Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Research article

EHHADH contributes to cisplatin resistance through regulation by tumor-suppressive microRNAs in bladder cancer

Authors: Shunsuke Okamura, Hirofumi Yoshino, Kazuki Kuroshima, Masafumi Tsuruda, Yoichi Osako, Takashi Sakaguchi, Masaya Yonemori, Yasutoshi Yamada, Shuichi Tatarano, Masayuki Nakagawa, Hideki Enokida

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Cisplatin-based chemotherapy is recommended as the primary treatment for advanced bladder cancer (BC) with unresectable or metastatic disease. However, the benefits are limited due to the acquisition of drug resistance. The mechanisms of resistance remain unclear. Although there are some reports that some molecules are associated with cisplatin resistance in advanced BC, those reports have not been fully investigated. Therefore, we undertook a new search for cisplatin resistance-related genes targeted by tumor suppressive microRNAs as well as genes that were downregulated in cisplatin-resistant BC cells and clinical BC tissues.

Methods

First, we established cisplatin-resistant BOY and T24 BC cell lines (CDDP-R-BOY, CDDP-R-T24). Then, Next Generation Sequence analysis was performed with parental and cisplatin-resistant cell lines to search for the microRNAs responsible for cisplatin resistance. We conducted gain-of-function analysis of microRNAs and their effects on cisplatin resistance, and we searched target genes comprehensively using Next Generation mRNA sequences.

Results

A total of 28 microRNAs were significantly downregulated in both CDDP-R-BOY and CDDP-R-T24. Among them, miR-486-5p, a tumor suppressor miRNA, was negatively correlated with the TNM classification of clinical BC samples in The Cancer Genome Atlas (TCGA) database. Transfection of miRNA-486-5p significantly inhibited cancer cell proliferation, migration, and invasion, and also improved the cells’ resistance to cisplatin. Among the genes targeted by miRNA-486-5p, we focused on enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH), which is involved in the degradation of fatty acids. EHHADH was directly regulated by miRNA-486-5p as determined by a dual-luciferase reporter assay. Loss-of-function study using EHHADH si-RNA showed significant inhibitions of cell proliferation, migration, invasion and the recovery of cisplatin sensitivity.

Conclusion

Identification of EHHADH as a target of miRNA-486-5p provides novel insights into the potential mechanisms of cisplatin resistance in BC.
Appendix
Available only for authorised users
Literature
3.
go back to reference Alanee S, Alvarado-Cabrero I, Murugan P, Kumar R, Nepple KG, Paner GP, Patel MI, Raspollini MR, Lopez-Beltran A, Konety BR. Update of the international consultation on urological diseases on bladder cancer 2018: non-urothelial cancers of the urinary bladder. World J Urol. 2019;37(1):107–14. https://doi.org/10.1007/s00345-018-2421-5.CrossRefPubMed Alanee S, Alvarado-Cabrero I, Murugan P, Kumar R, Nepple KG, Paner GP, Patel MI, Raspollini MR, Lopez-Beltran A, Konety BR. Update of the international consultation on urological diseases on bladder cancer 2018: non-urothelial cancers of the urinary bladder. World J Urol. 2019;37(1):107–14. https://​doi.​org/​10.​1007/​s00345-018-2421-5.CrossRefPubMed
18.
go back to reference Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DAH, Glennie MJ, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102(11):1555–77.CrossRefPubMedPubMedCentral Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DAH, Glennie MJ, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102(11):1555–77.CrossRefPubMedPubMedCentral
26.
go back to reference Watanabe H, Okada M, Kaji Y, Satouchi M, Sato Y, Yamabe Y, Onaya H, Endo M, Sone M, Arai Y: [New response evaluation criteria in solid tumours-revised RECIST guideline (version 1.1)]. Gan To Kagaku Ryoho 2009;36(13):2495–2501. Watanabe H, Okada M, Kaji Y, Satouchi M, Sato Y, Yamabe Y, Onaya H, Endo M, Sone M, Arai Y: [New response evaluation criteria in solid tumours-revised RECIST guideline (version 1.1)]. Gan To Kagaku Ryoho 2009;36(13):2495–2501.
49.
50.
go back to reference Gadducci A, Cosio S, Muraca S, Genazzani AR. Molecular mechanisms of apoptosis and chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications. Eur J Gynaecol Oncol. 2002;23(5):390–6.PubMed Gadducci A, Cosio S, Muraca S, Genazzani AR. Molecular mechanisms of apoptosis and chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications. Eur J Gynaecol Oncol. 2002;23(5):390–6.PubMed
Metadata
Title
EHHADH contributes to cisplatin resistance through regulation by tumor-suppressive microRNAs in bladder cancer
Authors
Shunsuke Okamura
Hirofumi Yoshino
Kazuki Kuroshima
Masafumi Tsuruda
Yoichi Osako
Takashi Sakaguchi
Masaya Yonemori
Yasutoshi Yamada
Shuichi Tatarano
Masayuki Nakagawa
Hideki Enokida
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07717-0

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine