Skip to main content
Top
Published in: Brain Structure and Function 4/2014

01-07-2014 | Original Article

Effects of stress on AMPA receptor distribution and function in the basolateral amygdala

Authors: G. W. Hubert, C. Li, D. G. Rainnie, E. C. Muly

Published in: Brain Structure and Function | Issue 4/2014

Login to get access

Abstract

Stress is a growing public health concern and can lead to significant disabilities. The neural response to stressors is thought to be dependent on the extended amygdala. The basolateral amygdala (BLA) is responsible for associations of sensory stimuli with emotional valence and is thought to be involved in stress-induced responses. Previous behavioral and electrophysiological experiments demonstrate that, in response to stress, changes occur in glutamatergic neurotransmission within the BLA and, in particular in transmission at AMPA receptors. Given the established role of AMPA receptors in memory and synaptic plasticity, we tested the hypothesis that stress produces alterations in the distribution of these receptors in a way that might account for stress-induced alterations in amygdala circuitry function. We examined the subcellular localization of GluR1 subunits of the AMPA receptor and the electrophysiological characteristics of BLA principal neurons in an animal model of unpredictable stress. Compared to controls, we demonstrated an increase in the ratio of labeled spines to labeled dendritic shafts in the BLA of rats 6 and 14 days post-stress, but not 1 day post-stress. Furthermore, the frequency of mini-EPSCs was increased in stressed animals without a change in general membrane properties, mini-EPSC amplitude, or in paired pulse modulation of glutamate release. Taken together, these data suggest that the shift of GluR1-containing AMPA receptors from dendritic stores into spines may be in part responsible for the persistent behavioral alterations observed following severe stressors.
Literature
go back to reference Belujon P, Grace AA (2011) Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann N Y Acad Sci 1216:114–121PubMedCentralPubMedCrossRef Belujon P, Grace AA (2011) Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann N Y Acad Sci 1216:114–121PubMedCentralPubMedCrossRef
go back to reference Brunetti M, Sepede G, Mingoia G, Catani C, Ferretti A, Merla A, Del Gratta C, Romani GL, Babiloni C (2010) Elevated response of human amygdala to neutral stimuli in mild post traumatic stress disorder: neural correlates of generalized emotional response. Neuroscience 168(3):670–679PubMedCrossRef Brunetti M, Sepede G, Mingoia G, Catani C, Ferretti A, Merla A, Del Gratta C, Romani GL, Babiloni C (2010) Elevated response of human amygdala to neutral stimuli in mild post traumatic stress disorder: neural correlates of generalized emotional response. Neuroscience 168(3):670–679PubMedCrossRef
go back to reference Christian DT, Alexander NJ, Diaz MR, Robinson S, McCool BA (2012) Chronic intermittent ethanol and withdrawal differentially modulate basolateral amygdala AMPA-type glutamate receptor function and trafficking. Neuropharmacology 62(7):2430–2439PubMedCrossRef Christian DT, Alexander NJ, Diaz MR, Robinson S, McCool BA (2012) Chronic intermittent ethanol and withdrawal differentially modulate basolateral amygdala AMPA-type glutamate receptor function and trafficking. Neuropharmacology 62(7):2430–2439PubMedCrossRef
go back to reference Davis M, Rainnie D, Cassell M (1994) Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17(5):208–214PubMedCrossRef Davis M, Rainnie D, Cassell M (1994) Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17(5):208–214PubMedCrossRef
go back to reference Davis M, Walker DL, Lee Y (1997) Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex. Possible relevance to PTSD. Ann N Y Acad Sci 821:305–331PubMedCrossRef Davis M, Walker DL, Lee Y (1997) Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex. Possible relevance to PTSD. Ann N Y Acad Sci 821:305–331PubMedCrossRef
go back to reference Duvarci S, Pare D (2007) Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J Neurosci 27(16):4482–4491PubMedCrossRef Duvarci S, Pare D (2007) Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J Neurosci 27(16):4482–4491PubMedCrossRef
go back to reference Eiland L, McEwen BS (2012) Early life stress followed by subsequent adult chronic stress potentiates anxiety and blunts hippocampal structural remodeling. Hippocampus 22(1):82–91PubMedCrossRef Eiland L, McEwen BS (2012) Early life stress followed by subsequent adult chronic stress potentiates anxiety and blunts hippocampal structural remodeling. Hippocampus 22(1):82–91PubMedCrossRef
go back to reference Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164(10):1476–1488PubMedCentralPubMedCrossRef Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164(10):1476–1488PubMedCentralPubMedCrossRef
go back to reference Falloon IR, Kydd RR, Coverdale JH, Laidlaw TM (1996) Early detection and intervention for initial episodes of schizophrenia. Schizophr Bull 22(2):271–282PubMedCrossRef Falloon IR, Kydd RR, Coverdale JH, Laidlaw TM (1996) Early detection and intervention for initial episodes of schizophrenia. Schizophr Bull 22(2):271–282PubMedCrossRef
go back to reference Fanselow MS, Kim JJ (1994) Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist d, l-2-amino-5-phosphonovaleric acid to the basolateral amygdala. Behav Neurosci 108(1):210–212PubMedCrossRef Fanselow MS, Kim JJ (1994) Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist d, l-2-amino-5-phosphonovaleric acid to the basolateral amygdala. Behav Neurosci 108(1):210–212PubMedCrossRef
go back to reference Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23(2):229–232PubMedCrossRef Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23(2):229–232PubMedCrossRef
go back to reference Farb CR, Aoki C, Ledoux JE (1995) Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala: a light and electron microscopic study. J Comp Neurol 362(1):86–108PubMedCrossRef Farb CR, Aoki C, Ledoux JE (1995) Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala: a light and electron microscopic study. J Comp Neurol 362(1):86–108PubMedCrossRef
go back to reference Flavell CR, Lee JL (2012) Post-training unilateral amygdala lesions selectively impair contextual fear memories. Learn Mem 19(6):256–263PubMedCrossRef Flavell CR, Lee JL (2012) Post-training unilateral amygdala lesions selectively impair contextual fear memories. Learn Mem 19(6):256–263PubMedCrossRef
go back to reference Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 24(15):3810–3815PubMedCrossRef Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 24(15):3810–3815PubMedCrossRef
go back to reference Goosens KA, Maren S (2002) Long-term potentiation as a substrate for memory: evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning. Hippocampus 12(5):592–599PubMedCrossRef Goosens KA, Maren S (2002) Long-term potentiation as a substrate for memory: evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning. Hippocampus 12(5):592–599PubMedCrossRef
go back to reference Gutman AR, Yang Y, Ressler KJ, Davis M (2008) The role of neuropeptide Y in the expression and extinction of fear-potentiated startle. J Neurosci 28(48):12682–12690PubMedCentralPubMedCrossRef Gutman AR, Yang Y, Ressler KJ, Davis M (2008) The role of neuropeptide Y in the expression and extinction of fear-potentiated startle. J Neurosci 28(48):12682–12690PubMedCentralPubMedCrossRef
go back to reference Hazra R, Guo JD, Dabrowska J, Rainnie DG (2012) Differential distribution of serotonin receptor subtypes in BNST(ALG) neurons: modulation by unpredictable shock stress. Neurosci 225:9–21 Hazra R, Guo JD, Dabrowska J, Rainnie DG (2012) Differential distribution of serotonin receptor subtypes in BNST(ALG) neurons: modulation by unpredictable shock stress. Neurosci 225:9–21
go back to reference Hegoburu C, Sevelinges Y, Thevenet M, Gervais R, Parrot S, Mouly AM (2009) Differential dynamics of amino acid release in the amygdala and olfactory cortex during odor fear acquisition as revealed with simultaneous high temporal resolution microdialysis. Learn Mem 16(11):687–697PubMedCrossRef Hegoburu C, Sevelinges Y, Thevenet M, Gervais R, Parrot S, Mouly AM (2009) Differential dynamics of amino acid release in the amygdala and olfactory cortex during odor fear acquisition as revealed with simultaneous high temporal resolution microdialysis. Learn Mem 16(11):687–697PubMedCrossRef
go back to reference Hendler T, Rotshtein P, Yeshurun Y, Weizmann T, Kahn I, Ben-Bashat D, Malach R, Bleich A (2003) Sensing the invisible: differential sensitivity of visual cortex and amygdala to traumatic context. Neuroimage 19(3):587–600PubMedCrossRef Hendler T, Rotshtein P, Yeshurun Y, Weizmann T, Kahn I, Ben-Bashat D, Malach R, Bleich A (2003) Sensing the invisible: differential sensitivity of visual cortex and amygdala to traumatic context. Neuroimage 19(3):587–600PubMedCrossRef
go back to reference Jovanovic T, Ressler KJ (2010) How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry 167(6):648–662PubMedCentralPubMedCrossRef Jovanovic T, Ressler KJ (2010) How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry 167(6):648–662PubMedCentralPubMedCrossRef
go back to reference Karst H, Berger S, Erdmann G, Schutz G, Joels M (2010) Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc Natl Acad Sci USA 107(32):14449–14454PubMedCentralPubMedCrossRef Karst H, Berger S, Erdmann G, Schutz G, Joels M (2010) Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc Natl Acad Sci USA 107(32):14449–14454PubMedCentralPubMedCrossRef
go back to reference Kerchner GA, Nicoll RA (2008) Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev 9(11):813–825CrossRef Kerchner GA, Nicoll RA (2008) Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev 9(11):813–825CrossRef
go back to reference Lack AK, Diaz MR, Chappell A, DuBois DW, McCool BA (2007) Chronic ethanol and withdrawal differentially modulate pre- and postsynaptic function at glutamatergic synapses in rat basolateral amygdala. J Neurophysiol 98(6):3185–3196PubMedCentralPubMedCrossRef Lack AK, Diaz MR, Chappell A, DuBois DW, McCool BA (2007) Chronic ethanol and withdrawal differentially modulate pre- and postsynaptic function at glutamatergic synapses in rat basolateral amygdala. J Neurophysiol 98(6):3185–3196PubMedCentralPubMedCrossRef
go back to reference Li C, Dabrowska J, Hazra R, Rainnie DG (2011a) Synergistic activation of dopamine D1 and TrkB receptors mediate gain control of synaptic plasticity in the basolateral amygdala. PLoS ONE 6(10):e26065PubMedCentralPubMedCrossRef Li C, Dabrowska J, Hazra R, Rainnie DG (2011a) Synergistic activation of dopamine D1 and TrkB receptors mediate gain control of synaptic plasticity in the basolateral amygdala. PLoS ONE 6(10):e26065PubMedCentralPubMedCrossRef
go back to reference Li C, Hazra R, Stair S, Rainnie D (2011b) Repeated shock stress facilitates basolateral amygdala synaptic plasticity through a decrease cAMP-specific phosphodiesterase type IV (PDE4) expression. In: Society for Neuroscience Abstracts:191.105 Li C, Hazra R, Stair S, Rainnie D (2011b) Repeated shock stress facilitates basolateral amygdala synaptic plasticity through a decrease cAMP-specific phosphodiesterase type IV (PDE4) expression. In: Society for Neuroscience Abstracts:191.105
go back to reference Linnman C, Zeffiro TA, Pitman RK, Milad MR (2011) An fMRI study of unconditioned responses in post-traumatic stress disorder. Biol Mood Anxiety Disord 1(1):8PubMedCentralPubMedCrossRef Linnman C, Zeffiro TA, Pitman RK, Milad MR (2011) An fMRI study of unconditioned responses in post-traumatic stress disorder. Biol Mood Anxiety Disord 1(1):8PubMedCentralPubMedCrossRef
go back to reference Lloyd RB, Nemeroff CB (2011) The role of corticotropin-releasing hormone in the pathophysiology of depression: therapeutic implications. Curr Top Med Chem 11(6):609–617PubMedCrossRef Lloyd RB, Nemeroff CB (2011) The role of corticotropin-releasing hormone in the pathophysiology of depression: therapeutic implications. Curr Top Med Chem 11(6):609–617PubMedCrossRef
go back to reference McCool BA, Christian DT, Diaz MR, Lack AK (2010) Glutamate plasticity in the drunken amygdala: the making of an anxious synapse. Int Rev Neurobiol 91:205–233PubMedCentralPubMedCrossRef McCool BA, Christian DT, Diaz MR, Lack AK (2010) Glutamate plasticity in the drunken amygdala: the making of an anxious synapse. Int Rev Neurobiol 91:205–233PubMedCentralPubMedCrossRef
go back to reference McDonald AJ, Mascagni F, Mania I, Rainnie DG (2005) Evidence for a perisomatic innervation of parvalbumin-containing interneurons by individual pyramidal cells in the basolateral amygdala. Brain Res 1035(1):32–40PubMedCrossRef McDonald AJ, Mascagni F, Mania I, Rainnie DG (2005) Evidence for a perisomatic innervation of parvalbumin-containing interneurons by individual pyramidal cells in the basolateral amygdala. Brain Res 1035(1):32–40PubMedCrossRef
go back to reference McGaugh JL, Roozendaal B (2002) Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12(2):205–210PubMedCrossRef McGaugh JL, Roozendaal B (2002) Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12(2):205–210PubMedCrossRef
go back to reference McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN (1991) Targets of horizontal connections in macaque primary visual cortex. J Comp Neurol 305(3):370–392PubMedCrossRef McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN (1991) Targets of horizontal connections in macaque primary visual cortex. J Comp Neurol 305(3):370–392PubMedCrossRef
go back to reference Merrill EG, Wall PD (1972) Factors forming the edge of a receptive field: the presence of relatively ineffective afferent terminals. J Physiol 226(3):825–846PubMedCentralPubMed Merrill EG, Wall PD (1972) Factors forming the edge of a receptive field: the presence of relatively ineffective afferent terminals. J Physiol 226(3):825–846PubMedCentralPubMed
go back to reference Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci USA 102(26):9371–9376PubMedCentralPubMedCrossRef Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci USA 102(26):9371–9376PubMedCentralPubMedCrossRef
go back to reference Muly EC, Maddox M, Smith Y (2003) Distribution of mGluR1alpha and mGluR5 immunolabeling in primate prefrontal cortex. J Comp Neurol 467(4):521–535PubMedCrossRef Muly EC, Maddox M, Smith Y (2003) Distribution of mGluR1alpha and mGluR5 immunolabeling in primate prefrontal cortex. J Comp Neurol 467(4):521–535PubMedCrossRef
go back to reference Muly EC, Maddox M, Khan ZU (2010) Distribution of D1 and D5 dopamine receptors in the primate nucleus accumbens. Neuroscience 169(4):1557–1566PubMedCrossRef Muly EC, Maddox M, Khan ZU (2010) Distribution of D1 and D5 dopamine receptors in the primate nucleus accumbens. Neuroscience 169(4):1557–1566PubMedCrossRef
go back to reference Nader K, Majidishad P, Amorapanth P, LeDoux JE (2001) Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learn Mem 8(3):156–163PubMedCentralPubMedCrossRef Nader K, Majidishad P, Amorapanth P, LeDoux JE (2001) Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learn Mem 8(3):156–163PubMedCentralPubMedCrossRef
go back to reference Nedelescu H, Kelso CM, Lazaro-Munoz G, Purpura M, Cain CK, Ledoux JE, Aoki C (2010) Endogenous GluR1-containing AMPA receptors translocate to asymmetric synapses in the lateral amygdala during the early phase of fear memory formation: an electron microscopic immunocytochemical study. J Comp Neurol 518(23):4723–4739PubMedCentralPubMedCrossRef Nedelescu H, Kelso CM, Lazaro-Munoz G, Purpura M, Cain CK, Ledoux JE, Aoki C (2010) Endogenous GluR1-containing AMPA receptors translocate to asymmetric synapses in the lateral amygdala during the early phase of fear memory formation: an electron microscopic immunocytochemical study. J Comp Neurol 518(23):4723–4739PubMedCentralPubMedCrossRef
go back to reference Onishi BK, Xavier GF (2010) Contextual, but not auditory, fear conditioning is disrupted by neurotoxic selective lesion of the basal nucleus of amygdala in rats. Neurobiol Learn Mem 93(2):165–174PubMedCrossRef Onishi BK, Xavier GF (2010) Contextual, but not auditory, fear conditioning is disrupted by neurotoxic selective lesion of the basal nucleus of amygdala in rats. Neurobiol Learn Mem 93(2):165–174PubMedCrossRef
go back to reference Peters A, Palay S, Webster H (1991) The fine structure of the nervous system. Oxford Press, New York Peters A, Palay S, Webster H (1991) The fine structure of the nervous system. Oxford Press, New York
go back to reference Qin M, Xia Z, Huang T, Smith CB (2011) Effects of chronic immobilization stress on anxiety-like behavior and basolateral amygdala morphology in Fmr1 knockout mice. Neuroscience 194:282–290PubMedCentralPubMedCrossRef Qin M, Xia Z, Huang T, Smith CB (2011) Effects of chronic immobilization stress on anxiety-like behavior and basolateral amygdala morphology in Fmr1 knockout mice. Neuroscience 194:282–290PubMedCentralPubMedCrossRef
go back to reference Rabinak CA, Angstadt M, Welsh RC, Kenndy AE, Lyubkin M, Martis B, Phan KL (2011) Altered amygdala resting-state functional connectivity in post-traumatic stress disorder. Front Psychiatry 2:62PubMedCentralPubMedCrossRef Rabinak CA, Angstadt M, Welsh RC, Kenndy AE, Lyubkin M, Martis B, Phan KL (2011) Altered amygdala resting-state functional connectivity in post-traumatic stress disorder. Front Psychiatry 2:62PubMedCentralPubMedCrossRef
go back to reference Rainnie DG (1999) Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82(1):69–85PubMed Rainnie DG (1999) Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82(1):69–85PubMed
go back to reference Rainnie DG, Ressler KJ (2009) Physiology of the Amygdala: implications for PTSD. In: Shiromani PJ, Keane TM, LeDoux JE (eds) Post-traumatic stress disorder: basic science and clinical practice. Humana Press, New York, pp 39–78CrossRef Rainnie DG, Ressler KJ (2009) Physiology of the Amygdala: implications for PTSD. In: Shiromani PJ, Keane TM, LeDoux JE (eds) Post-traumatic stress disorder: basic science and clinical practice. Humana Press, New York, pp 39–78CrossRef
go back to reference Rainnie DG, Asprodini EK, Shinnick-Gallagher P (1993) Intracellular recordings from morphologically identified neurons of the basolateral amygdala. J Neurophysiol 69(4):1350–1362PubMed Rainnie DG, Asprodini EK, Shinnick-Gallagher P (1993) Intracellular recordings from morphologically identified neurons of the basolateral amygdala. J Neurophysiol 69(4):1350–1362PubMed
go back to reference Rainnie DG, Bergeron R, Sajdyk TJ, Patil M, Gehlert DR, Shekhar A (2004) Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J Neurosci 24(14):3471–3479PubMedCrossRef Rainnie DG, Bergeron R, Sajdyk TJ, Patil M, Gehlert DR, Shekhar A (2004) Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J Neurosci 24(14):3471–3479PubMedCrossRef
go back to reference Rauch SL, Shin LM (1997) Functional neuroimaging studies in posttraumatic stress disorder. Ann N Y Acad Sci 821:83–98PubMedCrossRef Rauch SL, Shin LM (1997) Functional neuroimaging studies in posttraumatic stress disorder. Ann N Y Acad Sci 821:83–98PubMedCrossRef
go back to reference Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research–past, present, and future. Biol Psychiatry 60(4):376–382PubMedCrossRef Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research–past, present, and future. Biol Psychiatry 60(4):376–382PubMedCrossRef
go back to reference Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J (2007) Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci 25(10):3109–3114PubMedCrossRef Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J (2007) Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci 25(10):3109–3114PubMedCrossRef
go back to reference Rodriguez Manzanares PA, Isoardi NA, Carrer HF, Molina VA (2005) Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci 25(38):8725–8734PubMedCrossRef Rodriguez Manzanares PA, Isoardi NA, Carrer HF, Molina VA (2005) Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci 25(38):8725–8734PubMedCrossRef
go back to reference Rogan MT, LeDoux JE (1995) LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron 15(1):127–136PubMedCrossRef Rogan MT, LeDoux JE (1995) LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron 15(1):127–136PubMedCrossRef
go back to reference Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607PubMedCrossRef Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607PubMedCrossRef
go back to reference Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308(5718):83–88PubMedCrossRef Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308(5718):83–88PubMedCrossRef
go back to reference Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83(3):803–834 Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83(3):803–834
go back to reference Shekhar A, Truitt W, Rainnie D, Sajdyk T (2005) Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety. Stress 8(4):209–219PubMedCrossRef Shekhar A, Truitt W, Rainnie D, Sajdyk T (2005) Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety. Stress 8(4):209–219PubMedCrossRef
go back to reference Shors TJ (2001) Acute stress rapidly and persistently enhances memory formation in the male rat. Neurobiol Learn Mem 75(1):10–29PubMedCrossRef Shors TJ (2001) Acute stress rapidly and persistently enhances memory formation in the male rat. Neurobiol Learn Mem 75(1):10–29PubMedCrossRef
go back to reference Sigurdsson T, Doyere V, Cain CK, LeDoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52(1):215–227PubMedCrossRef Sigurdsson T, Doyere V, Cain CK, LeDoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52(1):215–227PubMedCrossRef
go back to reference Vermetten E, Schmahl C, Southwick SM, Bremner JD (2007) Positron tomographic emission study of olfactory induced emotional recall in veterans with and without combat-related posttraumatic stress disorder. Psychopharmacol Bull 40(1):8–30PubMedCentralPubMed Vermetten E, Schmahl C, Southwick SM, Bremner JD (2007) Positron tomographic emission study of olfactory induced emotional recall in veterans with and without combat-related posttraumatic stress disorder. Psychopharmacol Bull 40(1):8–30PubMedCentralPubMed
go back to reference Vouimba RM, Yaniv D, Diamond D, Richter-Levin G (2004) Effects of inescapable stress on LTP in the amygdala versus the dentate gyrus of freely behaving rats. Eur J Neurosci 19(7):1887–1894PubMedCrossRef Vouimba RM, Yaniv D, Diamond D, Richter-Levin G (2004) Effects of inescapable stress on LTP in the amygdala versus the dentate gyrus of freely behaving rats. Eur J Neurosci 19(7):1887–1894PubMedCrossRef
go back to reference Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22(15):6810–6818PubMed Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22(15):6810–6818PubMed
go back to reference Vyas A, Jadhav S, Chattarji S (2006) Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143(2):387–393PubMedCrossRef Vyas A, Jadhav S, Chattarji S (2006) Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143(2):387–393PubMedCrossRef
go back to reference Walker DL, Davis M (2002) The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 71(3):379–392PubMedCrossRef Walker DL, Davis M (2002) The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 71(3):379–392PubMedCrossRef
go back to reference Walker DL, Davis M (2008) Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr Lennart Heimer. Brain Struct Funct 213(1–2):29–42PubMedCrossRef Walker DL, Davis M (2008) Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr Lennart Heimer. Brain Struct Funct 213(1–2):29–42PubMedCrossRef
go back to reference Wenthold RJ, Yokotani N, Doi K, Wada K (1992) Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies. Evidence for a hetero-oligomeric structure in rat brain. J Biol Chem 267(1):501–507PubMed Wenthold RJ, Yokotani N, Doi K, Wada K (1992) Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies. Evidence for a hetero-oligomeric structure in rat brain. J Biol Chem 267(1):501–507PubMed
go back to reference Yu SY, Wu DC, Liu L, Ge Y, Wang YT (2008) Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J Neurochem 106(2):889–899PubMedCrossRef Yu SY, Wu DC, Liu L, Ge Y, Wang YT (2008) Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J Neurochem 106(2):889–899PubMedCrossRef
go back to reference Yudowski GA, Puthenveedu MA, Leonoudakis D, Panicker S, Thorn KS, Beattie EC, von Zastrow M (2007) Real-time imaging of discrete exocytic events mediating surface delivery of AMPA receptors. J Neurosci 27(41):11112–11121PubMedCentralPubMedCrossRef Yudowski GA, Puthenveedu MA, Leonoudakis D, Panicker S, Thorn KS, Beattie EC, von Zastrow M (2007) Real-time imaging of discrete exocytic events mediating surface delivery of AMPA receptors. J Neurosci 27(41):11112–11121PubMedCentralPubMedCrossRef
Metadata
Title
Effects of stress on AMPA receptor distribution and function in the basolateral amygdala
Authors
G. W. Hubert
C. Li
D. G. Rainnie
E. C. Muly
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2014
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0557-z

Other articles of this Issue 4/2014

Brain Structure and Function 4/2014 Go to the issue