Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 4/2014

01-08-2014 | Laboratory Investigation

Efficacy of Magnetic Thermoablation Using SPIO in the Treatment of Osteoid Osteoma in a Bovine Model Compared to Radiofrequency and Microwave Ablation

Authors: Peter Isfort, H. Witte, I. Slabu, T. Penzkofer, M. Baumann, T. Braunschweig, L. N. Kennes, C. K. Kuhl, T. Schmitz-Rode, A. H. Mahnken, P. Bruners

Published in: CardioVascular and Interventional Radiology | Issue 4/2014

Login to get access

Abstract

Purpose

To evaluate heating efficacy of superparamagnetic iron oxide nanoparticles (SPIO) for electromagnetic ablation (EMA) of osteoid osteoma (OO) using an ex vivo model compared to radiofrequency ablation (RFA) and microwave ablation (MWA).

Methods

A model for OO using sliced bovine tibia and sliced muscle tissue was developed. A bone cavity filled with either a mixture of SPIO and agarose or pure agarose (control group) was established. EMA was performed using an experimental system, RFA and MWA using clinically approved systems, and the ablation protocols recommended by the vendor. For temperature measurements, fiberoptic temperature probes were inserted inside the cavity, on the outside of the periosteum, and at a 5 mm distance to the periosteum.

Results

Maximum temperatures with or without SPIO in the nidus were as follows: EMA: 79.9 ± 2.5/22.3 ± 0.7 °C; RFA: 95.1 ± 1.8/98.6 ± 0.9 °C; MWA: 85.1 ± 10.8/83.4 ± 9.62 °C. In RFA with or without SPIO significantly higher temperatures were achieved in the nidus compared to all other groups (p < 0.05). In MWA significantly higher temperatures were observed in the 5 mm distance to the periosteum compared to EMA and RFA with or without SPIO (p < 0.05). In MWA temperature decrease between nidus and the 5 mm distance to the periosteum was significantly lower than in RFA with or without SPIO (p < 0.0001). In MWA without SPIO temperature decrease was significantly lower than in the EMA group (p < 0.05).

Conclusion

In the experimental setting, ablation of OO is safe and effective using EMA. It is less invasive than RFA and MWA, and it theoretically allows repeated treatments without repeated punctures. In comparison, the highest temperatures in the nidus are reached using RFA.
Literature
1.
go back to reference Eggel Y, Theumann N, Luthi F (2007) Intra-articular osteoid osteoma of the knee: clinical and therapeutical particularities. Joint Bone Spine 74:379–381PubMedCrossRef Eggel Y, Theumann N, Luthi F (2007) Intra-articular osteoid osteoma of the knee: clinical and therapeutical particularities. Joint Bone Spine 74:379–381PubMedCrossRef
2.
go back to reference Greenspan A (1993) Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical, imaging, pathologic, and differential considerations. Skeletal Radiol 22:485–500PubMed Greenspan A (1993) Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical, imaging, pathologic, and differential considerations. Skeletal Radiol 22:485–500PubMed
3.
4.
go back to reference Peyser A, Applbaum Y, Simanovsky N et al (2009) CT-guided radiofrequency ablation of pediatric osteoid osteoma utilizing a water-cooled tip. Ann Surg Oncol 16:2856–2861PubMedCrossRef Peyser A, Applbaum Y, Simanovsky N et al (2009) CT-guided radiofrequency ablation of pediatric osteoid osteoma utilizing a water-cooled tip. Ann Surg Oncol 16:2856–2861PubMedCrossRef
5.
go back to reference Adam G, Keulers P, Vorwerk D et al (1995) The percutaneous CT-guided treatment of osteoid osteomas: a combined procedure with a biopsy drill and subsequent ethanol injection. Rofo 162:232–235PubMedCrossRef Adam G, Keulers P, Vorwerk D et al (1995) The percutaneous CT-guided treatment of osteoid osteomas: a combined procedure with a biopsy drill and subsequent ethanol injection. Rofo 162:232–235PubMedCrossRef
6.
go back to reference Fenichel I, Garniack A, Morag B et al (2006) Percutaneous CT-guided curettage of osteoid osteoma with histological confirmation: a retrospective study and review of the literature. Int Orthop 30:139–142PubMedCentralPubMedCrossRef Fenichel I, Garniack A, Morag B et al (2006) Percutaneous CT-guided curettage of osteoid osteoma with histological confirmation: a retrospective study and review of the literature. Int Orthop 30:139–142PubMedCentralPubMedCrossRef
7.
go back to reference Gebauer B, Tunn PU, Gaffke G et al (2006) Osteoid osteoma: experience with laser- and radiofrequency-induced ablation. Cardiovasc Intervent Radiol 29:210–215PubMed Gebauer B, Tunn PU, Gaffke G et al (2006) Osteoid osteoma: experience with laser- and radiofrequency-induced ablation. Cardiovasc Intervent Radiol 29:210–215PubMed
8.
go back to reference Rosenthal DI, Hornicek FJ, Torriani M et al (2003) Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 229:171–175PubMedCrossRef Rosenthal DI, Hornicek FJ, Torriani M et al (2003) Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 229:171–175PubMedCrossRef
9.
go back to reference Skjeldal S, Lilleas F, Folleras G et al (2000) Real time MRI-guided excision and cryo-treatment of osteoid osteoma in os ischii—a case report. Acta Orthop Scand 71:637–638PubMedCrossRef Skjeldal S, Lilleas F, Folleras G et al (2000) Real time MRI-guided excision and cryo-treatment of osteoid osteoma in os ischii—a case report. Acta Orthop Scand 71:637–638PubMedCrossRef
10.
go back to reference Bruners P, Braunschweig T, Hodenius M et al (2010) Thermoablation of malignant kidney tumors using magnetic nanoparticles: an in vivo feasibility study in a rabbit model. Cardiovasc Intervent Radiol 33:127–134PubMed Bruners P, Braunschweig T, Hodenius M et al (2010) Thermoablation of malignant kidney tumors using magnetic nanoparticles: an in vivo feasibility study in a rabbit model. Cardiovasc Intervent Radiol 33:127–134PubMed
11.
go back to reference Hilger I, Hergt R, Kaiser WA (2000) Effects of magnetic thermoablation in muscle tissue using iron oxide particles: an in vitro study. Invest Radiol 35:170–179PubMedCrossRef Hilger I, Hergt R, Kaiser WA (2000) Effects of magnetic thermoablation in muscle tissue using iron oxide particles: an in vitro study. Invest Radiol 35:170–179PubMedCrossRef
12.
go back to reference Johannsen M, Thiesen B, Wust P, Jordan A (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 26:790–795PubMedCrossRef Johannsen M, Thiesen B, Wust P, Jordan A (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 26:790–795PubMedCrossRef
13.
go back to reference Jordan A, Scholz R, Maier-Hauff K et al (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14PubMedCrossRef Jordan A, Scholz R, Maier-Hauff K et al (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14PubMedCrossRef
14.
go back to reference Mitsumori M, Hiraoka M, Shibata T et al (1996) Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors. Hepatogastroenterology 43:1431–1437PubMed Mitsumori M, Hiraoka M, Shibata T et al (1996) Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors. Hepatogastroenterology 43:1431–1437PubMed
15.
go back to reference Bitsch RG, Rupp R, Bernd L, Ludwig K (2006) Osteoid osteoma in an ex vivo animal model: temperature changes in surrounding soft tissue during CT-guided radiofrequency ablation. Radiology 238:107–112PubMedCrossRef Bitsch RG, Rupp R, Bernd L, Ludwig K (2006) Osteoid osteoma in an ex vivo animal model: temperature changes in surrounding soft tissue during CT-guided radiofrequency ablation. Radiology 238:107–112PubMedCrossRef
16.
go back to reference Rosenthal DI, Alexander A, Rosenberg AE, Springfield D (1992) Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology 183:29–33PubMedCrossRef Rosenthal DI, Alexander A, Rosenberg AE, Springfield D (1992) Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology 183:29–33PubMedCrossRef
17.
go back to reference Sans N, Galy-Fourcade D, Assoun J et al (1999) Osteoid osteoma: CT-guided percutaneous resection and follow-up in 38 patients. Radiology 212:687–692PubMedCrossRef Sans N, Galy-Fourcade D, Assoun J et al (1999) Osteoid osteoma: CT-guided percutaneous resection and follow-up in 38 patients. Radiology 212:687–692PubMedCrossRef
18.
go back to reference Resnick RB, Jarolem KL, Sheskier SC et al (1995) Arthroscopic removal of an osteoid osteoma of the talus: a case report. Foot Ankle Int 16:212–215PubMedCrossRef Resnick RB, Jarolem KL, Sheskier SC et al (1995) Arthroscopic removal of an osteoid osteoma of the talus: a case report. Foot Ankle Int 16:212–215PubMedCrossRef
19.
go back to reference Barei DP, Moreau G, Scarborough MT, Neel MD (2000) Percutaneous radiofrequency ablation of osteoid osteoma. Clin Orthop Relat Res 373:115–124PubMedCrossRef Barei DP, Moreau G, Scarborough MT, Neel MD (2000) Percutaneous radiofrequency ablation of osteoid osteoma. Clin Orthop Relat Res 373:115–124PubMedCrossRef
20.
go back to reference de Berg JC, Pattynama PM, Obermann WR et al (1995) Percutaneous computed-tomography-guided thermocoagulation for osteoid osteomas. Lancet 346(8971):350–351PubMedCrossRef de Berg JC, Pattynama PM, Obermann WR et al (1995) Percutaneous computed-tomography-guided thermocoagulation for osteoid osteomas. Lancet 346(8971):350–351PubMedCrossRef
21.
go back to reference Lindner NJ, Scarborough M, Ciccarelli JM, Enneking WF (1997) CT-controlled thermocoagulation of osteoid osteoma in comparison with traditional methods. Z Orthop Ihre Grenzgeb 135:522–527PubMedCrossRef Lindner NJ, Scarborough M, Ciccarelli JM, Enneking WF (1997) CT-controlled thermocoagulation of osteoid osteoma in comparison with traditional methods. Z Orthop Ihre Grenzgeb 135:522–527PubMedCrossRef
22.
go back to reference Vanderschueren GM, Taminiau AH, Obermann WR, Bloem JL (2002) Osteoid osteoma: clinical results with thermocoagulation. Radiology 224:82–86PubMedCrossRef Vanderschueren GM, Taminiau AH, Obermann WR, Bloem JL (2002) Osteoid osteoma: clinical results with thermocoagulation. Radiology 224:82–86PubMedCrossRef
23.
go back to reference Woertler K, Vestring T, Boettner F et al (2001) Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol 12:717–722PubMedCrossRef Woertler K, Vestring T, Boettner F et al (2001) Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol 12:717–722PubMedCrossRef
24.
go back to reference Vanderschueren GM, Taminiau AH, Obermann WR et al (2004) Osteoid osteoma: factors for increased risk of unsuccessful thermal coagulation. Radiology 233:757–762PubMedCrossRef Vanderschueren GM, Taminiau AH, Obermann WR et al (2004) Osteoid osteoma: factors for increased risk of unsuccessful thermal coagulation. Radiology 233:757–762PubMedCrossRef
25.
go back to reference Hilger I, Andra W, Hergt R et al (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575PubMedCrossRef Hilger I, Andra W, Hergt R et al (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575PubMedCrossRef
26.
go back to reference Hilger I, Andra W, Bahring R et al (1997) Evaluation of temperature increase with different amounts of magnetite in liver tissue samples. Invest Radiol 32:705–712PubMedCrossRef Hilger I, Andra W, Bahring R et al (1997) Evaluation of temperature increase with different amounts of magnetite in liver tissue samples. Invest Radiol 32:705–712PubMedCrossRef
27.
go back to reference Johannsen M, Gneveckow U, Thiesen B et al (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1661PubMedCrossRef Johannsen M, Gneveckow U, Thiesen B et al (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1661PubMedCrossRef
28.
go back to reference Organ LW (1976) Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol 39:69–76PubMed Organ LW (1976) Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol 39:69–76PubMed
29.
go back to reference de Mercato G, Garcia-Sanchez FJ (1988) Dielectric properties of fluid-saturated bone: a comparison between diaphysis and epiphysis. Med Biol Eng Comput 26:313–316PubMedCrossRef de Mercato G, Garcia-Sanchez FJ (1988) Dielectric properties of fluid-saturated bone: a comparison between diaphysis and epiphysis. Med Biol Eng Comput 26:313–316PubMedCrossRef
30.
go back to reference Haemmerich D, Ozkan R, Tungjitkusolmun S et al (2002) Changes in electrical resistivity of swine liver after occlusion and postmortem. Med Biol Eng Comput 40:29–33PubMedCrossRef Haemmerich D, Ozkan R, Tungjitkusolmun S et al (2002) Changes in electrical resistivity of swine liver after occlusion and postmortem. Med Biol Eng Comput 40:29–33PubMedCrossRef
31.
go back to reference Skinner MG, Iizuka MN, Kolios MC, Sherar MD (1998) A theoretical comparison of energy sources—microwave, ultrasound and laser—for interstitial thermal therapy. Phys Med Biol 43:3535–35347PubMedCrossRef Skinner MG, Iizuka MN, Kolios MC, Sherar MD (1998) A theoretical comparison of energy sources—microwave, ultrasound and laser—for interstitial thermal therapy. Phys Med Biol 43:3535–35347PubMedCrossRef
32.
go back to reference Simo KA, Tsirline VB, Sindram D et al (2013) Microwave ablation using 915-MHz and 2.45-GHz systems: what are the differences? HPB (Oxford) 15:991–996CrossRef Simo KA, Tsirline VB, Sindram D et al (2013) Microwave ablation using 915-MHz and 2.45-GHz systems: what are the differences? HPB (Oxford) 15:991–996CrossRef
34.
go back to reference Salloum M, Ma RH, Weeks D, Zhu L et al (2008) Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int J Hyperthermia 24:337–345PubMedCrossRef Salloum M, Ma RH, Weeks D, Zhu L et al (2008) Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int J Hyperthermia 24:337–345PubMedCrossRef
Metadata
Title
Efficacy of Magnetic Thermoablation Using SPIO in the Treatment of Osteoid Osteoma in a Bovine Model Compared to Radiofrequency and Microwave Ablation
Authors
Peter Isfort
H. Witte
I. Slabu
T. Penzkofer
M. Baumann
T. Braunschweig
L. N. Kennes
C. K. Kuhl
T. Schmitz-Rode
A. H. Mahnken
P. Bruners
Publication date
01-08-2014
Publisher
Springer US
Published in
CardioVascular and Interventional Radiology / Issue 4/2014
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-013-0832-7

Other articles of this Issue 4/2014

CardioVascular and Interventional Radiology 4/2014 Go to the issue