures and status epilepticus. Most electrographic seizures have no clinical correlate, and thus would not be identified without CEEG monitoring. There are increasing data showing that electrographic seizures and electrographic status epilepticus are associated with worse outcome. Seizure identification efficiency may be improved by further development of quantitative electroencephalography trends. This review describes the clinical impact of CEEG data, the epidemiology of electrographic seizures and status epilepticus, the impact of electrographic seizures on outcome, the utility of quantitative electroencephalographic trends for seizure identification, and practical considerations regarding CEEG monitoring.
Literature
1.
go back to reference • Sanchez SM, Carpenter J, Chapman KE, et al. Pediatric ICU EEG monitoring: current resources and practice in the United States and Canada. J Clin Neurophysiol. In press. A survey of large hospitals in the USA and Canada regarding EEG monitoring in the pediatric ICU. EEG monitoring use is increasing, and the most common indication is identification of nonconvulsive seizures. • Sanchez SM, Carpenter J, Chapman KE, et al. Pediatric ICU EEG monitoring: current resources and practice in the United States and Canada. J Clin Neurophysiol. In press. A survey of large hospitals in the USA and Canada regarding EEG monitoring in the pediatric ICU. EEG monitoring use is increasing, and the most common indication is identification of nonconvulsive seizures.
2.
go back to reference Abend NS, Dlugos DJ, Hahn CD, et al. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocrit Care. 2010;12:382–9.PubMedCrossRef Abend NS, Dlugos DJ, Hahn CD, et al. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocrit Care. 2010;12:382–9.PubMedCrossRef
3.
go back to reference Abend NS, Topjian AA, Gutierrez-Colina AM, et al. Impact of continuous EEG monitoring on clinical management in critically ill children. Neurocrit Care. 2011;15:70–5.PubMedCrossRef Abend NS, Topjian AA, Gutierrez-Colina AM, et al. Impact of continuous EEG monitoring on clinical management in critically ill children. Neurocrit Care. 2011;15:70–5.PubMedCrossRef
4.
go back to reference Firosh Khan S, Ashalatha R, Thomas SV, Sarma PS. Emergent EEG is helpful in neurology critical care practice. Clin Neurophysiol. 2005;116:2454–9.PubMedCrossRef Firosh Khan S, Ashalatha R, Thomas SV, Sarma PS. Emergent EEG is helpful in neurology critical care practice. Clin Neurophysiol. 2005;116:2454–9.PubMedCrossRef
5.
go back to reference Praline J, Grujic J, Corcia P, et al. Emergent EEG in clinical practice. Clin Neurophysiol. 2007;118:2149–55.PubMedCrossRef Praline J, Grujic J, Corcia P, et al. Emergent EEG in clinical practice. Clin Neurophysiol. 2007;118:2149–55.PubMedCrossRef
6.
go back to reference Bautista RE, Godwin S, Caro D. Incorporating abbreviated EEGs in the initial workup of patients who present to the emergency room with mental status changes of unknown etiology. J Clin Neurophysiol. 2007;24:16–21.PubMedCrossRef Bautista RE, Godwin S, Caro D. Incorporating abbreviated EEGs in the initial workup of patients who present to the emergency room with mental status changes of unknown etiology. J Clin Neurophysiol. 2007;24:16–21.PubMedCrossRef
7.
go back to reference Varelas PN, Spanaki MV, Hacein-Bey L, et al. Emergent EEG: indications and diagnostic yield. Neurology. 2003;61:702–4.PubMedCrossRef Varelas PN, Spanaki MV, Hacein-Bey L, et al. Emergent EEG: indications and diagnostic yield. Neurology. 2003;61:702–4.PubMedCrossRef
8.
go back to reference Benbadis SR, Chen S, Melo M. What's shaking in the ICU? The differential diagnosis of seizures in the intensive care setting. Epilepsia. 2010;51:2338–40.PubMedCrossRef Benbadis SR, Chen S, Melo M. What's shaking in the ICU? The differential diagnosis of seizures in the intensive care setting. Epilepsia. 2010;51:2338–40.PubMedCrossRef
9.
go back to reference Vespa PM, Nenov V, Nuwer MR. Continuous EEG monitoring in the intensive care unit: early findings and clinical efficacy. J Clin Neurophysiol. 1999;16:1–13.PubMedCrossRef Vespa PM, Nenov V, Nuwer MR. Continuous EEG monitoring in the intensive care unit: early findings and clinical efficacy. J Clin Neurophysiol. 1999;16:1–13.PubMedCrossRef
10.
go back to reference Kilbride RD, Costello DJ, Chiappa KH. How seizure detection by continuous electroencephalographic monitoring affects the prescribing of antiepileptic medications. Arch Neurol. 2009;66:723–8.PubMedCrossRef Kilbride RD, Costello DJ, Chiappa KH. How seizure detection by continuous electroencephalographic monitoring affects the prescribing of antiepileptic medications. Arch Neurol. 2009;66:723–8.PubMedCrossRef
11.
go back to reference Guerit JM, Amantini A, Amodio P, et al. Consensus on the use of neurophysiological tests in the intensive care unit (ICU): electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG). Neurophysiol Clin. 2009;39:71–83.PubMedCrossRef Guerit JM, Amantini A, Amodio P, et al. Consensus on the use of neurophysiological tests in the intensive care unit (ICU): electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG). Neurophysiol Clin. 2009;39:71–83.PubMedCrossRef
12.
go back to reference Abend NS, Licht DJ. Predicting outcome in children with hypoxic ischemic encephalopathy. Pediatr Crit Care Med. 2008;9:32–9.PubMed Abend NS, Licht DJ. Predicting outcome in children with hypoxic ischemic encephalopathy. Pediatr Crit Care Med. 2008;9:32–9.PubMed
13.
go back to reference Nishisaki A, Sullivan 3rd J, Steger B, et al. Retrospective analysis of the prognostic value of electroencephalography patterns obtained in pediatric in-hospital cardiac arrest survivors during three years. Pediatr Crit Care Med. 2007;8:10–7.PubMedCrossRef Nishisaki A, Sullivan 3rd J, Steger B, et al. Retrospective analysis of the prognostic value of electroencephalography patterns obtained in pediatric in-hospital cardiac arrest survivors during three years. Pediatr Crit Care Med. 2007;8:10–7.PubMedCrossRef
14.
go back to reference Kessler S, Topjian AA, Guterrez-Colina AM, et al. Short-term outcome prediction by electroencephalographic features in children treated with therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2011;14:37–43.PubMedCrossRef Kessler S, Topjian AA, Guterrez-Colina AM, et al. Short-term outcome prediction by electroencephalographic features in children treated with therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2011;14:37–43.PubMedCrossRef
15.
go back to reference Kravljanac R, Jovic N, Djuric M, et al. Outcome of status epilepticus in children treated in the intensive care unit: a study of 302 cases. Epilepsia. 2011;52:358–63.PubMed Kravljanac R, Jovic N, Djuric M, et al. Outcome of status epilepticus in children treated in the intensive care unit: a study of 302 cases. Epilepsia. 2011;52:358–63.PubMed
16.
go back to reference Pampiglione G, Harden A. Resuscitation after cardiocirculatory arrest. Prognostic evaluation of early electroencephalographic findings. Lancet. 1968;1:1261–5.PubMedCrossRef Pampiglione G, Harden A. Resuscitation after cardiocirculatory arrest. Prognostic evaluation of early electroencephalographic findings. Lancet. 1968;1:1261–5.PubMedCrossRef
17.
go back to reference Tasker RC, Boyd S, Harden A, Matthew DJ. Monitoring in non-traumatic coma. Part II: electroencephalography. Arch Dis Child. 1988;63:895–9.PubMedCrossRef Tasker RC, Boyd S, Harden A, Matthew DJ. Monitoring in non-traumatic coma. Part II: electroencephalography. Arch Dis Child. 1988;63:895–9.PubMedCrossRef
18.
go back to reference Cheliout-Heraut F, Sale-Franque F, Hubert P, Bataille J. Cerebral anoxia in near-drowning of children. The prognostic value of EEG. Neurophysiol Clin. 1991;21:121–32.PubMedCrossRef Cheliout-Heraut F, Sale-Franque F, Hubert P, Bataille J. Cerebral anoxia in near-drowning of children. The prognostic value of EEG. Neurophysiol Clin. 1991;21:121–32.PubMedCrossRef
19.
go back to reference Ramachandrannair R, Sharma R, Weiss SK, Cortez MA. Reactive EEG patterns in pediatric coma. Pediatr Neurol. 2005;33:345–9.PubMedCrossRef Ramachandrannair R, Sharma R, Weiss SK, Cortez MA. Reactive EEG patterns in pediatric coma. Pediatr Neurol. 2005;33:345–9.PubMedCrossRef
20.
go back to reference Mandel R, Martinot A, Delepoulle F, et al. Prediction of outcome after hypoxic-ischemic encephalopathy: a prospective clinical and electrophysiologic study. J Pediatr. 2002;141:45–50.PubMedCrossRef Mandel R, Martinot A, Delepoulle F, et al. Prediction of outcome after hypoxic-ischemic encephalopathy: a prospective clinical and electrophysiologic study. J Pediatr. 2002;141:45–50.PubMedCrossRef
21.
go back to reference Pampiglione G, Chaloner J, Harden A, O'Brien J. Transitory ischemia/anoxia in young children and the prediction of quality of survival. Ann N Y Acad Sci. 1978;315:281–92.PubMedCrossRef Pampiglione G, Chaloner J, Harden A, O'Brien J. Transitory ischemia/anoxia in young children and the prediction of quality of survival. Ann N Y Acad Sci. 1978;315:281–92.PubMedCrossRef
22.
go back to reference Evans BM, Bartlett JR. Prediction of outcome in severe head injury based on recognition of sleep related activity in the polygraphic electroencephalogram. J Neurol Neurosurg Psychiatry. 1995;59:17–25.PubMedCrossRef Evans BM, Bartlett JR. Prediction of outcome in severe head injury based on recognition of sleep related activity in the polygraphic electroencephalogram. J Neurol Neurosurg Psychiatry. 1995;59:17–25.PubMedCrossRef
23.
go back to reference Rossetti AO, Carrera E, Oddo M. Early EEG correlates of neuronal injury after brain anoxia. Neurology. 2012;78:796–802.PubMedCrossRef Rossetti AO, Carrera E, Oddo M. Early EEG correlates of neuronal injury after brain anoxia. Neurology. 2012;78:796–802.PubMedCrossRef
24.
go back to reference Chong DJ, Hirsch LJ. Which EEG patterns warrant treatment in the critically ill? Reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol. 2005;22:79–91.PubMedCrossRef Chong DJ, Hirsch LJ. Which EEG patterns warrant treatment in the critically ill? Reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol. 2005;22:79–91.PubMedCrossRef
25.
go back to reference Young GB, Jordan KG, Doig GS. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology. 1996;47:83–9.PubMedCrossRef Young GB, Jordan KG, Doig GS. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology. 1996;47:83–9.PubMedCrossRef
26.
go back to reference Drislane FW. Presentation, evaluation, and treatment of nonconvulsive status epilepticus. Epilepsy Behav. 2000;1:301–14.PubMedCrossRef Drislane FW. Presentation, evaluation, and treatment of nonconvulsive status epilepticus. Epilepsy Behav. 2000;1:301–14.PubMedCrossRef
27.
go back to reference Ronner HE, Ponten SC, Stam CJ, Uitdehaag BM. Inter-observer variability of the EEG diagnosis of seizures in comatose patients. Seizure. 2009;18:257–63.PubMedCrossRef Ronner HE, Ponten SC, Stam CJ, Uitdehaag BM. Inter-observer variability of the EEG diagnosis of seizures in comatose patients. Seizure. 2009;18:257–63.PubMedCrossRef
28.
go back to reference Cross JH. When is epileptic encephalopathy nonconvulsive status epilepticus? Epilepsia. 2007;48 Suppl 8:42–3.PubMedCrossRef Cross JH. When is epileptic encephalopathy nonconvulsive status epilepticus? Epilepsia. 2007;48 Suppl 8:42–3.PubMedCrossRef
29.
go back to reference Abend NS, Gutierrez-Colina AM, Topjian AA, et al. Non-convulsive seizures are common in critically ill children. Neurology. 2011;76:1071–7.PubMedCrossRef Abend NS, Gutierrez-Colina AM, Topjian AA, et al. Non-convulsive seizures are common in critically ill children. Neurology. 2011;76:1071–7.PubMedCrossRef
30.
go back to reference Hosain SA, Solomon GE, Kobylarz EJ. Electroencephalographic patterns in unresponsive pediatric patients. Pediatr Neurol. 2005;32:162–5.PubMedCrossRef Hosain SA, Solomon GE, Kobylarz EJ. Electroencephalographic patterns in unresponsive pediatric patients. Pediatr Neurol. 2005;32:162–5.PubMedCrossRef
31.
go back to reference Jette N, Claassen J, Emerson RG, Hirsch LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol. 2006;63:1750–5.PubMedCrossRef Jette N, Claassen J, Emerson RG, Hirsch LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol. 2006;63:1750–5.PubMedCrossRef
32.
go back to reference Abend NS, Dlugos DJ. Nonconvulsive status epilepticus in a pediatric intensive care unit. Pediatr Neurol. 2007;37:165–70.PubMedCrossRef Abend NS, Dlugos DJ. Nonconvulsive status epilepticus in a pediatric intensive care unit. Pediatr Neurol. 2007;37:165–70.PubMedCrossRef
33.
go back to reference Alehan FK, Morton LD, Pellock JM. Utility of electroencephalography in the pediatric emergency department. J Child Neurol. 2001;16:484–7.PubMed Alehan FK, Morton LD, Pellock JM. Utility of electroencephalography in the pediatric emergency department. J Child Neurol. 2001;16:484–7.PubMed
34.
go back to reference Tay SK, Hirsch LJ, Leary L, et al. Nonconvulsive status epilepticus in children: clinical and EEG characteristics. Epilepsia. 2006;47:1504–9.PubMedCrossRef Tay SK, Hirsch LJ, Leary L, et al. Nonconvulsive status epilepticus in children: clinical and EEG characteristics. Epilepsia. 2006;47:1504–9.PubMedCrossRef
35.
go back to reference Shahwan A, Bailey C, Shekerdemian L, Harvey AS. The prevalence of seizures in comatose children in the pediatric intensive care unit: a prospective video-EEG study. Epilepsia. 2010;51:1198–204.PubMedCrossRef Shahwan A, Bailey C, Shekerdemian L, Harvey AS. The prevalence of seizures in comatose children in the pediatric intensive care unit: a prospective video-EEG study. Epilepsia. 2010;51:1198–204.PubMedCrossRef
36.
go back to reference Abend NS, Topjian A, Ichord R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72:1931–40.PubMedCrossRef Abend NS, Topjian A, Ichord R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72:1931–40.PubMedCrossRef
37.
go back to reference Williams K, Jarrar R, Buchhalter J. Continuous video-EEG monitoring in pediatric intensive care units. Epilepsia. 2011;52:1130–6.PubMedCrossRef Williams K, Jarrar R, Buchhalter J. Continuous video-EEG monitoring in pediatric intensive care units. Epilepsia. 2011;52:1130–6.PubMedCrossRef
38.
go back to reference Greiner HM, Holland K, Leach JL, et al. Nonconvulsive status epilepticus: the encephalopathic pediatric patient. Pediatrics. 2012;129:e748–55.PubMedCrossRef Greiner HM, Holland K, Leach JL, et al. Nonconvulsive status epilepticus: the encephalopathic pediatric patient. Pediatrics. 2012;129:e748–55.PubMedCrossRef
39.
go back to reference • Kirkham FJ, Wade AM, McElduff F, et al. Seizures in 204 comatose children: incidence and outcome. Intensive Care Med. 2012;38:853–62. This is a study of 204 critically ill comatose children and neonates who underwent EEG monitoring. Worse outcome was associated with clinically evident seizures, electrographic seizures, higher number and longer duration of electrographic seizures, and a worse EEG background score. Even after adjusting for variables related to encephalopathy etiology and severity in multivariate analysis, electrographic seizures were associated with worse outcome.PubMedCrossRef • Kirkham FJ, Wade AM, McElduff F, et al. Seizures in 204 comatose children: incidence and outcome. Intensive Care Med. 2012;38:853–62. This is a study of 204 critically ill comatose children and neonates who underwent EEG monitoring. Worse outcome was associated with clinically evident seizures, electrographic seizures, higher number and longer duration of electrographic seizures, and a worse EEG background score. Even after adjusting for variables related to encephalopathy etiology and severity in multivariate analysis, electrographic seizures were associated with worse outcome.PubMedCrossRef
40.
go back to reference McCoy B, Sharma R, Ochi A, et al. Predictors of nonconvulsive seizures among critically ill children. Epilepsia. 2011;52:1973–8.PubMedCrossRef McCoy B, Sharma R, Ochi A, et al. Predictors of nonconvulsive seizures among critically ill children. Epilepsia. 2011;52:1973–8.PubMedCrossRef
41.
go back to reference Schreiber JM, Zelleke T, Gaillard WD, et al. Continuous video EEG for patients with acute encephalopathy in a pediatric intensive care unit. Neurocrit Care. 2012;17:31–8.PubMedCrossRef Schreiber JM, Zelleke T, Gaillard WD, et al. Continuous video EEG for patients with acute encephalopathy in a pediatric intensive care unit. Neurocrit Care. 2012;17:31–8.PubMedCrossRef
42.
go back to reference Dan B, Boyd S. Nonconvulsive (dialeptic) status epilepticus in children. Curr Pediatr Rev. 2005;1:7–16.CrossRef Dan B, Boyd S. Nonconvulsive (dialeptic) status epilepticus in children. Curr Pediatr Rev. 2005;1:7–16.CrossRef
43.
go back to reference Claassen J, Mayer SA, Kowalski RG, et al. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743–8.PubMedCrossRef Claassen J, Mayer SA, Kowalski RG, et al. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743–8.PubMedCrossRef
44.
go back to reference Abend NS, Beslow LA, Smith SE, et al. Seizures as a presenting symptom of acute arterial ischemic stroke in childhood. J Pediatr. 2011;159:479–83.PubMedCrossRef Abend NS, Beslow LA, Smith SE, et al. Seizures as a presenting symptom of acute arterial ischemic stroke in childhood. J Pediatr. 2011;159:479–83.PubMedCrossRef
45.
go back to reference Beslow-Kaye LA, Abend NS, Gindville MC, et al. Pediatric intracerebral hemorrhage: acute symptomatic seizures and epilepsy. Archiv Neurol. In press. Beslow-Kaye LA, Abend NS, Gindville MC, et al. Pediatric intracerebral hemorrhage: acute symptomatic seizures and epilepsy. Archiv Neurol. In press.
46.
go back to reference Hahn JS, Vaucher Y, Bejar R, Coen RW. Electroencephalographic and neuroimaging findings in neonates undergoing extracorporeal membrane oxygenation. Neuropediatrics. 1993;24:19–24.PubMedCrossRef Hahn JS, Vaucher Y, Bejar R, Coen RW. Electroencephalographic and neuroimaging findings in neonates undergoing extracorporeal membrane oxygenation. Neuropediatrics. 1993;24:19–24.PubMedCrossRef
47.
go back to reference Horan M, Azzopardi D, Edwards AD, et al. Lack of influence of mild hypothermia on amplitude integrated-electroencephalography in neonates receiving extracorporeal membrane oxygenation. Early Hum Dev. 2007;83:69–75.PubMedCrossRef Horan M, Azzopardi D, Edwards AD, et al. Lack of influence of mild hypothermia on amplitude integrated-electroencephalography in neonates receiving extracorporeal membrane oxygenation. Early Hum Dev. 2007;83:69–75.PubMedCrossRef
48.
go back to reference Helmers SL, Wypij D, Constantinou JE, et al. Perioperative electroencephalographic seizures in infants undergoing repair of complex congenital cardiac defects. Electroencephalogr Clin Neurophysiol. 1997;102:27–36.PubMedCrossRef Helmers SL, Wypij D, Constantinou JE, et al. Perioperative electroencephalographic seizures in infants undergoing repair of complex congenital cardiac defects. Electroencephalogr Clin Neurophysiol. 1997;102:27–36.PubMedCrossRef
49.
go back to reference Clancy RR, McGaurn SA, Wernovsky G, et al. Risk of seizures in survivors of newborn heart surgery using deep hypothermic circulatory arrest. Pediatrics. 2003;111:592–601.PubMedCrossRef Clancy RR, McGaurn SA, Wernovsky G, et al. Risk of seizures in survivors of newborn heart surgery using deep hypothermic circulatory arrest. Pediatrics. 2003;111:592–601.PubMedCrossRef
50.
go back to reference Gaynor JW, Nicolson SC, Jarvik GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg. 2005;130:1278–86.PubMedCrossRef Gaynor JW, Nicolson SC, Jarvik GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg. 2005;130:1278–86.PubMedCrossRef
51.
go back to reference Clancy RR, Sharif U, Ichord R, et al. Electrographic neonatal seizures after infant heart surgery. Epilepsia. 2005;46:84–90.PubMedCrossRef Clancy RR, Sharif U, Ichord R, et al. Electrographic neonatal seizures after infant heart surgery. Epilepsia. 2005;46:84–90.PubMedCrossRef
52.
go back to reference Chock VY, Reddy VM, Bernstein D, Madan A. Neurologic events in neonates treated surgically for congenital heart disease. J Perinatol. 2006;26:237–42.PubMedCrossRef Chock VY, Reddy VM, Bernstein D, Madan A. Neurologic events in neonates treated surgically for congenital heart disease. J Perinatol. 2006;26:237–42.PubMedCrossRef
53.
go back to reference Schmitt B, Finckh B, Christen S, et al. Electroencephalographic changes after pediatric cardiac surgery with cardiopulmonary bypass: is slow wave activity unfavorable? Pediatr Res. 2005;58:771–8.PubMedCrossRef Schmitt B, Finckh B, Christen S, et al. Electroencephalographic changes after pediatric cardiac surgery with cardiopulmonary bypass: is slow wave activity unfavorable? Pediatr Res. 2005;58:771–8.PubMedCrossRef
54.
go back to reference Gunn JK, Beca J, Penny DJ, et al. Amplitude-integrated electroencephalography and brain injury in infants undergoing Norwood-type operations. Ann Thorac Surg. 2012;93:170–6.PubMedCrossRef Gunn JK, Beca J, Penny DJ, et al. Amplitude-integrated electroencephalography and brain injury in infants undergoing Norwood-type operations. Ann Thorac Surg. 2012;93:170–6.PubMedCrossRef
55.
go back to reference Hyllienmark L, Amark P. Continuous EEG monitoring in a paediatric intensive care unit. Eur J Paediatr Neurol. 2007;11:70–5.PubMedCrossRef Hyllienmark L, Amark P. Continuous EEG monitoring in a paediatric intensive care unit. Eur J Paediatr Neurol. 2007;11:70–5.PubMedCrossRef
56.
go back to reference Gutierrez-Colina AM, Topjian AA, Dlugos DJ, Abend NS. EEG Monitoring in critically ill children: indications and strategies. Pediatr Neurol. 2012;46:158–61.PubMedCrossRef Gutierrez-Colina AM, Topjian AA, Dlugos DJ, Abend NS. EEG Monitoring in critically ill children: indications and strategies. Pediatr Neurol. 2012;46:158–61.PubMedCrossRef
57.
go back to reference • Topjian AA, Gutierrez-Colina AM, Sanchez SM, et al. Electrographic status epilepticus is associated with mortality and worse short-term outcome in critically ill children. Crit Care Med. 2013;1:215–23. This is a prospective study of 200 critically ill children with acute encephalopathy who underwent EEG monitoring. Electrographic seizures occurred in 21 % of the children and electrographic status epilepticus occurred in 22 % of the children. Even after adjusting for variables related to encephalopathy etiology and severity in multivariate analysis, electrographic status epilepticus (but not electrographic seizures) was associated with an increased risk of mortality and neurologic morbidity. • Topjian AA, Gutierrez-Colina AM, Sanchez SM, et al. Electrographic status epilepticus is associated with mortality and worse short-term outcome in critically ill children. Crit Care Med. 2013;1:215–23. This is a prospective study of 200 critically ill children with acute encephalopathy who underwent EEG monitoring. Electrographic seizures occurred in 21 % of the children and electrographic status epilepticus occurred in 22 % of the children. Even after adjusting for variables related to encephalopathy etiology and severity in multivariate analysis, electrographic status epilepticus (but not electrographic seizures) was associated with an increased risk of mortality and neurologic morbidity.
58.
go back to reference Lambrechtsen FA, Buchhalter JR. Aborted and refractory status epilepticus in children: a comparative analysis. Epilepsia. 2008;49:615–25.PubMedCrossRef Lambrechtsen FA, Buchhalter JR. Aborted and refractory status epilepticus in children: a comparative analysis. Epilepsia. 2008;49:615–25.PubMedCrossRef
59.
go back to reference Gaynor JW, Jarvik GP, Bernbaum J, et al. The relationship of postoperative electrographic seizures to neurodevelopmental outcome at 1 year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg. 2006;131:181–9.PubMedCrossRef Gaynor JW, Jarvik GP, Bernbaum J, et al. The relationship of postoperative electrographic seizures to neurodevelopmental outcome at 1 year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg. 2006;131:181–9.PubMedCrossRef
60.
go back to reference Bellinger DC, Jonas RA, Rappaport LA, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med. 1995;332:549–55.PubMedCrossRef Bellinger DC, Jonas RA, Rappaport LA, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med. 1995;332:549–55.PubMedCrossRef
61.
go back to reference Rappaport LA, Wypij D, Bellinger DC, et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Boston Circulatory Arrest Study Group. Circulation. 1998;97:773–9.PubMedCrossRef Rappaport LA, Wypij D, Bellinger DC, et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Boston Circulatory Arrest Study Group. Circulation. 1998;97:773–9.PubMedCrossRef
62.
go back to reference Bellinger DC, Wypij D, Kuban KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation. 1999;100:526–32.PubMedCrossRef Bellinger DC, Wypij D, Kuban KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation. 1999;100:526–32.PubMedCrossRef
63.
go back to reference • Bellinger DC, Wypij D, Rivkin MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation. 2011;124:1361–9. This is a long-term follow-up of prospectively enrolled children with dextro transposition of the great arteries who underwent an arterial switch operation and postoperative EEG monitoring with successive neurodevelopmental assessments. The presence of postoperative electrographic seizures was the medical variable most consistently associated with worse outcome when evaluated in follow-up of the children as adolescents.PubMedCrossRef • Bellinger DC, Wypij D, Rivkin MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation. 2011;124:1361–9. This is a long-term follow-up of prospectively enrolled children with dextro transposition of the great arteries who underwent an arterial switch operation and postoperative EEG monitoring with successive neurodevelopmental assessments. The presence of postoperative electrographic seizures was the medical variable most consistently associated with worse outcome when evaluated in follow-up of the children as adolescents.PubMedCrossRef
64.
go back to reference Carrera E, Claassen J, Oddo M, et al. Continuous electroencephalographic monitoring in critically ill patients with central nervous system infections. Arch Neurol. 2008;65:1612–8.PubMedCrossRef Carrera E, Claassen J, Oddo M, et al. Continuous electroencephalographic monitoring in critically ill patients with central nervous system infections. Arch Neurol. 2008;65:1612–8.PubMedCrossRef
65.
go back to reference Claassen J, Jette N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1356–65.PubMedCrossRef Claassen J, Jette N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1356–65.PubMedCrossRef
66.
go back to reference Oddo M, Carrera E, Claassen J, et al. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37:2051–6.PubMedCrossRef Oddo M, Carrera E, Claassen J, et al. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37:2051–6.PubMedCrossRef
67.
go back to reference Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.PubMedCrossRef Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.PubMedCrossRef
68.
go back to reference Vespa PM, McArthur DL, Xu Y, et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology. 2010;75:792–8.PubMedCrossRef Vespa PM, McArthur DL, Xu Y, et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology. 2010;75:792–8.PubMedCrossRef
69.
go back to reference Gwer S, Idro R, Fegan G, et al. Continuous EEG monitoring in Kenyan children with non-traumatic coma. Arch Dis Child. 2012;97:343–9.PubMedCrossRef Gwer S, Idro R, Fegan G, et al. Continuous EEG monitoring in Kenyan children with non-traumatic coma. Arch Dis Child. 2012;97:343–9.PubMedCrossRef
70.
go back to reference Trevathan E, Ellen R. Grass Lecture: rapid EEG analysis for intensive care decisions in status epilepticus. Am J Electroneurodiagnostic Technol. 2006;46:4–17.PubMed Trevathan E, Ellen R. Grass Lecture: rapid EEG analysis for intensive care decisions in status epilepticus. Am J Electroneurodiagnostic Technol. 2006;46:4–17.PubMed
71.
go back to reference Riviello JJ. Digital trend analysis in the pediatric and neonatal intensive care units (ICU). J Clin Neurophysiol. In press. Riviello JJ. Digital trend analysis in the pediatric and neonatal intensive care units (ICU). J Clin Neurophysiol. In press.
72.
go back to reference Scheuer ML, Wilson SB. Data analysis for continuous EEG monitoring in the ICU: seeing the forest and the trees. J Clin Neurophysiol. 2004;21:353–78.PubMed Scheuer ML, Wilson SB. Data analysis for continuous EEG monitoring in the ICU: seeing the forest and the trees. J Clin Neurophysiol. 2004;21:353–78.PubMed
73.
go back to reference Boylan G, Burgoyne L, Moore C, et al. An international survey of EEG use in the neonatal intensive care unit. Acta Paediatr. 2010;99:1150–5.PubMedCrossRef Boylan G, Burgoyne L, Moore C, et al. An international survey of EEG use in the neonatal intensive care unit. Acta Paediatr. 2010;99:1150–5.PubMedCrossRef
74.
go back to reference Ponnusamy V, Nath P, Bissett L, et al. Current availability of cerebral function monitoring and hypothermia therapy in UK neonatal units. Arch Dis Child Fetal Neonatal Ed. 2010;95:F383–4.PubMedCrossRef Ponnusamy V, Nath P, Bissett L, et al. Current availability of cerebral function monitoring and hypothermia therapy in UK neonatal units. Arch Dis Child Fetal Neonatal Ed. 2010;95:F383–4.PubMedCrossRef
75.
go back to reference Filippi L, Catarzi S, Gozzini E, et al. Hypothermia for neonatal hypoxic-ischemic encephalopathy: may an early amplitude-integrated EEG improve the selection of candidates for cooling? J Matern Fetal Neonatal Med. 2012;25:2171–6.PubMedCrossRef Filippi L, Catarzi S, Gozzini E, et al. Hypothermia for neonatal hypoxic-ischemic encephalopathy: may an early amplitude-integrated EEG improve the selection of candidates for cooling? J Matern Fetal Neonatal Med. 2012;25:2171–6.PubMedCrossRef
76.
go back to reference Shellhaas RA, Soaita AI, Clancy RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120:770–7.PubMedCrossRef Shellhaas RA, Soaita AI, Clancy RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120:770–7.PubMedCrossRef
77.
go back to reference Lawrence R, Mathur A, Nguyen The Tich S, et al. A pilot study of continuous limited-channel aEEG in term infants with encephalopathy. J Pediatr. 2009;154:835–41e1.PubMedCrossRef Lawrence R, Mathur A, Nguyen The Tich S, et al. A pilot study of continuous limited-channel aEEG in term infants with encephalopathy. J Pediatr. 2009;154:835–41e1.PubMedCrossRef
78.
go back to reference Frenkel N, Friger M, Meledin I, et al. Neonatal seizure recognition - Comparative study of continuous-amplitude integrated EEG versus short conventional EEG recordings. Clin Neurophysiol. 2011;122:1091–7.PubMedCrossRef Frenkel N, Friger M, Meledin I, et al. Neonatal seizure recognition - Comparative study of continuous-amplitude integrated EEG versus short conventional EEG recordings. Clin Neurophysiol. 2011;122:1091–7.PubMedCrossRef
79.
go back to reference Evans E, Koh S, Lerner J, et al. Accuracy of amplitude integrated EEG in a neonatal cohort. Arch Dis Child Fetal Neonatal Ed. 2010;95:F169–73.PubMedCrossRef Evans E, Koh S, Lerner J, et al. Accuracy of amplitude integrated EEG in a neonatal cohort. Arch Dis Child Fetal Neonatal Ed. 2010;95:F169–73.PubMedCrossRef
80.
go back to reference Shah DK, Mackay MT, Lavery S, et al. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008;121:1146–54.PubMedCrossRef Shah DK, Mackay MT, Lavery S, et al. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008;121:1146–54.PubMedCrossRef
81.
go back to reference Shellhaas RA, Barks AK. Impact of amplitude-integrated electroencephalograms on clinical care for neonates with seizures. Pediatr Neurol. 2012;46:32–5.PubMedCrossRef Shellhaas RA, Barks AK. Impact of amplitude-integrated electroencephalograms on clinical care for neonates with seizures. Pediatr Neurol. 2012;46:32–5.PubMedCrossRef
82.
go back to reference van Rooij LG, Toet MC, van Huffelen AC, et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics. 2010;125:e358–66.PubMedCrossRef van Rooij LG, Toet MC, van Huffelen AC, et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics. 2010;125:e358–66.PubMedCrossRef
83.
go back to reference Shellhaas RA, Chang T, Tsuchida T, et al. The American Clinical Neurophysiology Society's guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011;28:611–7. Shellhaas RA, Chang T, Tsuchida T, et al. The American Clinical Neurophysiology Society's guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011;28:611–7.
84.
go back to reference • Stewart CP, Otsubo H, Ochi A, et al. Seizure identification in the ICU using quantitative EEG displays. Neurology. 2010;75:1501–8. This is a study of the diagnostic accuracy of two quantitative EEG display tools for seizure identification in critically ill children by neurophysiologists. The median sensitivity for seizure identification across all recordings was 83 % with CDSA and 82 % with a EEG, but for individual recordings the sensitivities ranged from 0 to 100 %. False-positive rates were low.PubMedCrossRef • Stewart CP, Otsubo H, Ochi A, et al. Seizure identification in the ICU using quantitative EEG displays. Neurology. 2010;75:1501–8. This is a study of the diagnostic accuracy of two quantitative EEG display tools for seizure identification in critically ill children by neurophysiologists. The median sensitivity for seizure identification across all recordings was 83 % with CDSA and 82 % with a EEG, but for individual recordings the sensitivities ranged from 0 to 100 %. False-positive rates were low.PubMedCrossRef
85.
go back to reference Akman CI, Micic V, Thompson A, Riviello Jr JJ. Seizure detection using digital trend analysis: factors affecting utility. Epilepsy Res. 2011;93:66–72.PubMedCrossRef Akman CI, Micic V, Thompson A, Riviello Jr JJ. Seizure detection using digital trend analysis: factors affecting utility. Epilepsy Res. 2011;93:66–72.PubMedCrossRef
86.
go back to reference Glaria AP, Murray A. Comparison of EEG monitoring techniques: an evaluation during cardiac surgery. Electroencephalogr Clin Neurophysiol. 1985;61:323–30.PubMedCrossRef Glaria AP, Murray A. Comparison of EEG monitoring techniques: an evaluation during cardiac surgery. Electroencephalogr Clin Neurophysiol. 1985;61:323–30.PubMedCrossRef
87.
go back to reference Abend NS, Gutierrez-Colina AM, Zhao H, et al. Interobserver reproducibility of electroencephalogram interpretation in critically ill children. J Clin Neurophysiol. 2011;28:15–9.PubMedCrossRef Abend NS, Gutierrez-Colina AM, Zhao H, et al. Interobserver reproducibility of electroencephalogram interpretation in critically ill children. J Clin Neurophysiol. 2011;28:15–9.PubMedCrossRef
88.
go back to reference Kull LL, Emerson RG. Continuous EEG monitoring in the intensive care unit: technical and staffing considerations. J Clin Neurophysiol. 2005;22:107–18.PubMedCrossRef Kull LL, Emerson RG. Continuous EEG monitoring in the intensive care unit: technical and staffing considerations. J Clin Neurophysiol. 2005;22:107–18.PubMedCrossRef
89.
go back to reference American Society of Electroneurodiagnostic Technologists. National competency skill standards for ICU/cEEG monitoring. Am J Electroneurodiagnostic Technol. 2008;48:258–64. American Society of Electroneurodiagnostic Technologists. National competency skill standards for ICU/cEEG monitoring. Am J Electroneurodiagnostic Technol. 2008;48:258–64.
90.
go back to reference Kolls BJ, Husain AM. Assessment of hairline EEG as a screening tool for nonconvulsive status epilepticus. Epilepsia. 2007;48:959–65.PubMedCrossRef Kolls BJ, Husain AM. Assessment of hairline EEG as a screening tool for nonconvulsive status epilepticus. Epilepsia. 2007;48:959–65.PubMedCrossRef
91.
go back to reference Benbadis SR. Use and abuse of stat EEG. Am J Electroneurodiagnostic Technol. 2009;49:87–93.PubMed Benbadis SR. Use and abuse of stat EEG. Am J Electroneurodiagnostic Technol. 2009;49:87–93.PubMed
Metadata
Title
Electroencephalographic Monitoring in the Pediatric Intensive Care Unit
Authors
Nicholas S. Abend
Kevin E. Chapman
William B. Gallentine
Joshua Goldstein
Ann E. Hyslop
Tobias Loddenkemper
Kendall B. Nash
James J. Riviello Jr.
Cecil D. Hahn
On behalf of the Pediatric Critical Care EEG Group (PCCEG) and the Critical Care EEG Monitoring Research Consortium (CCEMRC)
Publication date
01-03-2013
Publisher
Current Science Inc.
Published in
Current Neurology and Neuroscience Reports / Issue 3/2013
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-012-0330-3

Other articles of this Issue 3/2013

Current Neurology and Neuroscience Reports 3/2013 Go to the issue

Nerve and Muscle (M Hirano and LH Weimer, Section Editors)

Update on the Treatment of Duchenne Muscular Dystrophy

Pediatric Neurology (D Nordli, Section Editor)

Latest American and European Updates on Infantile Spasms

Nerve and Muscle (M Hirano and LH Weimer, Section Editors)

Neuromuscular Disorders of Glycogen Metabolism