Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Review

Effects of restrictive red blood cell transfusion on the prognoses of adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials

Authors: Qi-Hong Chen, Hua-Ling Wang, Lei Liu, Jun Shao, Jiangqian Yu, Rui-Qiang Zheng

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

Purpose

Restrictive red blood cell transfusion strategies remain controversial in patients undergoing cardiac surgery. We performed a meta-analysis to assess the prognostic benefits of restrictive red blood cell transfusion strategies in patients undergoing cardiac surgery.

Methods

We identified randomized clinical trials through the 9th of December 2017 that investigated a restrictive red blood cell transfusion strategy versus a liberal transfusion strategy in patients undergoing cardiac surgery. Individual patient data from each study were collected. Meta-analyses were performed for the primary and secondary outcomes. The risk of bias was assessed using the Cochrane Risk of Bias Tool. A trial sequential analysis (TSA)-adjusted random-effects model was used to pool the results from the included studies for the primary outcomes.

Results

Seven trials involving a total of 8886 patients were included. The TSA evaluations suggested that this meta-analysis could draw firm negative results, and the data were sufficient. There was no evidence that the risk of 30-day mortality differed between the patients assigned to a restrictive blood cell transfusion strategy and a liberal transfusion strategy (odds ratio (OR) 0.98; 95% confidence interval (CI) 0.77 to 1.24; p = 0.87). Furthermore, the study suggested that the restrictive transfusion strategy was not associated with significant increases in pulmonary morbidity (OR 1.09; 95% CI 0.88 to 1.34; p = 0.44), postoperative infection (OR 1.11; 95% CI 0.95 to 1.3; p = 0.58), acute kidney injury (OR 1.03; 95% CI 0.92 to 1.14; p = 0.71), acute myocardial infarction (OR 1.01; 95% CI 0.80 to 1.27; p = 0.78), or cerebrovascular accidents (OR 0.97; 95% CI 0.72 to 1.30; p = 0.66).

Conclusions

Our meta-analysis demonstrates that the restrictive red blood cell transfusion strategy was not inferior to the liberal strategy with respect to 30-day mortality, pulmonary morbidity, postoperative infection, cerebrovascular accidents, acute kidney injury, or acute myocardial infarction, and fewer red blood cells were transfused.
Appendix
Available only for authorised users
Literature
1.
go back to reference Duque-Sosa P, Martínez-Urbistondo D, Echarri G, et al. Perioperative hemoglobin area under the curve is an independent predictor of renal failure after cardiac surgery. Results from a Spanish multicenter retrospective cohort study. PLoS One. 2017;12(2):e0172021.CrossRefPubMedCentralPubMed Duque-Sosa P, Martínez-Urbistondo D, Echarri G, et al. Perioperative hemoglobin area under the curve is an independent predictor of renal failure after cardiac surgery. Results from a Spanish multicenter retrospective cohort study. PLoS One. 2017;12(2):e0172021.CrossRefPubMedCentralPubMed
2.
go back to reference von Heymann C, Kaufner L, Sander M, et al. Does the severity of preoperative anemia or blood transfusion have a stronger impact on long-term survival after cardiac surgery? J Thorac Cardiovasc Surg. 2016;152(5):1412–20.CrossRef von Heymann C, Kaufner L, Sander M, et al. Does the severity of preoperative anemia or blood transfusion have a stronger impact on long-term survival after cardiac surgery? J Thorac Cardiovasc Surg. 2016;152(5):1412–20.CrossRef
3.
go back to reference Karkouti K, Wijeysundera DN, Beattie WS. Risk associated with preoperative anemia in cardiac surgery: a multicenter cohort study. Circulation. 2008;117(4):478–84.CrossRef Karkouti K, Wijeysundera DN, Beattie WS. Risk associated with preoperative anemia in cardiac surgery: a multicenter cohort study. Circulation. 2008;117(4):478–84.CrossRef
4.
go back to reference Bennett-Guerrero E, Zhao Y, O'Brien SM, et al. Variation in use of blood transfusion in coronary artery bypass graft surgery. JAMA. 2010;304(14):1568–75.CrossRef Bennett-Guerrero E, Zhao Y, O'Brien SM, et al. Variation in use of blood transfusion in coronary artery bypass graft surgery. JAMA. 2010;304(14):1568–75.CrossRef
5.
go back to reference Wells AW, Llewelyn CA, Casbard A, et al. The EASTR Study: indications for transfusion and estimates of transfusion recipient numbers in hospitals supplied by the National Blood Service. Transfus Med. 2009;19(6):315–28.CrossRef Wells AW, Llewelyn CA, Casbard A, et al. The EASTR Study: indications for transfusion and estimates of transfusion recipient numbers in hospitals supplied by the National Blood Service. Transfus Med. 2009;19(6):315–28.CrossRef
7.
go back to reference Murphy GJ, Reeves BC, Rogers CA, et al. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation. 2007;116(22):2544–52.CrossRef Murphy GJ, Reeves BC, Rogers CA, et al. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation. 2007;116(22):2544–52.CrossRef
8.
go back to reference Shaw RE, Johnson CK, Ferrari G, et al. Blood transfusion in cardiac surgery does increase the risk of 5-year mortality: results from a contemporary series of 1714 propensity-matched patients. Transfusion. 2014;54(4):1106–13.CrossRef Shaw RE, Johnson CK, Ferrari G, et al. Blood transfusion in cardiac surgery does increase the risk of 5-year mortality: results from a contemporary series of 1714 propensity-matched patients. Transfusion. 2014;54(4):1106–13.CrossRef
9.
go back to reference Mazer CD, Whitlock RP, Fergusson DA, et al. Restrictive or liberal red-cell transfusion for cardiac surgery. N Engl J Med. 2017;377(22):2133–44.CrossRef Mazer CD, Whitlock RP, Fergusson DA, et al. Restrictive or liberal red-cell transfusion for cardiac surgery. N Engl J Med. 2017;377(22):2133–44.CrossRef
10.
go back to reference Koch CG, Sessler DI, Mascha EJ, et al. A randomized clinical trial of red blood cell transfusion triggers in cardiac surgery. Ann Thorac Surg. 2017;104(4):1243–50.CrossRef Koch CG, Sessler DI, Mascha EJ, et al. A randomized clinical trial of red blood cell transfusion triggers in cardiac surgery. Ann Thorac Surg. 2017;104(4):1243–50.CrossRef
11.
go back to reference Chen QH, Zheng RQ, Lin H, et al. Effect of levosimendan on prognosis in adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Crit Care. 2017;21(1):253.CrossRefPubMedCentralPubMed Chen QH, Zheng RQ, Lin H, et al. Effect of levosimendan on prognosis in adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Crit Care. 2017;21(1):253.CrossRefPubMedCentralPubMed
12.
go back to reference Bracey AW, Radovancevic R, Riggs SA, et al. Lowering the hemoglobin threshold for transfusion in coronary artery bypass procedures: effect on patient outcome. Transfusion. 1999;39(10):1070–7.CrossRef Bracey AW, Radovancevic R, Riggs SA, et al. Lowering the hemoglobin threshold for transfusion in coronary artery bypass procedures: effect on patient outcome. Transfusion. 1999;39(10):1070–7.CrossRef
13.
go back to reference Hajjar LA, Vincent JL, Galas FR, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304(14):1559–67.CrossRef Hajjar LA, Vincent JL, Galas FR, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304(14):1559–67.CrossRef
14.
go back to reference Murphy GJ, Pike K, Rogers CA, et al. Liberal or restrictive transfusion after cardiac surgery. N Engl J Med. 2015;372(11):997–1008.CrossRef Murphy GJ, Pike K, Rogers CA, et al. Liberal or restrictive transfusion after cardiac surgery. N Engl J Med. 2015;372(11):997–1008.CrossRef
15.
go back to reference Shehata N, Burns LA, Nathan H, et al. A randomized controlled pilot study of adherence to transfusion strategies in cardiac surgery. Transfusion. 2012;52(1):91–9.CrossRef Shehata N, Burns LA, Nathan H, et al. A randomized controlled pilot study of adherence to transfusion strategies in cardiac surgery. Transfusion. 2012;52(1):91–9.CrossRef
16.
go back to reference Murphy GJ, Rizvi SI, Battaglia F, et al. A pilot randomized controlled trial of the effect of transfusion-threshold reduction on transfusion rates and morbidity after cardiac surgery. Transfus Altern Transfus Med. 2007;9(suppl 1):41–2. Murphy GJ, Rizvi SI, Battaglia F, et al. A pilot randomized controlled trial of the effect of transfusion-threshold reduction on transfusion rates and morbidity after cardiac surgery. Transfus Altern Transfus Med. 2007;9(suppl 1):41–2.
17.
go back to reference Koch CG, Li L, Duncan AI, et al. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival. Ann Thorac Surg. 2006;81(5):1650–7.CrossRef Koch CG, Li L, Duncan AI, et al. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival. Ann Thorac Surg. 2006;81(5):1650–7.CrossRef
18.
go back to reference Huynh K. Surgery: restrictive versus liberal red-cell transfusion. Nat Rev Cardiol. 2018;15(1):2. Huynh K. Surgery: restrictive versus liberal red-cell transfusion. Nat Rev Cardiol. 2018;15(1):2.
19.
go back to reference Laine A, Niemi T, Schramko A. Transfusion threshold of hemoglobin 80 g/L is comparable to 100 g/L in terms of bleeding in cardiac surgery: a prospective randomized study. J Cardiothorac Vasc Anesth. 2018;32(1):131–139. Laine A, Niemi T, Schramko A. Transfusion threshold of hemoglobin 80 g/L is comparable to 100 g/L in terms of bleeding in cardiac surgery: a prospective randomized study. J Cardiothorac Vasc Anesth. 2018;32(1):131–139.
20.
go back to reference Patel NN, Avlonitis VS, Jones HE, et al. Indications for red blood cell transfusion in cardiac surgery: a systematic review and meta-analysis. Lancet Haematol. 2015;2(12):e543–53.CrossRef Patel NN, Avlonitis VS, Jones HE, et al. Indications for red blood cell transfusion in cardiac surgery: a systematic review and meta-analysis. Lancet Haematol. 2015;2(12):e543–53.CrossRef
21.
go back to reference Simon GI, Craswell A, Thom O, et al. Outcomes of restrictive versus liberal transfusion strategies in older adults from nine randomised controlled trials: a systematic review and meta-analysis. Lancet Haematol. 2017;4(10):e465–74.CrossRef Simon GI, Craswell A, Thom O, et al. Outcomes of restrictive versus liberal transfusion strategies in older adults from nine randomised controlled trials: a systematic review and meta-analysis. Lancet Haematol. 2017;4(10):e465–74.CrossRef
22.
go back to reference Nakamura RE, Vincent JL, Fukushima JT, et al. A liberal strategy of red blood cell transfusion reduces cardiogenic shock in elderly patients undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2015;150(5):1314–20.CrossRef Nakamura RE, Vincent JL, Fukushima JT, et al. A liberal strategy of red blood cell transfusion reduces cardiogenic shock in elderly patients undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2015;150(5):1314–20.CrossRef
23.
24.
go back to reference Kuduvalli M, Oo AY, Newall N, et al. Effect of peri-operative red blood cell transfusion on 30-day and 1-year mortality following coronary artery bypass surgery. Eur J Cardiothorac Surg. 2005;27(4):592–8.CrossRef Kuduvalli M, Oo AY, Newall N, et al. Effect of peri-operative red blood cell transfusion on 30-day and 1-year mortality following coronary artery bypass surgery. Eur J Cardiothorac Surg. 2005;27(4):592–8.CrossRef
25.
go back to reference Andreasen JJ, Dethlefsen C, Modrau IS, et al. Storage time of allogeneic red blood cells is associated with risk of severe postoperative infection after coronary artery bypass grafting. Eur J Cardiothorac Surg. 2011;39(3):329–34.CrossRef Andreasen JJ, Dethlefsen C, Modrau IS, et al. Storage time of allogeneic red blood cells is associated with risk of severe postoperative infection after coronary artery bypass grafting. Eur J Cardiothorac Surg. 2011;39(3):329–34.CrossRef
26.
go back to reference Putney LJ. Bloodless cardiac surgery: not just possible, but preferable. Crit Care Nurs Q. 2007;30(3):263–70.CrossRef Putney LJ. Bloodless cardiac surgery: not just possible, but preferable. Crit Care Nurs Q. 2007;30(3):263–70.CrossRef
27.
go back to reference Farmer SL, Towler SC, Leahy MF, et al. Drivers for change: Western Australia Patient Blood Management Program (WA PBMP), World Health Assembly (WHA) and Advisory Committee on Blood Safety and Availability (ACBSA). Best Pract Res Clin Anaesthesiol. 2013;27(1):43–58.CrossRef Farmer SL, Towler SC, Leahy MF, et al. Drivers for change: Western Australia Patient Blood Management Program (WA PBMP), World Health Assembly (WHA) and Advisory Committee on Blood Safety and Availability (ACBSA). Best Pract Res Clin Anaesthesiol. 2013;27(1):43–58.CrossRef
28.
go back to reference Spahn DR, Goodnough LT. Alternatives to blood transfusion. Lancet. 2013;381(9880):1855–65.CrossRef Spahn DR, Goodnough LT. Alternatives to blood transfusion. Lancet. 2013;381(9880):1855–65.CrossRef
29.
go back to reference Mehra T, Seifert B, Bravo-Reiter S, et al. Implementation of a patient blood management monitoring and feedback program significantly reduces transfusions and costs. Transfusion. 2015;55(12):2807–15.CrossRef Mehra T, Seifert B, Bravo-Reiter S, et al. Implementation of a patient blood management monitoring and feedback program significantly reduces transfusions and costs. Transfusion. 2015;55(12):2807–15.CrossRef
30.
go back to reference Meybohm P, Herrmann E, Steinbicker AU, et al. Patient blood management is associated with a substantial reduction of red blood cell utilization and safe for patient's outcome: a prospective, multicenter cohort study with a noninferiority design. Ann Surg. 2016;264(2):203–11.CrossRef Meybohm P, Herrmann E, Steinbicker AU, et al. Patient blood management is associated with a substantial reduction of red blood cell utilization and safe for patient's outcome: a prospective, multicenter cohort study with a noninferiority design. Ann Surg. 2016;264(2):203–11.CrossRef
31.
go back to reference Gross I, Seifert B, Hofmann A, et al. Patient blood management in cardiac surgery results in fewer transfusions and better outcome. Transfusion. 2015;55(5):1075–81.CrossRef Gross I, Seifert B, Hofmann A, et al. Patient blood management in cardiac surgery results in fewer transfusions and better outcome. Transfusion. 2015;55(5):1075–81.CrossRef
32.
go back to reference Meybohm P, Richards T, Isbister J, et al. Patient blood management bundles to facilitate implementation. Transfus Med Rev. 2017 Jan;31(1):62–71.CrossRef Meybohm P, Richards T, Isbister J, et al. Patient blood management bundles to facilitate implementation. Transfus Med Rev. 2017 Jan;31(1):62–71.CrossRef
33.
go back to reference Henry D, Carless P, Fergusson D, et al. The safety of aprotinin and lysine-derived antifibrinolytic drugs in cardiac surgery: a meta-analysis. CMAJ. 2009;180(2):183–93.CrossRefPubMedCentralPubMed Henry D, Carless P, Fergusson D, et al. The safety of aprotinin and lysine-derived antifibrinolytic drugs in cardiac surgery: a meta-analysis. CMAJ. 2009;180(2):183–93.CrossRefPubMedCentralPubMed
34.
go back to reference Koster A, Faraoni D, Levy JH. Antifibrinolytic therapy for cardiac surgery: an update. Anesthesiology. 2015;123(1):214–21.CrossRef Koster A, Faraoni D, Levy JH. Antifibrinolytic therapy for cardiac surgery: an update. Anesthesiology. 2015;123(1):214–21.CrossRef
35.
go back to reference Rahe-Meyer N, Solomon C, Hanke A, et al. Effects of fibrinogen concentrate as first-line therapy during major aortic replacement surgery: a randomized, placebo-controlled trial. Anesthesiology. 2013;118(1):40–50.CrossRef Rahe-Meyer N, Solomon C, Hanke A, et al. Effects of fibrinogen concentrate as first-line therapy during major aortic replacement surgery: a randomized, placebo-controlled trial. Anesthesiology. 2013;118(1):40–50.CrossRef
36.
go back to reference Corwin HL, Gettinger A, Rodriguez RM, et al. Efficacy of recombinant human erythropoietin in the critically ill patient: a randomized, double-blind, placebo-controlled trial. Crit Care Med. 1999 Nov;27(11):2346–50.CrossRef Corwin HL, Gettinger A, Rodriguez RM, et al. Efficacy of recombinant human erythropoietin in the critically ill patient: a randomized, double-blind, placebo-controlled trial. Crit Care Med. 1999 Nov;27(11):2346–50.CrossRef
37.
go back to reference Yoo YC, Shim JK, Kim JC, et al. Effect of single recombinant human erythropoietin injection on transfusion requirements in preoperatively anemic patients undergoing valvular heart surgery. Anesthesiology. 2011;115(5):929–37.CrossRef Yoo YC, Shim JK, Kim JC, et al. Effect of single recombinant human erythropoietin injection on transfusion requirements in preoperatively anemic patients undergoing valvular heart surgery. Anesthesiology. 2011;115(5):929–37.CrossRef
38.
go back to reference Alghamdi AA, Albanna MJ, Guru V, et al. Does the use of erythropoietin reduce the risk of exposure to allogeneic blood transfusion in cardiac surgery? A systematic review and meta-analysis. J Card Surg. 2006;21(3):320–6.CrossRef Alghamdi AA, Albanna MJ, Guru V, et al. Does the use of erythropoietin reduce the risk of exposure to allogeneic blood transfusion in cardiac surgery? A systematic review and meta-analysis. J Card Surg. 2006;21(3):320–6.CrossRef
39.
go back to reference Weltert L, Rondinelli B, Bello R, et al. A single dose of erythropoietin reduces perioperative transfusions in cardiac surgery: results of a prospective single-blind randomized controlled trial. Transfusion. 2015;55(7):1644–54.CrossRef Weltert L, Rondinelli B, Bello R, et al. A single dose of erythropoietin reduces perioperative transfusions in cardiac surgery: results of a prospective single-blind randomized controlled trial. Transfusion. 2015;55(7):1644–54.CrossRef
40.
go back to reference Urena M, Del Trigo M, Altisent OA, et al. Combined erythropoietin and iron therapy for anaemic patients undergoing transcatheter aortic valve implantation: the EPICURE randomised clinical trial. Euro Intervention. 2017;13(1):44–52. Urena M, Del Trigo M, Altisent OA, et al. Combined erythropoietin and iron therapy for anaemic patients undergoing transcatheter aortic valve implantation: the EPICURE randomised clinical trial. Euro Intervention. 2017;13(1):44–52.
Metadata
Title
Effects of restrictive red blood cell transfusion on the prognoses of adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials
Authors
Qi-Hong Chen
Hua-Ling Wang
Lei Liu
Jun Shao
Jiangqian Yu
Rui-Qiang Zheng
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-2062-5

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue