Skip to main content
Top
Published in: Trials 1/2018

Open Access 01-12-2018 | Study protocol

Effects of transcranial direct current stimulation on gait in people with Parkinson’s disease: study protocol for a randomized, controlled clinical trial

Authors: Vida Alizad, Marcus Meinzer, Laurent Frossard, Remco Polman, Simon Smith, Graham Kerr

Published in: Trials | Issue 1/2018

Login to get access

Abstract

Background

Gait difficulties are common and frequently devastating to people with Parkinson’s disease (PD). These difficulties are often followed by an increased risk of falls, leading to injury, hospitalization and mortality. The dysfunction in the basal ganglia-thalamocortical motor circuits and reduced activity in the premotor and primary motor cortices has raised interest in transcranial direct current stimulation (tDCS) as an adjunct intervention in PD. tDCS might provide a potentially safe and non-invasive treatment by modulating cortical excitability and behavioural outcomes. The aim of this study is to compare the effects of different monopolar and bipolar montages of tDCS administered to the motor cortex and cerebellum on gait speed in PD.

Methods

This study will be conducted in a randomized, double-blind cross-over design. Eighteen participants diagnosed with Parkinson’s disease will receive anodal and sham tDCS (1 mA, 20 min, 10 × 4 cm2) over the premotor and primary motor cortices with the cathode over the cerebellum during treadmill walking. Three montages will be applied over three sessions and compared: anodal tDCS with a small active cathode (4 × 4 cm2); anodal tDCS with a large, functionally inert cathode (10 × 10 cm2); and sham tDCS. The primary outcome measure is gait speed, and secondary outcome measures include gait parameters (temporospatial, segmental, kinematic), the Timed Up and Go test and lower limb muscle activity patterns as measured by electromyography.

Discussion

This study will investigate the short-term effects of anodal tDCS over the premotor and primary motor cortices on gait abilities using monopolar and bipolar montages in people with PD. The outcomes will inform future studies aimed at inducing longer-lasting changes in neural excitability and performance using multisession tDCS designs in PD.

Trial registration

Australian New Zealand Clinical Trials Registry (ANZCTR), ACTRN12618000063​213. Registered on 17 January 2018. Retrospectively registered. 
Appendix
Available only for authorised users
Literature
1.
go back to reference Mirelman A, Bernad-Elazari H, Thaler A, Giladi-Yacobi E, Gurevich T, Gana-Weisz M, et al. Arm swing as a potential new prodromal marker of Parkinson's disease. Movement Disorders. 2016;31(10):1527–34.CrossRef Mirelman A, Bernad-Elazari H, Thaler A, Giladi-Yacobi E, Gurevich T, Gana-Weisz M, et al. Arm swing as a potential new prodromal marker of Parkinson's disease. Movement Disorders. 2016;31(10):1527–34.CrossRef
2.
go back to reference Nutt JG, Wooten GF. Diagnosis and initial management of Parkinson's disease. N Engl J Med. 2005;353(10):1021–7.CrossRef Nutt JG, Wooten GF. Diagnosis and initial management of Parkinson's disease. N Engl J Med. 2005;353(10):1021–7.CrossRef
3.
go back to reference Cole MH, Silburn PA, Wood JM, Worringham CJ, Kerr GK. Falls in Parkinson's disease: kinematic evidence for impaired head and trunk control. Movement Disorders. 2010;25(14):2369–78.CrossRef Cole MH, Silburn PA, Wood JM, Worringham CJ, Kerr GK. Falls in Parkinson's disease: kinematic evidence for impaired head and trunk control. Movement Disorders. 2010;25(14):2369–78.CrossRef
4.
go back to reference Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Characteristics of parkinsonian and ataxic gaits: a study using surface electromyograms, angular displacements and floor reaction forces. J Neurol Sci. 2000;174(1):22–39.CrossRef Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Characteristics of parkinsonian and ataxic gaits: a study using surface electromyograms, angular displacements and floor reaction forces. J Neurol Sci. 2000;174(1):22–39.CrossRef
5.
go back to reference Hiraoka K, Matsuo Y, Abe K. Soleus H-reflex inhibition during gait initiation in Parkinson's disease. Movement Disorders. 2005;20(7):858–64.CrossRef Hiraoka K, Matsuo Y, Abe K. Soleus H-reflex inhibition during gait initiation in Parkinson's disease. Movement Disorders. 2005;20(7):858–64.CrossRef
6.
go back to reference Hong M, Perlmutter JS, Earhart GM. A kinematic and electromyographic analysis of turning in people with Parkinson disease. Neurorehabil Neural Repair. 2009;23(2):166–76.CrossRef Hong M, Perlmutter JS, Earhart GM. A kinematic and electromyographic analysis of turning in people with Parkinson disease. Neurorehabil Neural Repair. 2009;23(2):166–76.CrossRef
7.
go back to reference Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD. Exploring Braak's hypothesis of Parkinson's disease. Front Neurol. 2017;8:37.CrossRef Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD. Exploring Braak's hypothesis of Parkinson's disease. Front Neurol. 2017;8:37.CrossRef
8.
go back to reference Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C. Pharmacologically modulated fMRI—cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain. 2003;126(Pt 2):451–61.CrossRef Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C. Pharmacologically modulated fMRI—cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain. 2003;126(Pt 2):451–61.CrossRef
9.
go back to reference Di Stasio F, Suppa A, Fabbrini A, Marsili L, Asci F, Conte A, et al. Parkinsonism is associated with altered primary motor cortex plasticity in frontotemporal dementia—primary progressive aphasia variant. Neurobiol Aging. 2018;69:230–8.CrossRef Di Stasio F, Suppa A, Fabbrini A, Marsili L, Asci F, Conte A, et al. Parkinsonism is associated with altered primary motor cortex plasticity in frontotemporal dementia—primary progressive aphasia variant. Neurobiol Aging. 2018;69:230–8.CrossRef
10.
go back to reference Martinu K, Monchi O. Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson's disease: pathophysiology or compensation? Behav Neurosci. 2013;127(2):222–36.CrossRef Martinu K, Monchi O. Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson's disease: pathophysiology or compensation? Behav Neurosci. 2013;127(2):222–36.CrossRef
11.
go back to reference Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(3):696–709.CrossRef Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(3):696–709.CrossRef
12.
go back to reference Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.CrossRef Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.CrossRef
13.
go back to reference Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901.CrossRef Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901.CrossRef
14.
go back to reference Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557(Pt 2):689–700.CrossRef Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557(Pt 2):689–700.CrossRef
15.
go back to reference Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37(8):1702–12.CrossRef Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37(8):1702–12.CrossRef
16.
go back to reference Perceval G, Floel A, Meinzer M. Can transcranial direct current stimulation counteract age-associated functional impairment? Neurosci Biobehav Rev. 2016;65:157–72.CrossRef Perceval G, Floel A, Meinzer M. Can transcranial direct current stimulation counteract age-associated functional impairment? Neurosci Biobehav Rev. 2016;65:157–72.CrossRef
17.
go back to reference Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimulation. 2016;9(5):641–61.CrossRef Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimulation. 2016;9(5):641–61.CrossRef
18.
go back to reference Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J, et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff. 2015;32(1):22–35.CrossRef Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J, et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff. 2015;32(1):22–35.CrossRef
19.
go back to reference Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.CrossRef Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.CrossRef
20.
go back to reference Fertonani A, Miniussi C. Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist. 2016;23(2):109–23.CrossRef Fertonani A, Miniussi C. Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist. 2016;23(2):109–23.CrossRef
21.
go back to reference Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimulation. 2008;1(3):206–23.CrossRef Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimulation. 2008;1(3):206–23.CrossRef
22.
go back to reference Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases. Neuropharmacology. 2013;64:579–87.CrossRef Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases. Neuropharmacology. 2013;64:579–87.CrossRef
23.
go back to reference Ferrucci R, Mameli F, Ruggiero F, Priori A. Transcranial direct current stimulation as treatment for Parkinson’s disease and other movement disorders. Basal Ganglia. 2016;6(1):53–61.CrossRef Ferrucci R, Mameli F, Ruggiero F, Priori A. Transcranial direct current stimulation as treatment for Parkinson’s disease and other movement disorders. Basal Ganglia. 2016;6(1):53–61.CrossRef
24.
go back to reference Costa-Ribeiro A, Maux A, Bosford T, Aoki Y, Castro R, Baltar A, et al. Transcranial direct current stimulation associated with gait training in Parkinson's disease: a pilot randomized clinical trial. Developmental Neurorehabil. 2017;20(3):121–8.CrossRef Costa-Ribeiro A, Maux A, Bosford T, Aoki Y, Castro R, Baltar A, et al. Transcranial direct current stimulation associated with gait training in Parkinson's disease: a pilot randomized clinical trial. Developmental Neurorehabil. 2017;20(3):121–8.CrossRef
25.
go back to reference Costa-Ribeiro A, Maux A, Bosford T, Tenorio Y, Marques D, Carneiro M, et al. Dopamine-independent effects of combining transcranial direct current stimulation with cued gait training on cortical excitability and functional mobility in Parkinson's disease. J Rehabil Med. 2016;48(9):819–23.CrossRef Costa-Ribeiro A, Maux A, Bosford T, Tenorio Y, Marques D, Carneiro M, et al. Dopamine-independent effects of combining transcranial direct current stimulation with cued gait training on cortical excitability and functional mobility in Parkinson's disease. J Rehabil Med. 2016;48(9):819–23.CrossRef
26.
go back to reference Schabrun SM, Lamont RM, Brauer SG. Transcranial direct current stimulation to enhance dual-task gait training in Parkinson's disease: a pilot RCT. PLOS One. 2016;11(6):e0158497.CrossRef Schabrun SM, Lamont RM, Brauer SG. Transcranial direct current stimulation to enhance dual-task gait training in Parkinson's disease: a pilot RCT. PLOS One. 2016;11(6):e0158497.CrossRef
27.
go back to reference von Papen M, Fisse M, Sarfeld AS, Fink GR, Nowak DA. The effects of 1 Hz rTMS preconditioned by tDCS on gait kinematics in Parkinson's disease. J Neural Transm. 2014;121(7):743–54.CrossRef von Papen M, Fisse M, Sarfeld AS, Fink GR, Nowak DA. The effects of 1 Hz rTMS preconditioned by tDCS on gait kinematics in Parkinson's disease. J Neural Transm. 2014;121(7):743–54.CrossRef
28.
go back to reference Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, Considine E, et al. Transcranial direct current stimulation for the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry. 2010;81(10):1105–11.CrossRef Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, Considine E, et al. Transcranial direct current stimulation for the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry. 2010;81(10):1105–11.CrossRef
29.
go back to reference Valentino F, Cosentino G, Brighina F, Pozzi NG, Sandrini G, Fierro B, et al. Transcranial direct current stimulation for treatment of freezing of gait: a cross-over study. Movement Disorders. 2014;29(8):1064–9.CrossRef Valentino F, Cosentino G, Brighina F, Pozzi NG, Sandrini G, Fierro B, et al. Transcranial direct current stimulation for treatment of freezing of gait: a cross-over study. Movement Disorders. 2014;29(8):1064–9.CrossRef
30.
go back to reference Kaski D, Dominguez RO, Allum JH, Islam AF, Bronstein AM. Combining physical training with transcranial direct current stimulation to improve gait in Parkinson's disease: a pilot randomized controlled study. Clin Rehabil. 2014;28(11):1115–24.CrossRef Kaski D, Dominguez RO, Allum JH, Islam AF, Bronstein AM. Combining physical training with transcranial direct current stimulation to improve gait in Parkinson's disease: a pilot randomized controlled study. Clin Rehabil. 2014;28(11):1115–24.CrossRef
31.
go back to reference Verheyden G, Purdey J, Burnett M, Cole J, Ashburn A. Immediate effect of transcranial direct current stimulation on postural stability and functional mobility in Parkinson's disease. Movement Disorders. 2013;28(14):2040–1.CrossRef Verheyden G, Purdey J, Burnett M, Cole J, Ashburn A. Immediate effect of transcranial direct current stimulation on postural stability and functional mobility in Parkinson's disease. Movement Disorders. 2013;28(14):2040–1.CrossRef
32.
go back to reference Fernandez-Lago H, Bello O, Mora-Cerda F, Montero-Camara J, Fernandez-Del-Olmo MA. Treadmill walking combined with anodal transcranial direct current stimulation in Parkinson disease: a pilot study of kinematic and neurophysiological effects. Am J Physical Medicine Rehabil. 2017;96(11):801–8.CrossRef Fernandez-Lago H, Bello O, Mora-Cerda F, Montero-Camara J, Fernandez-Del-Olmo MA. Treadmill walking combined with anodal transcranial direct current stimulation in Parkinson disease: a pilot study of kinematic and neurophysiological effects. Am J Physical Medicine Rehabil. 2017;96(11):801–8.CrossRef
33.
go back to reference Kaski D, Allum JH, Bronstein AM, Dominguez RO. Applying anodal tDCS during tango dancing in a patient with Parkinson's disease. Neurosci Lett. 2014;568:39–43.CrossRef Kaski D, Allum JH, Bronstein AM, Dominguez RO. Applying anodal tDCS during tango dancing in a patient with Parkinson's disease. Neurosci Lett. 2014;568:39–43.CrossRef
34.
go back to reference Yotnuengnit P, Bhidayasiri R, Donkhan R, Chaluaysrimuang J, Piravej K. Effects of transcranial direct current stimulation plus physical therapy on gait in patients with Parkinson disease: a randomized controlled trial. Am J Physical Medicine Rehabil. 2018;97(1):7–15.CrossRef Yotnuengnit P, Bhidayasiri R, Donkhan R, Chaluaysrimuang J, Piravej K. Effects of transcranial direct current stimulation plus physical therapy on gait in patients with Parkinson disease: a randomized controlled trial. Am J Physical Medicine Rehabil. 2018;97(1):7–15.CrossRef
35.
go back to reference Kaski D, Bronstein AM. Treatments for neurological gait and balance disturbance: the use of noninvasive electrical brain stimulation. Advances Neurosci. 2014;2014:1–13.CrossRef Kaski D, Bronstein AM. Treatments for neurological gait and balance disturbance: the use of noninvasive electrical brain stimulation. Advances Neurosci. 2014;2014:1–13.CrossRef
36.
go back to reference Chen R. Transcranial direct current stimulation as a treatment for Parkinson's disease—interesting, but not ready for prime time. J Neurol Neurosurg Psychiatry. 2010;81(10):1061.CrossRef Chen R. Transcranial direct current stimulation as a treatment for Parkinson's disease—interesting, but not ready for prime time. J Neurol Neurosurg Psychiatry. 2010;81(10):1061.CrossRef
37.
go back to reference McNeely ME, Duncan RP, Earhart GM. Differential effects of tango, treadmill, and stretching interventions on gait in people with Parkinson’s disease, 20th International Congress of Parkinson's Disease and Movement Disorders. Berlin: International Parkinson and Movement Disorder Society; 2016. McNeely ME, Duncan RP, Earhart GM. Differential effects of tango, treadmill, and stretching interventions on gait in people with Parkinson’s disease, 20th International Congress of Parkinson's Disease and Movement Disorders. Berlin: International Parkinson and Movement Disorder Society; 2016.
38.
go back to reference Kaski D, Quadir S, Patel M, Yousif N, Bronstein AM. Enhanced locomotor adaptation aftereffect in the "broken escalator" phenomenon using anodal tDCS. J Neurophysiol. 2012;107(9):2493–505.CrossRef Kaski D, Quadir S, Patel M, Yousif N, Bronstein AM. Enhanced locomotor adaptation aftereffect in the "broken escalator" phenomenon using anodal tDCS. J Neurophysiol. 2012;107(9):2493–505.CrossRef
39.
go back to reference Poortvliet P, Hsieh B, Cresswell A, Au J, Meinzer M. Cerebellar transcranial direct current stimulation improves adaptive postural control. Clin Neurophysiol. 2018;129(1):33–41.CrossRef Poortvliet P, Hsieh B, Cresswell A, Au J, Meinzer M. Cerebellar transcranial direct current stimulation improves adaptive postural control. Clin Neurophysiol. 2018;129(1):33–41.CrossRef
40.
go back to reference Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR. The Addenbrooke's Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry. 2006;21(11):1078–85.CrossRef Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR. The Addenbrooke's Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry. 2006;21(11):1078–85.CrossRef
41.
go back to reference Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.CrossRef Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.CrossRef
42.
go back to reference Mantyjarvi M, Laitinen T. Normal values for the Pelli-Robson contrast sensitivity test. J Cataract Refract Surg. 2001;27(2):261–6.CrossRef Mantyjarvi M, Laitinen T. Normal values for the Pelli-Robson contrast sensitivity test. J Cataract Refract Surg. 2001;27(2):261–6.CrossRef
43.
go back to reference Haymes SA, Chen J. Reliability and validity of the Melbourne Edge Test and High/Low Contrast Visual Acuity chart. Optom Vis Sci. 2004;81(5):308–16.CrossRef Haymes SA, Chen J. Reliability and validity of the Melbourne Edge Test and High/Low Contrast Visual Acuity chart. Optom Vis Sci. 2004;81(5):308–16.CrossRef
44.
go back to reference Bailey IL, Lovie JE. New design principles for visual acuity letter charts. Am J Optom Physiol Optic. 1976;53(11):740–5.CrossRef Bailey IL, Lovie JE. New design principles for visual acuity letter charts. Am J Optom Physiol Optic. 1976;53(11):740–5.CrossRef
45.
go back to reference Bailey IL, Lovie-Kitchin JE. Visual acuity testing. From the laboratory to the clinic. Vis Res. 2013;90:2–9.CrossRef Bailey IL, Lovie-Kitchin JE. Visual acuity testing. From the laboratory to the clinic. Vis Res. 2013;90:2–9.CrossRef
46.
go back to reference Nolano M, Provitera V, Estraneo A, Selim MM, Caporaso G, Stancanelli A, et al. Sensory deficit in Parkinson's disease: evidence of a cutaneous denervation. Brain. 2008;131(Pt 7):1903–11.CrossRef Nolano M, Provitera V, Estraneo A, Selim MM, Caporaso G, Stancanelli A, et al. Sensory deficit in Parkinson's disease: evidence of a cutaneous denervation. Brain. 2008;131(Pt 7):1903–11.CrossRef
47.
go back to reference Kegelmeyer DA, Kloos AD, Thomas KM, Kostyk SK. Reliability and validity of the Tinetti Mobility Test for individuals with Parkinson disease. Phys Ther. 2007;87(10):1369–78.CrossRef Kegelmeyer DA, Kloos AD, Thomas KM, Kostyk SK. Reliability and validity of the Tinetti Mobility Test for individuals with Parkinson disease. Phys Ther. 2007;87(10):1369–78.CrossRef
48.
go back to reference Wang C, Chen P, Zhuang J. Validity and reliability of International Physical Activity Questionnaire-Short Form in Chinese youth. Res Q Exerc Sport. 2013;84(Suppl 2):S80–6.CrossRef Wang C, Chen P, Zhuang J. Validity and reliability of International Physical Activity Questionnaire-Short Form in Chinese youth. Res Q Exerc Sport. 2013;84(Suppl 2):S80–6.CrossRef
49.
go back to reference Franchignoni F, Giordano A, Ronconi G, Rabini A, Ferriero G. Rasch validation of the Activities-specific Balance Confidence Scale and its short versions in patients with Parkinson's disease. J Rehabil Med. 2014;46(6):532–9.CrossRef Franchignoni F, Giordano A, Ronconi G, Rabini A, Ferriero G. Rasch validation of the Activities-specific Balance Confidence Scale and its short versions in patients with Parkinson's disease. J Rehabil Med. 2014;46(6):532–9.CrossRef
50.
go back to reference Jenkinson C, Fitzpatrick R, Peto V, Greenhall R, Hyman N. The Parkinson's Disease Questionnaire (PDQ-39): development and validation of a Parkinson's disease summary index score. Age Ageing. 1997;26(5):353–7.CrossRef Jenkinson C, Fitzpatrick R, Peto V, Greenhall R, Hyman N. The Parkinson's Disease Questionnaire (PDQ-39): development and validation of a Parkinson's disease summary index score. Age Ageing. 1997;26(5):353–7.CrossRef
51.
go back to reference Giladi N, Shabtai H, Simon ES, Biran S, Tal J, Korczyn AD. Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat Disord. 2000;6(3):165–70.CrossRef Giladi N, Shabtai H, Simon ES, Biran S, Tal J, Korczyn AD. Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat Disord. 2000;6(3):165–70.CrossRef
52.
go back to reference Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004;19(9):1020–8.CrossRef Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004;19(9):1020–8.CrossRef
53.
go back to reference Levine D, Richards J, Whittle MW. Whittle's gait analysis. 5th ed. London, Edinburgh: Churchill Livingstone/Elsevier; 2012. Levine D, Richards J, Whittle MW. Whittle's gait analysis. 5th ed. London, Edinburgh: Churchill Livingstone/Elsevier; 2012.
54.
go back to reference Perry JB, Judith M. Gait analysis: normal and pathological function. 2nd ed. Thorofare: SLACK; 2010. Perry JB, Judith M. Gait analysis: normal and pathological function. 2nd ed. Thorofare: SLACK; 2010.
55.
go back to reference da Silva BA, Faria C, Santos MP, Swarowsky A. Assessing Timed Up and Go in Parkinson's disease: reliability and validity of Timed Up and Go Assessment of biomechanical strategies. J Rehabil Med. 2017;49(9):723–31.CrossRef da Silva BA, Faria C, Santos MP, Swarowsky A. Assessing Timed Up and Go in Parkinson's disease: reliability and validity of Timed Up and Go Assessment of biomechanical strategies. J Rehabil Med. 2017;49(9):723–31.CrossRef
56.
go back to reference Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–74.CrossRef Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–74.CrossRef
57.
go back to reference Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease. Mov Disord. 2006;21(10):1693–702.CrossRef Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease. Mov Disord. 2006;21(10):1693–702.CrossRef
58.
go back to reference Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):1133–45.CrossRef Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):1133–45.CrossRef
59.
go back to reference Lee C, Jung YJ, Lee SJ, Im CH. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation. J Neurosci Methods. 2017;277:56–62.CrossRef Lee C, Jung YJ, Lee SJ, Im CH. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation. J Neurosci Methods. 2017;277:56–62.CrossRef
60.
go back to reference Hass CJ, Bishop M, Moscovich M, Stegemoller EL, Skinner J, Malaty IA, et al. Defining the clinically meaningful difference in gait speed in persons with Parkinson disease. J Neurol Phys Ther. 2014;38(4):233–8.CrossRef Hass CJ, Bishop M, Moscovich M, Stegemoller EL, Skinner J, Malaty IA, et al. Defining the clinically meaningful difference in gait speed in persons with Parkinson disease. J Neurol Phys Ther. 2014;38(4):233–8.CrossRef
61.
go back to reference Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–60.CrossRef Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367(14):1355–60.CrossRef
62.
go back to reference Winter DA. The biomechanics and motor control of human gait: normal, elderly and pathological. 2nd ed. Waterloo: University of Waterloo Press; 1991. Winter DA. The biomechanics and motor control of human gait: normal, elderly and pathological. 2nd ed. Waterloo: University of Waterloo Press; 1991.
63.
go back to reference Wasserstein RL, Lazar NA. The ASA's statement on p-values: context, process, and purpose. Am Stat. 2016;70(2):129–33.CrossRef Wasserstein RL, Lazar NA. The ASA's statement on p-values: context, process, and purpose. Am Stat. 2016;70(2):129–33.CrossRef
64.
go back to reference Olanow CW, Watts RL, Koller WC. An algorithm (decision tree) for the management of Parkinson's disease (2001): treatment guidelines. Neurology. 2001;56(11 Suppl 5):S1–S88.CrossRef Olanow CW, Watts RL, Koller WC. An algorithm (decision tree) for the management of Parkinson's disease (2001): treatment guidelines. Neurology. 2001;56(11 Suppl 5):S1–S88.CrossRef
65.
go back to reference Jankovic J. Complications and limitations of drug therapy for Parkinson's disease. Neurology. 2000;55(12 Suppl 6):S2–6.PubMed Jankovic J. Complications and limitations of drug therapy for Parkinson's disease. Neurology. 2000;55(12 Suppl 6):S2–6.PubMed
Metadata
Title
Effects of transcranial direct current stimulation on gait in people with Parkinson’s disease: study protocol for a randomized, controlled clinical trial
Authors
Vida Alizad
Marcus Meinzer
Laurent Frossard
Remco Polman
Simon Smith
Graham Kerr
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Trials / Issue 1/2018
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-018-2982-z

Other articles of this Issue 1/2018

Trials 1/2018 Go to the issue