Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2024

Open Access 01-12-2024 | Research article

Effects of various load magnitudes on ACL: an in vitro study using adolescent porcine stifle joints

Authors: Jason Koh, Nirav Mungalpara, Sunjung Kim, Asheesh Bedi, Mark Hutchinson, Farid Amirouche

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2024

Login to get access

Abstract

Introduction

The escalating incidence of anterior cruciate ligament (ACL) injuries, particularly among adolescents, is a pressing concern. The study of ACL biomechanics in this demographic presents challenges due to the scarcity of cadaveric specimens. This research endeavors to validate the adolescent porcine stifle joint as a fitting model for ACL studies.

Methods

We conducted experiments on 30 fresh porcine stifle knee joints. (Breed: Yorkshire, Weight: avg 90 lbs, Age Range: 2–4 months). They were stored at − 22 °C and a subsequent 24-h thaw at room temperature before being prepared for the experiment. These joints were randomly assigned to three groups. The first group served as a control and underwent only the load-to-failure test. The remaining two groups were subjected to 100 cycles, with forces of 300N and 520N, respectively. The load values of 300N and 520N correspond to three and five times the body weight (BW) of our juvenile porcine, respectively.

Result

The 520N force demonstrated a higher strain than the 300N, indicating a direct correlation between ACL strain and augmented loads. A significant difference in load-to-failure (p = 0.014) was observed between non-cyclically loaded ACLs and those subjected to 100 cycles at 520N. Three of the ten samples in the 520N group failed before completing 100 cycles. The ruptured ACLs from these tests closely resembled adolescent ACL injuries in detachment patterns. ACL stiffness was also measured post-cyclical loading by applying force and pulling the ACL at a rate of 1 mm per sec. Moreover, ACL stiffness measurements decreased from 152.46 N/mm in the control group to 129.42 N/mm after 100 cycles at 300N and a more significant drop to 86.90 N/mm after 100 cycles at 520N. A one-way analysis of variance (ANOVA) and t-test were chosen for statistical analysis.

Conclusions

The porcine stifle joint is an appropriate model for understanding ACL biomechanics in the skeletally immature demographic. The results emphasize the ligament’s susceptibility to injury under high-impact loads pertinent to sports activities. The study advocates for further research into different loading scenarios and the protective role of muscle co-activation in ACL injury prevention.
Literature
2.
go back to reference Bates NA, McPherson AL, Rao MB, Myer GD, Hewett TE. Characteristics of inpatient anterior cruciate ligament reconstructions and concomitant injuries. Knee Surg Sports Traumatol Arthrosc. 2016;24(9):2778–86.PubMedCrossRef Bates NA, McPherson AL, Rao MB, Myer GD, Hewett TE. Characteristics of inpatient anterior cruciate ligament reconstructions and concomitant injuries. Knee Surg Sports Traumatol Arthrosc. 2016;24(9):2778–86.PubMedCrossRef
3.
go back to reference Alghamdi W, Alzahrani A, Alsuwaydi A, Alzahrani A, Albaqqar O, Fatani M, et al. Prevalence of cruciate ligaments injury among physical education students of Umm Al-Qura university and the relation between the dominant body side and ligament injury side in non-contact injury type. Am J Med Med Sci. 2017;7(1):14–9. Alghamdi W, Alzahrani A, Alsuwaydi A, Alzahrani A, Albaqqar O, Fatani M, et al. Prevalence of cruciate ligaments injury among physical education students of Umm Al-Qura university and the relation between the dominant body side and ligament injury side in non-contact injury type. Am J Med Med Sci. 2017;7(1):14–9.
4.
go back to reference Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999;27(6):699–706.PubMedCrossRef Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999;27(6):699–706.PubMedCrossRef
5.
go back to reference Dodwell ER, Lamont LE, Green DW, Pan TJ, Marx RG, Lyman S. Twenty years of pediatric anterior cruciate ligament reconstruction in New York state. Am J Sports Med. 2014;42(3):675–80.PubMedCrossRef Dodwell ER, Lamont LE, Green DW, Pan TJ, Marx RG, Lyman S. Twenty years of pediatric anterior cruciate ligament reconstruction in New York state. Am J Sports Med. 2014;42(3):675–80.PubMedCrossRef
6.
go back to reference Wojtys EM, Beaulieu ML, Ashton-Miller JA. New perspectives on ACL injury: on the role of repetitive sub-maximal knee loading in causing ACL fatigue failure. J Orthop Res. 2016;34(12):2059–68.PubMedPubMedCentralCrossRef Wojtys EM, Beaulieu ML, Ashton-Miller JA. New perspectives on ACL injury: on the role of repetitive sub-maximal knee loading in causing ACL fatigue failure. J Orthop Res. 2016;34(12):2059–68.PubMedPubMedCentralCrossRef
7.
go back to reference Boden BP, Torg JS, Knowles SB, Hewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med. 2009;37(2):252–9.PubMedCrossRef Boden BP, Torg JS, Knowles SB, Hewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med. 2009;37(2):252–9.PubMedCrossRef
8.
go back to reference Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):1002–12.PubMedCrossRef Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):1002–12.PubMedCrossRef
9.
go back to reference Boden BP, Sheehan FT, Torg JS, Hewett TE. Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg. 2010;18(9):520–7.PubMedPubMedCentralCrossRef Boden BP, Sheehan FT, Torg JS, Hewett TE. Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg. 2010;18(9):520–7.PubMedPubMedCentralCrossRef
11.
go back to reference Burgio V, Casari S, Milizia M, Sanna F, Spezia G, Civera M, et al. Mechanical properties of animal ligaments: a review and comparative study for the identification of the most suitable human ligament surrogates. Biomech Model Mechanobiol. 2023;22(5):1645–83.PubMedPubMedCentralCrossRef Burgio V, Casari S, Milizia M, Sanna F, Spezia G, Civera M, et al. Mechanical properties of animal ligaments: a review and comparative study for the identification of the most suitable human ligament surrogates. Biomech Model Mechanobiol. 2023;22(5):1645–83.PubMedPubMedCentralCrossRef
12.
go back to reference Dargel J, Koebke J, Brüggemann GP, Pennig D, Schmidt-Wiethoff R. Tension degradation of anterior cruciate ligament grafts with dynamic flexion–extension loading: a biomechanical model in porcine knees. Arthroscopy. 2009;25(10):1115–25.PubMedCrossRef Dargel J, Koebke J, Brüggemann GP, Pennig D, Schmidt-Wiethoff R. Tension degradation of anterior cruciate ligament grafts with dynamic flexion–extension loading: a biomechanical model in porcine knees. Arthroscopy. 2009;25(10):1115–25.PubMedCrossRef
13.
go back to reference Li X, He J, Bian W, Li Z, Zhang W, Li D, et al. A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction—safety and efficacy in a porcine model. Acta Biomater. 2014;10(8):3696–704.PubMedCrossRef Li X, He J, Bian W, Li Z, Zhang W, Li D, et al. A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction—safety and efficacy in a porcine model. Acta Biomater. 2014;10(8):3696–704.PubMedCrossRef
14.
go back to reference Cone SG, Lambeth EP, Ru H, Fordham LA, Piedrahita JA, Spang JT, et al. Biomechanical function and size of the anteromedial and posterolateral bundles of the ACL change differently with skeletal growth in the pig model. Clin Orthop Relat Res. 2019;477(9):2161–74.PubMedPubMedCentralCrossRef Cone SG, Lambeth EP, Ru H, Fordham LA, Piedrahita JA, Spang JT, et al. Biomechanical function and size of the anteromedial and posterolateral bundles of the ACL change differently with skeletal growth in the pig model. Clin Orthop Relat Res. 2019;477(9):2161–74.PubMedPubMedCentralCrossRef
15.
go back to reference Woo SL, Orlando CA, Camp JF, Akeson WH. Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech. 1986;19(5):399–404.PubMedCrossRef Woo SL, Orlando CA, Camp JF, Akeson WH. Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech. 1986;19(5):399–404.PubMedCrossRef
16.
go back to reference Hamon A, Aoustin Y, Caro S. Two walking gaits for a planar bipedal robot equipped with a four-bar mechanism for the knee joint. Multibody SysDyn. 2014;1:31. Hamon A, Aoustin Y, Caro S. Two walking gaits for a planar bipedal robot equipped with a four-bar mechanism for the knee joint. Multibody SysDyn. 2014;1:31.
17.
go back to reference Marieswaran M, Jain I, Garg B, Sharma V, Kalyanasundaram D. A review on biomechanics of anterior cruciate ligament and materials for reconstruction. Appl Bionics Biomech. 2018;2018:e4657824.CrossRef Marieswaran M, Jain I, Garg B, Sharma V, Kalyanasundaram D. A review on biomechanics of anterior cruciate ligament and materials for reconstruction. Appl Bionics Biomech. 2018;2018:e4657824.CrossRef
18.
21.
go back to reference D’Lima DD, Fregly BJ, Patil S, Steklov N, Colwell CW. Knee joint forces: prediction, measurement, and significance. Proc Inst Mech Eng H. 2012;226(2):95–102.PubMedPubMedCentralCrossRef D’Lima DD, Fregly BJ, Patil S, Steklov N, Colwell CW. Knee joint forces: prediction, measurement, and significance. Proc Inst Mech Eng H. 2012;226(2):95–102.PubMedPubMedCentralCrossRef
24.
go back to reference Poh SY, Yew KSA, Wong PLK, Koh SBJ, Chia SL, Fook-Chong S, et al. Role of the anterior intermeniscal ligament in tibiofemoral contact mechanics during axial joint loading. Knee. 2012;19(2):135–9.PubMedCrossRef Poh SY, Yew KSA, Wong PLK, Koh SBJ, Chia SL, Fook-Chong S, et al. Role of the anterior intermeniscal ligament in tibiofemoral contact mechanics during axial joint loading. Knee. 2012;19(2):135–9.PubMedCrossRef
26.
go back to reference Wang JHC, Guo Q, Li B. Tendon biomechanics and mechanobiology—a minireview of basic concepts and recent advancements. J Hand Ther. 2012;25(2):133–40.PubMedCrossRef Wang JHC, Guo Q, Li B. Tendon biomechanics and mechanobiology—a minireview of basic concepts and recent advancements. J Hand Ther. 2012;25(2):133–40.PubMedCrossRef
29.
30.
go back to reference Proffen BL, McElfresh M, Fleming BC, Murray MM. A comparative anatomical study of the human knee and six animal species. Knee. 2012;19(4):493–9.PubMedCrossRef Proffen BL, McElfresh M, Fleming BC, Murray MM. A comparative anatomical study of the human knee and six animal species. Knee. 2012;19(4):493–9.PubMedCrossRef
32.
go back to reference Rodarte RRP, Guimarães JAM, Duarte BT, Kenedi PP, Pinho WR. Analysis of the mechanical behavior of the posterior cruciate ligament in a porcine model. Acta Ortop Bras. 2022;30(4):e236261.PubMedPubMedCentralCrossRef Rodarte RRP, Guimarães JAM, Duarte BT, Kenedi PP, Pinho WR. Analysis of the mechanical behavior of the posterior cruciate ligament in a porcine model. Acta Ortop Bras. 2022;30(4):e236261.PubMedPubMedCentralCrossRef
33.
go back to reference Zhou T, Grimshaw PN, Jones C. A biomechanical investigation of the anteromedial and posterolateral bands of the porcine anterior cruciate ligament. Proc Inst Mech Eng H. 2009;223(6):767–75.PubMedCrossRef Zhou T, Grimshaw PN, Jones C. A biomechanical investigation of the anteromedial and posterolateral bands of the porcine anterior cruciate ligament. Proc Inst Mech Eng H. 2009;223(6):767–75.PubMedCrossRef
34.
go back to reference Fleming BC, Spindler KP, Palmer MP, Magarian EM, Murray MM. Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med. 2009;37(8):1554–63.PubMedPubMedCentralCrossRef Fleming BC, Spindler KP, Palmer MP, Magarian EM, Murray MM. Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med. 2009;37(8):1554–63.PubMedPubMedCentralCrossRef
35.
go back to reference Lee CH, Huang GS, Chao KH, Wu SS, Chen Q. Differential pretensions of a flexor tendon graft for anterior cruciate ligament reconstruction: a biomechanical comparison in a porcine knee model. Arthroscopy. 2005;21(5):540–6.PubMedCrossRef Lee CH, Huang GS, Chao KH, Wu SS, Chen Q. Differential pretensions of a flexor tendon graft for anterior cruciate ligament reconstruction: a biomechanical comparison in a porcine knee model. Arthroscopy. 2005;21(5):540–6.PubMedCrossRef
36.
go back to reference Spindler KP, Murray MM, Devin C, Nanney LB, Davidson JM. The central ACL defect as a model for failure of intra-articular healing. J Orthop Res. 2006;24(3):401–6.PubMedCrossRef Spindler KP, Murray MM, Devin C, Nanney LB, Davidson JM. The central ACL defect as a model for failure of intra-articular healing. J Orthop Res. 2006;24(3):401–6.PubMedCrossRef
37.
38.
go back to reference Schmidt EC, Chin M, Aoyama JT, Ganley TJ, Shea KG, Hast MW. Mechanical and microstructural properties of pediatric anterior cruciate ligaments and autograft tendons used for reconstruction. Orthop J Sports Med. 2019;7(1):2325967118821667.PubMedPubMedCentralCrossRef Schmidt EC, Chin M, Aoyama JT, Ganley TJ, Shea KG, Hast MW. Mechanical and microstructural properties of pediatric anterior cruciate ligaments and autograft tendons used for reconstruction. Orthop J Sports Med. 2019;7(1):2325967118821667.PubMedPubMedCentralCrossRef
39.
go back to reference Shea KG, Cannamela PC, Dingel AB, Fabricant PD, Polousky JD, Anderson AF, et al. Anatomic dissection and CT imaging of the anterior cruciate and medial collateral ligament footprint anatomy in skeletally immature cadaver knees. J Pediatr Orthop. 2020;40(2):e109–14.PubMedCrossRef Shea KG, Cannamela PC, Dingel AB, Fabricant PD, Polousky JD, Anderson AF, et al. Anatomic dissection and CT imaging of the anterior cruciate and medial collateral ligament footprint anatomy in skeletally immature cadaver knees. J Pediatr Orthop. 2020;40(2):e109–14.PubMedCrossRef
40.
go back to reference Salvato D, Green DW, Accadbled F, Tuca M. Tibial spine fractures: state of the art. J ISAKOS. 2023;S2059–7754(23):00518–27. Salvato D, Green DW, Accadbled F, Tuca M. Tibial spine fractures: state of the art. J ISAKOS. 2023;S2059–7754(23):00518–27.
41.
go back to reference Howe D, Cone SG, Piedrahita JA, Spang JT, Fisher MB. Age- and sex-specific joint biomechanics in response to partial and complete anterior cruciate ligament injury in the porcine model. J Athl Train. 2022;57(9–10):978–89.PubMedCrossRef Howe D, Cone SG, Piedrahita JA, Spang JT, Fisher MB. Age- and sex-specific joint biomechanics in response to partial and complete anterior cruciate ligament injury in the porcine model. J Athl Train. 2022;57(9–10):978–89.PubMedCrossRef
42.
go back to reference Fleming BC, Proffen BL, Vavken P, Shalvoy MR, Machan JT, Murray MM. Increased platelet concentration does not improve functional graft healing in bio-enhanced ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):1161–70.PubMedCrossRef Fleming BC, Proffen BL, Vavken P, Shalvoy MR, Machan JT, Murray MM. Increased platelet concentration does not improve functional graft healing in bio-enhanced ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):1161–70.PubMedCrossRef
43.
go back to reference Beveridge JE, Proffen BL, Karamchedu NP, Chin KE, Sieker JT, Badger GJ, et al. Cartilage damage is related to ACL stiffness in a porcine model of ACL repair. J Orthop Res. 2019;37(10):2249–57.PubMedPubMedCentralCrossRef Beveridge JE, Proffen BL, Karamchedu NP, Chin KE, Sieker JT, Badger GJ, et al. Cartilage damage is related to ACL stiffness in a porcine model of ACL repair. J Orthop Res. 2019;37(10):2249–57.PubMedPubMedCentralCrossRef
44.
go back to reference Murray MM, Magarian EM, Harrison SL, Mastrangelo AN, Zurakowski D, Fleming BC. The effect of skeletal maturity on functional healing of the anterior cruciate ligament. J Bone Joint Surg Am. 2010;92(11):2039–49.PubMedPubMedCentralCrossRef Murray MM, Magarian EM, Harrison SL, Mastrangelo AN, Zurakowski D, Fleming BC. The effect of skeletal maturity on functional healing of the anterior cruciate ligament. J Bone Joint Surg Am. 2010;92(11):2039–49.PubMedPubMedCentralCrossRef
45.
go back to reference Montalvo AM, Schneider DK, Webster KE, Yut L, Galloway MT, Heidt RS, et al. Anterior cruciate ligament injury risk in sport: a systematic review and meta-analysis of injury incidence by sex and sport classification. J Athl Train. 2019;54(5):472–82.PubMedPubMedCentralCrossRef Montalvo AM, Schneider DK, Webster KE, Yut L, Galloway MT, Heidt RS, et al. Anterior cruciate ligament injury risk in sport: a systematic review and meta-analysis of injury incidence by sex and sport classification. J Athl Train. 2019;54(5):472–82.PubMedPubMedCentralCrossRef
46.
go back to reference Acevedo RJ, Rivera-Vega A, Miranda G, Micheo W. Anterior cruciate ligament injury: identification of risk factors and prevention strategies. Curr Sports Med Rep. 2014;13(3):186–91.PubMedCrossRef Acevedo RJ, Rivera-Vega A, Miranda G, Micheo W. Anterior cruciate ligament injury: identification of risk factors and prevention strategies. Curr Sports Med Rep. 2014;13(3):186–91.PubMedCrossRef
47.
go back to reference Donelon TA, dos Santos T, Pitchers G, Brown M, Jones PA. Biomechanical determinants of knee joint loads associated with increased anterior cruciate ligament loading during cutting a systematic review and technical framework. Sports Med Open. 2020;6(1):53.PubMedPubMedCentralCrossRef Donelon TA, dos Santos T, Pitchers G, Brown M, Jones PA. Biomechanical determinants of knee joint loads associated with increased anterior cruciate ligament loading during cutting a systematic review and technical framework. Sports Med Open. 2020;6(1):53.PubMedPubMedCentralCrossRef
48.
go back to reference Cleather DJ, Goodwin JE, Bull AM. Hip and knee joint loading during vertical jumping and push jerking. Clin Biomech. 2013;28(1):98–103.CrossRef Cleather DJ, Goodwin JE, Bull AM. Hip and knee joint loading during vertical jumping and push jerking. Clin Biomech. 2013;28(1):98–103.CrossRef
49.
50.
go back to reference Chen X, Wang M, Zhang Y, Feng Y, Wu Z, Huang N. Detecting signals from data with noise: theory and applications. J Atmos Sci. 2013;1(70):1489–504.CrossRef Chen X, Wang M, Zhang Y, Feng Y, Wu Z, Huang N. Detecting signals from data with noise: theory and applications. J Atmos Sci. 2013;1(70):1489–504.CrossRef
51.
go back to reference Chandrashekar N, Mansouri H, Slauterbeck J, Hashemi J. Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech. 2006;39(16):2943–50.PubMedCrossRef Chandrashekar N, Mansouri H, Slauterbeck J, Hashemi J. Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech. 2006;39(16):2943–50.PubMedCrossRef
Metadata
Title
Effects of various load magnitudes on ACL: an in vitro study using adolescent porcine stifle joints
Authors
Jason Koh
Nirav Mungalpara
Sunjung Kim
Asheesh Bedi
Mark Hutchinson
Farid Amirouche
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2024
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-024-04744-6

Other articles of this Issue 1/2024

Journal of Orthopaedic Surgery and Research 1/2024 Go to the issue