Skip to main content
Top
Published in: European Journal of Applied Physiology 10/2011

01-10-2011 | Mini Review

Electrical stimulation for testing neuromuscular function: from sport to pathology

Authors: Guillaume Y. Millet, Vincent Martin, Alain Martin, Samuel Vergès

Published in: European Journal of Applied Physiology | Issue 10/2011

Login to get access

Abstract

The use of electrical stimulation (ES) can contribute to our knowledge of how our neuromuscular system can adapt to physical stress or unloading. Although it has been recently challenged, the standard technique used to explore central modifications is the twitch interpolated method which consists in superimposing single twitches or high-frequency doublets on a maximal voluntary contraction (MVC) and to compare the superimposed response to the potentiated response obtained from the relaxed muscle. Alternative methods consist in (1) superimposing a train of stimuli (central activation ratio), (2) comparing the MVC response to the force evoked by a high-frequency tetanus or (3) examining the change in maximal EMG response during voluntary contractions, if this variable is normalized to the maximal M wave, i.e. EMG response to a single stimulus. ES is less used to examine supraspinal factors but it is useful for investigating changes at the spinal level, either by using H reflexes, F waves or cervicomedullary motor-evoked potentials. Peripheral changes can be examined with ES, usually by stimulating the muscle in the relaxed state. Neuromuscular propagation of action potentials on the sarcolemma (M wave, high-frequency fatigue), excitation–contraction coupling (e.g. low-frequency fatigue) and intrinsic force (high-frequency stimulation at supramaximal intensity) can all be used to non-invasively explore muscular function with ES. As for all indirect methods, there are limitations and these are discussed in this review. Finally, (1) ES as a method to measure respiratory muscle function and (2) the comparison between electrical and magnetic stimulation will also be considered.
Literature
go back to reference Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534:613–623PubMedCrossRef Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534:613–623PubMedCrossRef
go back to reference Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V wave and H-reflex responses. J Appl Physiol 92:2309–2318PubMed Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V wave and H-reflex responses. J Appl Physiol 92:2309–2318PubMed
go back to reference Allen GM, Gandevia SC, Neering IR, Hickie I, Jones R, Middleton J (1994) Muscle performance, voluntary activation and perceived effort in normal subjects and patients with prior poliomyelitis. Brain 117(Pt 4):661–670PubMedCrossRef Allen GM, Gandevia SC, Neering IR, Hickie I, Jones R, Middleton J (1994) Muscle performance, voluntary activation and perceived effort in normal subjects and patients with prior poliomyelitis. Brain 117(Pt 4):661–670PubMedCrossRef
go back to reference Allen GM, Gandevia SC, McKenzie DK (1995) Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 18:593–600PubMedCrossRef Allen GM, Gandevia SC, McKenzie DK (1995) Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 18:593–600PubMedCrossRef
go back to reference Amann M, Dempsey JA (2008) Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol 586:161–173PubMedCrossRef Amann M, Dempsey JA (2008) Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol 586:161–173PubMedCrossRef
go back to reference Aubier M, Farkas G, De Troyer A, Mozes R, Roussos C (1981) Detection of diaphragmatic fatigue in man by phrenic stimulation. J Appl Physiol 50:538–544PubMed Aubier M, Farkas G, De Troyer A, Mozes R, Roussos C (1981) Detection of diaphragmatic fatigue in man by phrenic stimulation. J Appl Physiol 50:538–544PubMed
go back to reference Awiszus F, Wahl B, Meinecke I (1997) Influence of stimulus cross talk on results of the twitch-interpolation technique at the biceps brachii muscle. Muscle Nerve 20:1187–1190PubMedCrossRef Awiszus F, Wahl B, Meinecke I (1997) Influence of stimulus cross talk on results of the twitch-interpolation technique at the biceps brachii muscle. Muscle Nerve 20:1187–1190PubMedCrossRef
go back to reference Babault N, Pousson M, Ballay Y, Van Hoecke J (2001) Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol 91:2628–2634PubMed Babault N, Pousson M, Ballay Y, Van Hoecke J (2001) Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol 91:2628–2634PubMed
go back to reference Baudry S, Klass M, Pasquet B, Duchateau J (2007) Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions. Eur J Appl Physiol 100:515–525PubMedCrossRef Baudry S, Klass M, Pasquet B, Duchateau J (2007) Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions. Eur J Appl Physiol 100:515–525PubMedCrossRef
go back to reference Behm DG, St-Pierre DM, Perez D (1996) Muscle inactivation: assessment of interpolated twitch technique. J Appl Physiol 81:2267–2273PubMed Behm DG, St-Pierre DM, Perez D (1996) Muscle inactivation: assessment of interpolated twitch technique. J Appl Physiol 81:2267–2273PubMed
go back to reference Behm DG, Power K, Drinkwater E (2001) Comparison of interpolation and central activation ratios as measures of muscle inactivation. Muscle Nerve 24:925–934PubMedCrossRef Behm DG, Power K, Drinkwater E (2001) Comparison of interpolation and central activation ratios as measures of muscle inactivation. Muscle Nerve 24:925–934PubMedCrossRef
go back to reference Bellemare F, Bigland-Ritchie B (1987) Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation. J Appl Physiol 62:1307–1316PubMed Bellemare F, Bigland-Ritchie B (1987) Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation. J Appl Physiol 62:1307–1316PubMed
go back to reference Bigland-Ritchie B (1981) EMG and fatigue of human voluntary and stimulated contractions. Ciba Found Symp 82:130–156PubMed Bigland-Ritchie B (1981) EMG and fatigue of human voluntary and stimulated contractions. Ciba Found Symp 82:130–156PubMed
go back to reference Bigland-Ritchie B, Jones DA, Hosking GP, Edwards RH (1978) Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clin Sci Mol Med 54:609–614PubMed Bigland-Ritchie B, Jones DA, Hosking GP, Edwards RH (1978) Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clin Sci Mol Med 54:609–614PubMed
go back to reference Binder-Macleod SA, McDermond LR (1992) Changes in the force-frequency relationship of the human quadriceps femoris muscle following electrically and voluntarily induced fatigue. Phys Ther 72:95–104PubMed Binder-Macleod SA, McDermond LR (1992) Changes in the force-frequency relationship of the human quadriceps femoris muscle following electrically and voluntarily induced fatigue. Phys Ther 72:95–104PubMed
go back to reference Bruton JD, Place N, Yamada T, Silva JP, Andrade FH, Dahlstedt AJ, Zhang SJ, Katz A, Larsson NG, Westerblad H (2008) Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol 586:175–184PubMedCrossRef Bruton JD, Place N, Yamada T, Silva JP, Andrade FH, Dahlstedt AJ, Zhang SJ, Katz A, Larsson NG, Westerblad H (2008) Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol 586:175–184PubMedCrossRef
go back to reference Burke D (2002) Effects of activity on axonal excitability: implications for motor control studies. Adv Exp Med Biol 508:33–37PubMedCrossRef Burke D (2002) Effects of activity on axonal excitability: implications for motor control studies. Adv Exp Med Biol 508:33–37PubMedCrossRef
go back to reference Chen R, Kayser B, Yan S, Macklem PT (2000) Twitch transdiaphragmatic pressure depends critically on thoracoabdominal configuration. J Appl Physiol 88:54–60PubMed Chen R, Kayser B, Yan S, Macklem PT (2000) Twitch transdiaphragmatic pressure depends critically on thoracoabdominal configuration. J Appl Physiol 88:54–60PubMed
go back to reference Corona BT, Balog EM, Doyle JA, Rupp JC, Luke RC, Ingalls CP (2010) Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol 298:C365–C376CrossRef Corona BT, Balog EM, Doyle JA, Rupp JC, Luke RC, Ingalls CP (2010) Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol 298:C365–C376CrossRef
go back to reference Cupido CM, Galea V, McComas AJ (1996) Potentiation and depression of the M wave in human biceps brachii. J Physiol 491(Pt 2):541–550PubMed Cupido CM, Galea V, McComas AJ (1996) Potentiation and depression of the M wave in human biceps brachii. J Physiol 491(Pt 2):541–550PubMed
go back to reference Darques JL, Bendahan D, Roussel M, Giannesini B, Tagliarini F, Le Fur Y, Cozzone PJ, Jammes Y (2003) Combined in situ analysis of metabolic and myoelectrical changes associated with electrically induced fatigue. J Appl Physiol 95:1476–1484PubMed Darques JL, Bendahan D, Roussel M, Giannesini B, Tagliarini F, Le Fur Y, Cozzone PJ, Jammes Y (2003) Combined in situ analysis of metabolic and myoelectrical changes associated with electrically induced fatigue. J Appl Physiol 95:1476–1484PubMed
go back to reference de Haan A, Gerrits KH, de Ruiter CJ (2009) Counterpoint: the interpolated twitch does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol 107:355–357 (discussion 357–358)PubMedCrossRef de Haan A, Gerrits KH, de Ruiter CJ (2009) Counterpoint: the interpolated twitch does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol 107:355–357 (discussion 357–358)PubMedCrossRef
go back to reference de Ruiter CJ, Kooistra RD, Paalman MI, de Haan A (2004) Initial phase of maximal voluntary and electrically stimulated knee extension torque development at different knee angles. J Appl Physiol 97:1693–1701PubMedCrossRef de Ruiter CJ, Kooistra RD, Paalman MI, de Haan A (2004) Initial phase of maximal voluntary and electrically stimulated knee extension torque development at different knee angles. J Appl Physiol 97:1693–1701PubMedCrossRef
go back to reference Dean JC, Yates LM, Collins DF (2007) Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation. J Appl Physiol 103:170–176PubMedCrossRef Dean JC, Yates LM, Collins DF (2007) Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation. J Appl Physiol 103:170–176PubMedCrossRef
go back to reference Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S (in press) Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scandinavian journal of medicine & science in sports Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S (in press) Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scandinavian journal of medicine & science in sports
go back to reference Del Balso C, Cafarelli E (2007) Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training. J Appl Physiol 103:402–411PubMedCrossRef Del Balso C, Cafarelli E (2007) Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training. J Appl Physiol 103:402–411PubMedCrossRef
go back to reference Dimitrova NA, Dimitrov GV (2002) Amplitude-related characteristics of motor unit and M wave potentials during fatigue.A simulation study using literature data on intracellular potential changes found in vitro. J Electromyogr Kinesiol 12:339–349PubMedCrossRef Dimitrova NA, Dimitrov GV (2002) Amplitude-related characteristics of motor unit and M wave potentials during fatigue.A simulation study using literature data on intracellular potential changes found in vitro. J Electromyogr Kinesiol 12:339–349PubMedCrossRef
go back to reference Dionne A, Parkes A, Engler B, Watson BV, Nicolle MW (2009) Determination of the best electrode position for recording of the diaphragm compound muscle action potential. Muscle Nerve 40:37–41PubMedCrossRef Dionne A, Parkes A, Engler B, Watson BV, Nicolle MW (2009) Determination of the best electrode position for recording of the diaphragm compound muscle action potential. Muscle Nerve 40:37–41PubMedCrossRef
go back to reference Duchateau J (2009) Stimulation conditions can improve the validity of the interpolated twitch technique. J Appl Physiol 107:361 (discussion 367–368)PubMed Duchateau J (2009) Stimulation conditions can improve the validity of the interpolated twitch technique. J Appl Physiol 107:361 (discussion 367–368)PubMed
go back to reference Duchateau J, Hainaut K (1984) Isometric or dynamic training: differential effects on mechanical properties of a human muscle. J Appl Physiol 56:296–301PubMed Duchateau J, Hainaut K (1984) Isometric or dynamic training: differential effects on mechanical properties of a human muscle. J Appl Physiol 56:296–301PubMed
go back to reference Duchateau J, Semmler JG, Enoka RM (2006) Training adaptations in the behavior of human motor units. J Appl Physiol 101:1766–1775PubMedCrossRef Duchateau J, Semmler JG, Enoka RM (2006) Training adaptations in the behavior of human motor units. J Appl Physiol 101:1766–1775PubMedCrossRef
go back to reference Edwards RH, Hill DK, Jones DA, Merton PA (1977) Fatigue of long duration in human skeletal muscle after exercise. J Physiol 272:769–778PubMed Edwards RH, Hill DK, Jones DA, Merton PA (1977) Fatigue of long duration in human skeletal muscle after exercise. J Physiol 272:769–778PubMed
go back to reference Gandevia SC (1998) Neural control in human muscle fatigue: changes in muscle afferents, motoneurones and motor cortical drive [corrected]. Acta Physiol Scand 162:275–283PubMedCrossRef Gandevia SC (1998) Neural control in human muscle fatigue: changes in muscle afferents, motoneurones and motor cortical drive [corrected]. Acta Physiol Scand 162:275–283PubMedCrossRef
go back to reference Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789PubMed Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789PubMed
go back to reference Gandevia SC, McKenzie DK, Plassman BL (1990) Activation of human respiratory muscles during different voluntary manoeuvres. J Physiol 428:387–403PubMed Gandevia SC, McKenzie DK, Plassman BL (1990) Activation of human respiratory muscles during different voluntary manoeuvres. J Physiol 428:387–403PubMed
go back to reference Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490(Pt 2):529–536PubMed Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490(Pt 2):529–536PubMed
go back to reference Gandevia SC, Herbert RD, Leeper JB (1998) Voluntary activation of human elbow flexor muscles during maximal concentric contractions. J Physiol 15(Pt 2):595–602CrossRef Gandevia SC, Herbert RD, Leeper JB (1998) Voluntary activation of human elbow flexor muscles during maximal concentric contractions. J Physiol 15(Pt 2):595–602CrossRef
go back to reference Gandevia SC, Petersen N, Butler JE, Taylor JL (1999) Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. J Physiol 521(Pt 3):749–759PubMedCrossRef Gandevia SC, Petersen N, Butler JE, Taylor JL (1999) Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. J Physiol 521(Pt 3):749–759PubMedCrossRef
go back to reference Garland SJ, McComas AJ (1990) Reflex inhibition of human soleus muscle during fatigue. J Physiol 429:17–27PubMed Garland SJ, McComas AJ (1990) Reflex inhibition of human soleus muscle during fatigue. J Physiol 429:17–27PubMed
go back to reference Goodall S, Romer LM, Ross EZ (2009) Voluntary activation of human knee extensors measured using transcranial magnetic stimulation. Exp Physiol 94:995–1004PubMedCrossRef Goodall S, Romer LM, Ross EZ (2009) Voluntary activation of human knee extensors measured using transcranial magnetic stimulation. Exp Physiol 94:995–1004PubMedCrossRef
go back to reference Harridge SD, Magnusson G, Gordon A (1996) Skeletal muscle contractile characteristics and fatigue resistance in patients with chronic heart failure. Eur Heart J 17:896–901PubMed Harridge SD, Magnusson G, Gordon A (1996) Skeletal muscle contractile characteristics and fatigue resistance in patients with chronic heart failure. Eur Heart J 17:896–901PubMed
go back to reference Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ (2001) Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J Physiol 531:871–878PubMedCrossRef Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ (2001) Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J Physiol 531:871–878PubMedCrossRef
go back to reference Horstman AM, Beltman MJ, Gerrits KH, Koppe P, Janssen TW, Elich P, de Haan A (2008) Intrinsic muscle strength and voluntary activation of both lower limbs and functional performance after stroke. Clin Physiol Funct Imaging 28:251–261PubMedCrossRef Horstman AM, Beltman MJ, Gerrits KH, Koppe P, Janssen TW, Elich P, de Haan A (2008) Intrinsic muscle strength and voluntary activation of both lower limbs and functional performance after stroke. Clin Physiol Funct Imaging 28:251–261PubMedCrossRef
go back to reference Hubmayr RD, Litchy WJ, Gay PC, Nelson SB (1989) Transdiaphragmatic twitch pressure. Effects of lung volume and chest wall shape. Am Rev Respir Dis 139:647–652PubMed Hubmayr RD, Litchy WJ, Gay PC, Nelson SB (1989) Transdiaphragmatic twitch pressure. Effects of lung volume and chest wall shape. Am Rev Respir Dis 139:647–652PubMed
go back to reference Hultman E, Sjoholm H, Jaderholm-Ek I, Krynicki J (1983) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Arch 398:139–141PubMedCrossRef Hultman E, Sjoholm H, Jaderholm-Ek I, Krynicki J (1983) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Arch 398:139–141PubMedCrossRef
go back to reference Johnson BD, Babcock MA, Suman OE, Dempsey JA (1993) Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol 460:385–405PubMed Johnson BD, Babcock MA, Suman OE, Dempsey JA (1993) Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol 460:385–405PubMed
go back to reference Kremenic IJ, Ben-Avi SS, Leonhardt D, McHugh MP (2004) Transcutaneous magnetic stimulation of the quadriceps via the femoral nerve. Muscle Nerve 30:379–381PubMedCrossRef Kremenic IJ, Ben-Avi SS, Leonhardt D, McHugh MP (2004) Transcutaneous magnetic stimulation of the quadriceps via the femoral nerve. Muscle Nerve 30:379–381PubMedCrossRef
go back to reference Krishnan C, Allen EJ, Williams GN (2009) Torque-based triggering improves stimulus timing precision in activation tests. Muscle Nerve 40:130–133PubMedCrossRef Krishnan C, Allen EJ, Williams GN (2009) Torque-based triggering improves stimulus timing precision in activation tests. Muscle Nerve 40:130–133PubMedCrossRef
go back to reference Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25:438–444PubMedCrossRef Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25:438–444PubMedCrossRef
go back to reference Kyroussis D, Mills GH, Polkey MI, Hamnegard CH, Koulouris N, Green M, Moxham J (1996) Abdominal muscle fatigue after maximal ventilation in humans. J Appl Physiol 81:1477–1483PubMed Kyroussis D, Mills GH, Polkey MI, Hamnegard CH, Koulouris N, Green M, Moxham J (1996) Abdominal muscle fatigue after maximal ventilation in humans. J Appl Physiol 81:1477–1483PubMed
go back to reference Kyroussis D, Polkey MI, Mills GH, Hughes PD, Moxham J, Green M (1997) Simulation of cough in man by magnetic stimulation of the thoracic nerve roots. Am J Respir Crit Care Med 156:1696–1699PubMed Kyroussis D, Polkey MI, Mills GH, Hughes PD, Moxham J, Green M (1997) Simulation of cough in man by magnetic stimulation of the thoracic nerve roots. Am J Respir Crit Care Med 156:1696–1699PubMed
go back to reference Laghi F (2009) Advancing femoral nerve stimulation into the stage of science. J Appl Physiol 106:356–357PubMedCrossRef Laghi F (2009) Advancing femoral nerve stimulation into the stage of science. J Appl Physiol 106:356–357PubMedCrossRef
go back to reference Laghi F, Harrison MJ, Tobin MJ (1996) Comparison of magnetic and electrical phrenic nerve stimulation in assessment of diaphragmatic contractility. J Appl Physiol 80:1731–1742PubMedCrossRef Laghi F, Harrison MJ, Tobin MJ (1996) Comparison of magnetic and electrical phrenic nerve stimulation in assessment of diaphragmatic contractility. J Appl Physiol 80:1731–1742PubMedCrossRef
go back to reference Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY (2002) Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 92:1487–1493PubMed Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY (2002) Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 92:1487–1493PubMed
go back to reference Lim J, Gorman RB, Saboisky JP, Gandevia SC, Butler JE (2007) Optimal electrode placement for noninvasive electrical stimulation of human abdominal muscles. J Appl Physiol 102:1612–1617PubMedCrossRef Lim J, Gorman RB, Saboisky JP, Gandevia SC, Butler JE (2007) Optimal electrode placement for noninvasive electrical stimulation of human abdominal muscles. J Appl Physiol 102:1612–1617PubMedCrossRef
go back to reference Linder SH (1993) Functional electrical stimulation to enhance cough in quadriplegia. Chest 103:166–169PubMedCrossRef Linder SH (1993) Functional electrical stimulation to enhance cough in quadriplegia. Chest 103:166–169PubMedCrossRef
go back to reference Mador MJ, Magalang UJ, Kufel TJ (1994) Twitch potentiation following voluntary diaphragmatic contraction. Am J Respir Crit Care Med 149:739–743PubMed Mador MJ, Magalang UJ, Kufel TJ (1994) Twitch potentiation following voluntary diaphragmatic contraction. Am J Respir Crit Care Med 149:739–743PubMed
go back to reference Mador MJ, Rodis A, Magalang UJ, Ameen K (1996) Comparison of cervical magnetic and transcutaneous phrenic nerve stimulation before and after threshold loading. Am J Respir Crit Care Med 154:448–453PubMed Mador MJ, Rodis A, Magalang UJ, Ameen K (1996) Comparison of cervical magnetic and transcutaneous phrenic nerve stimulation before and after threshold loading. Am J Respir Crit Care Med 154:448–453PubMed
go back to reference Martin A, Carpentier A, Guissard N, van Hoecke J, Duchateau J (1999) Effect of time of day on force variation in a human muscle. Muscle Nerve 22:1380–1387PubMedCrossRef Martin A, Carpentier A, Guissard N, van Hoecke J, Duchateau J (1999) Effect of time of day on force variation in a human muscle. Muscle Nerve 22:1380–1387PubMedCrossRef
go back to reference Martin V, Millet GY, Lattier G, Perrod L (2004a) Effects of recovery modes after knee extensor muscles eccentric contractions. Med Sci Sports Exerc 36:1907–1915PubMedCrossRef Martin V, Millet GY, Lattier G, Perrod L (2004a) Effects of recovery modes after knee extensor muscles eccentric contractions. Med Sci Sports Exerc 36:1907–1915PubMedCrossRef
go back to reference Martin V, Millet GY, Martin A, Deley G, Lattier G (2004b) Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol 97:1923–1929PubMedCrossRef Martin V, Millet GY, Martin A, Deley G, Lattier G (2004b) Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol 97:1923–1929PubMedCrossRef
go back to reference Martin V, Millet GY, Lattier G, Perrod L (2005) Why does knee extensor muscles torque decrease after eccentric-type exercise? J Sports Med Phys Fitness 45:143–151PubMed Martin V, Millet GY, Lattier G, Perrod L (2005) Why does knee extensor muscles torque decrease after eccentric-type exercise? J Sports Med Phys Fitness 45:143–151PubMed
go back to reference Martin V, Kerhervé H, Messonnier LA, Banfi JC, Geyssant A, Bonnefoy R, Féasson L, Millet GY (2010) Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J Appl Physiol 108:1224–1233PubMedCrossRef Martin V, Kerhervé H, Messonnier LA, Banfi JC, Geyssant A, Bonnefoy R, Féasson L, Millet GY (2010) Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J Appl Physiol 108:1224–1233PubMedCrossRef
go back to reference Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564PubMed Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564PubMed
go back to reference Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227PubMedCrossRef Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227PubMedCrossRef
go back to reference Mettler JA, Griffin L (2010) What are the stimulation parameters that affect the extent of twitch force potentiation in the adductor pollicis muscle? Eur J Appl Physiol 110:1235–1242PubMedCrossRef Mettler JA, Griffin L (2010) What are the stimulation parameters that affect the extent of twitch force potentiation in the adductor pollicis muscle? Eur J Appl Physiol 110:1235–1242PubMedCrossRef
go back to reference Metzger JM, Fitts RH (1987) Fatigue from high- and low-frequency muscle stimulation: contractile and biochemical alterations. J Appl Physiol 62:2075–2082PubMed Metzger JM, Fitts RH (1987) Fatigue from high- and low-frequency muscle stimulation: contractile and biochemical alterations. J Appl Physiol 62:2075–2082PubMed
go back to reference Mier A, Brophy C, Estenne M, Moxham J, Green M, De Troyer A (1985) Action of abdominal muscles on rib cage in humans. J Appl Physiol 58:1438–1443PubMed Mier A, Brophy C, Estenne M, Moxham J, Green M, De Troyer A (1985) Action of abdominal muscles on rib cage in humans. J Appl Physiol 58:1438–1443PubMed
go back to reference Mier A, Brophy C, Moxham J, Green M (1990) Influence of lung volume and rib cage configuration on transdiaphragmatic pressure during phrenic nerve stimulation in man. Respir Physiol 80:193–202PubMedCrossRef Mier A, Brophy C, Moxham J, Green M (1990) Influence of lung volume and rib cage configuration on transdiaphragmatic pressure during phrenic nerve stimulation in man. Respir Physiol 80:193–202PubMedCrossRef
go back to reference Mier-Jedrzejowicz A, Brophy C, Moxham J, Green M (1988) Assessment of diaphragm weakness. Am Rev Respir Dis 137:877–883PubMed Mier-Jedrzejowicz A, Brophy C, Moxham J, Green M (1988) Assessment of diaphragm weakness. Am Rev Respir Dis 137:877–883PubMed
go back to reference Millet GY, Lepers R (2004) Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 34:105–116PubMedCrossRef Millet GY, Lepers R (2004) Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 34:105–116PubMedCrossRef
go back to reference Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G (2002) Alterations of neuromuscular function after an ultramarathon. J Appl Physiol 92:486–492PubMed Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G (2002) Alterations of neuromuscular function after an ultramarathon. J Appl Physiol 92:486–492PubMed
go back to reference Millet GY, Martin V, Lattier G, Ballay Y (2003a) Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol 94:193–198PubMed Millet GY, Martin V, Lattier G, Ballay Y (2003a) Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol 94:193–198PubMed
go back to reference Millet GY, Martin V, Maffiuletti NA, Martin A (2003b) Neuromuscular fatigue after a ski skating marathon. Can J Appl Physiol 28:434–445PubMedCrossRef Millet GY, Martin V, Maffiuletti NA, Martin A (2003b) Neuromuscular fatigue after a ski skating marathon. Can J Appl Physiol 28:434–445PubMedCrossRef
go back to reference Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, Gergele L, Bonnefoy R, Féasson L, Martin V (2011) Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS ONE 6:e17059PubMedCrossRef Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, Gergele L, Bonnefoy R, Féasson L, Martin V (2011) Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS ONE 6:e17059PubMedCrossRef
go back to reference O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2008) Assessment of voluntary muscle activation using magnetic stimulation. Eur J Appl Physiol 104:49–55PubMedCrossRef O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2008) Assessment of voluntary muscle activation using magnetic stimulation. Eur J Appl Physiol 104:49–55PubMedCrossRef
go back to reference Orizio C, Gobbo M, Diemont B (2004) Changes of the force-frequency relationship in human tibialis anterior at fatigue. J Electromyogr Kinesiol 14:523–530PubMedCrossRef Orizio C, Gobbo M, Diemont B (2004) Changes of the force-frequency relationship in human tibialis anterior at fatigue. J Electromyogr Kinesiol 14:523–530PubMedCrossRef
go back to reference Pensini M, Martin A (2004) Effect of voluntary contraction intensity on the H-reflex and V wave responses. Neurosci Lett 367:369–374PubMedCrossRef Pensini M, Martin A (2004) Effect of voluntary contraction intensity on the H-reflex and V wave responses. Neurosci Lett 367:369–374PubMedCrossRef
go back to reference Petersen NT, Taylor JL, Gandevia SC (2002) The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii. J Physiol 544:277–284PubMedCrossRef Petersen NT, Taylor JL, Gandevia SC (2002) The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii. J Physiol 544:277–284PubMedCrossRef
go back to reference Place N, Lepers R, Deley G, Millet GY (2004) Time course of neuromuscular alterations during a prolonged running exercise. Med Sci Sports Exerc 36:1347–1356PubMedCrossRef Place N, Lepers R, Deley G, Millet GY (2004) Time course of neuromuscular alterations during a prolonged running exercise. Med Sci Sports Exerc 36:1347–1356PubMedCrossRef
go back to reference Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495PubMedCrossRef Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495PubMedCrossRef
go back to reference Place N, Casartelli N, Glatthorn JF, Maffiuletti NA (2010) Comparison of quadriceps inactivation between nerve and muscle stimulation. Muscle Nerve 42:894–900PubMedCrossRef Place N, Casartelli N, Glatthorn JF, Maffiuletti NA (2010) Comparison of quadriceps inactivation between nerve and muscle stimulation. Muscle Nerve 42:894–900PubMedCrossRef
go back to reference Polkey MI, Kyroussis D, Hamnegard CH, Mills GH, Green M, Moxham J (1996) Quadriceps strength and fatigue assessed by magnetic stimulation of the femoral nerve in man. Muscle Nerve 19:549–555PubMedCrossRef Polkey MI, Kyroussis D, Hamnegard CH, Mills GH, Green M, Moxham J (1996) Quadriceps strength and fatigue assessed by magnetic stimulation of the femoral nerve in man. Muscle Nerve 19:549–555PubMedCrossRef
go back to reference Racinais S, Girard O, Micallef JP, Perrey S (2007) Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 97:596–603PubMedCrossRef Racinais S, Girard O, Micallef JP, Perrey S (2007) Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 97:596–603PubMedCrossRef
go back to reference Rankin LL, Enoka RM, Volz KA, Stuart DG (1988) Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle. J Appl Physiol 65:2687–2695PubMed Rankin LL, Enoka RM, Volz KA, Stuart DG (1988) Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle. J Appl Physiol 65:2687–2695PubMed
go back to reference Rassier DE, Macintosh BR (2000) Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res 33:499–508PubMedCrossRef Rassier DE, Macintosh BR (2000) Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res 33:499–508PubMedCrossRef
go back to reference Rothwell JC (1991) Physiological studies of electric and magnetic stimulation of the human brain. Electroencephalogr Clin Neurophysiol 43:29–35 Rothwell JC (1991) Physiological studies of electric and magnetic stimulation of the human brain. Electroencephalogr Clin Neurophysiol 43:29–35
go back to reference Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200PubMed Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200PubMed
go back to reference Rutherford OM, Jones DA, Newham DJ (1986) Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. J Neurol Neurosurg Psychiatry 49:1288–1291PubMedCrossRef Rutherford OM, Jones DA, Newham DJ (1986) Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. J Neurol Neurosurg Psychiatry 49:1288–1291PubMedCrossRef
go back to reference Schillings ML, Kalkman JS, Janssen HM, van Engelen BG, Bleijenberg G, Zwarts MJ (2007) Experienced and physiological fatigue in neuromuscular disorders. Clin Neurophysiol 118:292–300PubMedCrossRef Schillings ML, Kalkman JS, Janssen HM, van Engelen BG, Bleijenberg G, Zwarts MJ (2007) Experienced and physiological fatigue in neuromuscular disorders. Clin Neurophysiol 118:292–300PubMedCrossRef
go back to reference Seynnes OR, Maffiuletti NA, Horstman AM, Narici MV (2011) Increased H-reflex excitability is not accompanied by changes in neural drive following 24 days of unilateral lower limb suspension. Muscle Nerve 42:749–755 Seynnes OR, Maffiuletti NA, Horstman AM, Narici MV (2011) Increased H-reflex excitability is not accompanied by changes in neural drive following 24 days of unilateral lower limb suspension. Muscle Nerve 42:749–755
go back to reference Sidhu SK, Bentley DJ, Carroll TJ (2009a) Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation. Muscle Nerve 39:186–196PubMedCrossRef Sidhu SK, Bentley DJ, Carroll TJ (2009a) Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation. Muscle Nerve 39:186–196PubMedCrossRef
go back to reference Sidhu SK, Bentley DJ, Carroll TJ (2009b) Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol 106:556–565PubMedCrossRef Sidhu SK, Bentley DJ, Carroll TJ (2009b) Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol 106:556–565PubMedCrossRef
go back to reference Sieck GC, Mantilla CB (2009) Novel method for physiological recruitment of diaphragm motor units after upper cervical spinal cord injury. J Appl Physiol 107:641–642PubMedCrossRef Sieck GC, Mantilla CB (2009) Novel method for physiological recruitment of diaphragm motor units after upper cervical spinal cord injury. J Appl Physiol 107:641–642PubMedCrossRef
go back to reference Similowski T, Yan S, Gauthier AP, Macklem PT, Bellemare F (1991) Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med 325:917–923PubMedCrossRef Similowski T, Yan S, Gauthier AP, Macklem PT, Bellemare F (1991) Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med 325:917–923PubMedCrossRef
go back to reference Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84:344–350PubMed Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84:344–350PubMed
go back to reference Suzuki J, Tanaka R, Yan S, Chen R, Macklem PT, Kayser B (1999) Assessment of abdominal muscle contractility, strength, and fatigue. Am J Respir Crit Care Med 159:1052–1060PubMed Suzuki J, Tanaka R, Yan S, Chen R, Macklem PT, Kayser B (1999) Assessment of abdominal muscle contractility, strength, and fatigue. Am J Respir Crit Care Med 159:1052–1060PubMed
go back to reference Swallow EB, Gosker HR, Ward KA, Moore AJ, Dayer MJ, Hopkinson NS, Schols AM, Moxham J, Polkey MI (2007) A novel technique for nonvolitional assessment of quadriceps muscle endurance in humans. J Appl Physiol 103:739–746PubMedCrossRef Swallow EB, Gosker HR, Ward KA, Moore AJ, Dayer MJ, Hopkinson NS, Schols AM, Moxham J, Polkey MI (2007) A novel technique for nonvolitional assessment of quadriceps muscle endurance in humans. J Appl Physiol 103:739–746PubMedCrossRef
go back to reference Taylor JL (2007) Magnetic muscle stimulation produces fatigue without effort. J Appl Physiol 103:733–734PubMedCrossRef Taylor JL (2007) Magnetic muscle stimulation produces fatigue without effort. J Appl Physiol 103:733–734PubMedCrossRef
go back to reference Taylor JL (2009) Point: the interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol 107:354–355PubMedCrossRef Taylor JL (2009) Point: the interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol 107:354–355PubMedCrossRef
go back to reference Taylor JL, Gandevia SC (2001) Transcranial magnetic stimulation and human muscle fatigue. Muscle Nerve 24:18–29PubMedCrossRef Taylor JL, Gandevia SC (2001) Transcranial magnetic stimulation and human muscle fatigue. Muscle Nerve 24:18–29PubMedCrossRef
go back to reference Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 551:661–671PubMedCrossRef Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 551:661–671PubMedCrossRef
go back to reference Todd G, Gorman RB, Gandevia SC (2004) Measurement and reproducibility of strength and voluntary activation of lower-limb muscles. Muscle Nerve 29:834–842PubMedCrossRef Todd G, Gorman RB, Gandevia SC (2004) Measurement and reproducibility of strength and voluntary activation of lower-limb muscles. Muscle Nerve 29:834–842PubMedCrossRef
go back to reference Tomazin K, Verges S, Decorte N, Oulerich A, Millet GY (2010) Effects of coil characteristics for femoral nerve magnetic stimulation. Muscle Nerve 41:406–409PubMedCrossRef Tomazin K, Verges S, Decorte N, Oulerich A, Millet GY (2010) Effects of coil characteristics for femoral nerve magnetic stimulation. Muscle Nerve 41:406–409PubMedCrossRef
go back to reference Tomazin K, Verges S, Decorte N, Oulerich A, Maffiuletti NA, Millet GY (2011) Fat tissue alters quadriceps response to femoral nerve magnetic stimulation. Clin Neurophysiol 122:842–847PubMedCrossRef Tomazin K, Verges S, Decorte N, Oulerich A, Maffiuletti NA, Millet GY (2011) Fat tissue alters quadriceps response to femoral nerve magnetic stimulation. Clin Neurophysiol 122:842–847PubMedCrossRef
go back to reference Upton ARM, McComas AJ, Sica REP (1971) Potentiation of “late” responses evoked in muscles during effor. J Neurol Neurosurg Psychiatry 34:699–711PubMedCrossRef Upton ARM, McComas AJ, Sica REP (1971) Potentiation of “late” responses evoked in muscles during effor. J Neurol Neurosurg Psychiatry 34:699–711PubMedCrossRef
go back to reference Vagg R, Mogyoros I, Kiernan MC, Burke D (1998) Activity-dependent hyperpolarization of human motor axons produced by natural activity. J Physiol 507(Pt 3):919–925PubMedCrossRef Vagg R, Mogyoros I, Kiernan MC, Burke D (1998) Activity-dependent hyperpolarization of human motor axons produced by natural activity. J Physiol 507(Pt 3):919–925PubMedCrossRef
go back to reference Vallier JM, Gruet M, Mely L, Pensini M, Brisswalter J (2011) Neuromuscular fatigue after maximal exercise in patients with cystic fibrosis. J Electromyogr Kinesiol (in press) Vallier JM, Gruet M, Mely L, Pensini M, Brisswalter J (2011) Neuromuscular fatigue after maximal exercise in patients with cystic fibrosis. J Electromyogr Kinesiol (in press)
go back to reference Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513(Pt 1):295–305PubMedCrossRef Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513(Pt 1):295–305PubMedCrossRef
go back to reference Verges S, Maffiuletti NA, Kerherve H, Decorte N, Wuyam B, Millet GY (2009) Comparison of electrical and magnetic stimulations to assess quadriceps muscle function. J Appl Physiol 106:701–710PubMedCrossRef Verges S, Maffiuletti NA, Kerherve H, Decorte N, Wuyam B, Millet GY (2009) Comparison of electrical and magnetic stimulations to assess quadriceps muscle function. J Appl Physiol 106:701–710PubMedCrossRef
go back to reference Westerblad H, Duty S, Allen DG (1993) Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. J Appl Physiol 75:382–388PubMed Westerblad H, Duty S, Allen DG (1993) Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. J Appl Physiol 75:382–388PubMed
go back to reference Wragg S, Aquilina R, Moran J, Ridding M, Hamnegard C, Fearn T, Green M, Moxham J (1994) Comparison of cervical magnetic stimulation and bilateral percutaneous electrical stimulation of the phrenic nerves in normal subjects. Eur Respir J 7:1788–1792PubMedCrossRef Wragg S, Aquilina R, Moran J, Ridding M, Hamnegard C, Fearn T, Green M, Moxham J (1994) Comparison of cervical magnetic stimulation and bilateral percutaneous electrical stimulation of the phrenic nerves in normal subjects. Eur Respir J 7:1788–1792PubMedCrossRef
go back to reference Yue GH, Ranganathan VK, Siemionow V, Liu JZ, Sahgal V (1999) Older adults exhibit a reduced ability to fully activate their biceps brachii muscle. J Gerontol 54:M249–M253 Yue GH, Ranganathan VK, Siemionow V, Liu JZ, Sahgal V (1999) Older adults exhibit a reduced ability to fully activate their biceps brachii muscle. J Gerontol 54:M249–M253
go back to reference Zehr PE (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86:455–468PubMedCrossRef Zehr PE (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86:455–468PubMedCrossRef
go back to reference Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2:e348PubMedCrossRef Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2:e348PubMedCrossRef
Metadata
Title
Electrical stimulation for testing neuromuscular function: from sport to pathology
Authors
Guillaume Y. Millet
Vincent Martin
Alain Martin
Samuel Vergès
Publication date
01-10-2011
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 10/2011
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-011-1996-y

Other articles of this Issue 10/2011

European Journal of Applied Physiology 10/2011 Go to the issue