Skip to main content
Top
Published in: Trials 1/2024

Open Access 01-12-2024 | Study protocol

Effects of individualized positive end-expiratory pressure on intraoperative oxygenation in thoracic surgical patients: study protocol for a prospective randomized controlled trial

Authors: Xu-Ming Liu, Xin-Lu Chang, Jing-Yi Sun, Wen-Wen Hao, Li-Xin An

Published in: Trials | Issue 1/2024

Login to get access

Abstract

Background

Intraoperative hypoxemia and postoperative pulmonary complications (PPCs) often occur in patients with one-lung ventilation (OLV), due to both pulmonary shunt and atelectasis. It has been demonstrated that individualized positive end-expiratory pressure (iPEEP) can effectively improve intraoperative oxygenation, increase lung compliance, and reduce driving pressure, thereby decreasing the risk of developing PPCs. However, its effect during OLV is still unknown. Therefore, we aim to investigate whether iPEEP ventilation during OLV is superior to 5 cmH2O PEEP in terms of intraoperative oxygenation and the occurrence of PPCs.

Methods

This study is a prospective, randomized controlled, single-blind, single-center trial. A total of 112 patients undergoing thoracoscopic pneumonectomy surgery and OLV will be enrolled in the study. They will be randomized into two groups: the static lung compliance guided iPEEP titration group (Cst-iPEEP Group) and the constant 5 cmH2O PEEP group (PEEP 5 Group). The primary outcome will be the oxygenation index at 30 min after OLV and titration. Secondary outcomes are oxygenation index at other operative time points, PPCs, postoperative adverse events, ventilator parameters, vital signs, pH value, inflammatory factors, and economic indicators.

Discussion

This trial explores the effect of iPEEP on intraoperative oxygenation during OLV and PPCs. It provides some clinical references for optimizing the lung protective ventilation strategy of OLV, improving patient prognosis, and accelerating postoperative rehabilitation.

Trial registration

www.​Chictr.​org.​cnChiCTR2300073411​. Registered on 10 July 2023.
Literature
1.
go back to reference Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302–18.CrossRefPubMed Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302–18.CrossRefPubMed
2.
go back to reference Bruinooge AJG, Mao R, Gottschalk TH, et al. Identifying biomarkers of ventilator induced lung injury during one-lung ventilation surgery: a scoping review. J Thorac Dis. 2022;14(11):4506–20.CrossRefPubMedPubMedCentral Bruinooge AJG, Mao R, Gottschalk TH, et al. Identifying biomarkers of ventilator induced lung injury during one-lung ventilation surgery: a scoping review. J Thorac Dis. 2022;14(11):4506–20.CrossRefPubMedPubMedCentral
3.
go back to reference Im Y, Park HY, Shin S, et al. Prevalence of and risk factors for pulmonary complications after curative resection in otherwise healthy elderly patients with early stage lung cancer. Respir Res. 2019;20(1):136.CrossRefPubMedPubMedCentral Im Y, Park HY, Shin S, et al. Prevalence of and risk factors for pulmonary complications after curative resection in otherwise healthy elderly patients with early stage lung cancer. Respir Res. 2019;20(1):136.CrossRefPubMedPubMedCentral
4.
go back to reference Kim ES, Kim YT, Kang CH, et al. Prevalence of and risk factors for postoperative pulmonary complications after lung cancer surgery in patients with early-stage COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:1317–26.CrossRefPubMedPubMedCentral Kim ES, Kim YT, Kang CH, et al. Prevalence of and risk factors for postoperative pulmonary complications after lung cancer surgery in patients with early-stage COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:1317–26.CrossRefPubMedPubMedCentral
5.
go back to reference Jammer I, Wickboldt N, Sander M, et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measures. Eur J Anaesthesiol. 2015;32(2):88–105.CrossRefPubMed Jammer I, Wickboldt N, Sander M, et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measures. Eur J Anaesthesiol. 2015;32(2):88–105.CrossRefPubMed
7.
go back to reference Güldner A, Kiss T, Serpa Neto A, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology. 2015;123(3):692–713.CrossRefPubMed Güldner A, Kiss T, Serpa Neto A, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology. 2015;123(3):692–713.CrossRefPubMed
8.
go back to reference Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth. 2019;123(6):898–913.CrossRefPubMed Young CC, Harris EM, Vacchiano C, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth. 2019;123(6):898–913.CrossRefPubMed
9.
go back to reference Colquhoun DA, Leis AM, Shanks AM, et al. A Lower Tidal Volume Regimen during One-lung Ventilation for Lung Resection Surgery Is Not Associated with Reduced Postoperative Pulmonary Complications. Anesthesiology. 2021;134(4):562–76.CrossRefPubMed Colquhoun DA, Leis AM, Shanks AM, et al. A Lower Tidal Volume Regimen during One-lung Ventilation for Lung Resection Surgery Is Not Associated with Reduced Postoperative Pulmonary Complications. Anesthesiology. 2021;134(4):562–76.CrossRefPubMed
10.
go back to reference Spadaro S, Grasso S, Karbing DS, et al. Physiologic Evaluation of Ventilation Perfusion Mismatch and Respiratory Mechanics at Different Positive End-expiratory Pressure in Patients Undergoing Protective One-lung Ventilation. Anesthesiology. 2018;128(3):531–8.CrossRefPubMed Spadaro S, Grasso S, Karbing DS, et al. Physiologic Evaluation of Ventilation Perfusion Mismatch and Respiratory Mechanics at Different Positive End-expiratory Pressure in Patients Undergoing Protective One-lung Ventilation. Anesthesiology. 2018;128(3):531–8.CrossRefPubMed
11.
go back to reference Park M, Ahn HJ, Kim JA, et al. Driving Pressure during Thoracic Surgery: A Randomized Clinical Trial. Anesthesiology. 2019;130(3):385–93.CrossRefPubMed Park M, Ahn HJ, Kim JA, et al. Driving Pressure during Thoracic Surgery: A Randomized Clinical Trial. Anesthesiology. 2019;130(3):385–93.CrossRefPubMed
12.
go back to reference He H, Chi Y, Yang Y, et al. Early individualized positive end-expiratory pressure guided by electrical impedance tomography in acute respiratory distress syndrome: a randomized controlled clinical trial. Crit Care. 2021;25(1):230.CrossRefPubMedPubMedCentral He H, Chi Y, Yang Y, et al. Early individualized positive end-expiratory pressure guided by electrical impedance tomography in acute respiratory distress syndrome: a randomized controlled clinical trial. Crit Care. 2021;25(1):230.CrossRefPubMedPubMedCentral
13.
go back to reference Zhao Z, Chang MY, Chang MY, et al. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve in severe acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):7.CrossRefPubMedPubMedCentral Zhao Z, Chang MY, Chang MY, et al. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve in severe acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):7.CrossRefPubMedPubMedCentral
14.
go back to reference Li J, Han Z. Progress in clinical application of setting optimal positive end-expiratory pressure. J Clin Anesth. 2023;39(01):98–102. Li J, Han Z. Progress in clinical application of setting optimal positive end-expiratory pressure. J Clin Anesth. 2023;39(01):98–102.
15.
go back to reference Zhu C, Yao JW, An LX, Bai YF, Li WJ. Effects of intraoperative individualized PEEP on postoperative atelectasis in obese patients: study protocol for a prospective randomized controlled trial. Trials. 2020;21(1):618.CrossRefPubMedPubMedCentral Zhu C, Yao JW, An LX, Bai YF, Li WJ. Effects of intraoperative individualized PEEP on postoperative atelectasis in obese patients: study protocol for a prospective randomized controlled trial. Trials. 2020;21(1):618.CrossRefPubMedPubMedCentral
16.
go back to reference Wang QY, Ji YW, An LX, Cao L, Xue FS. Effects of individualized PEEP obtained by two different titration methods on postoperative atelectasis in obese patients: study protocol for a randomized controlled trial. Trials. 2021;22(1):704.CrossRefPubMedPubMedCentral Wang QY, Ji YW, An LX, Cao L, Xue FS. Effects of individualized PEEP obtained by two different titration methods on postoperative atelectasis in obese patients: study protocol for a randomized controlled trial. Trials. 2021;22(1):704.CrossRefPubMedPubMedCentral
17.
go back to reference Battaglini D, Ball L, Wittenstein J, Cohen E, Gama DEAM, Pelosi P. PEEP in thoracic anesthesia: pros and cons. Minerva Anestesiol. 2021;87(2):223–9.CrossRefPubMed Battaglini D, Ball L, Wittenstein J, Cohen E, Gama DEAM, Pelosi P. PEEP in thoracic anesthesia: pros and cons. Minerva Anestesiol. 2021;87(2):223–9.CrossRefPubMed
18.
go back to reference Luna CM, Blanzaco D, Niederman MS, et al. Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit Care Med. 2003;31(3):676–82.CrossRefPubMed Luna CM, Blanzaco D, Niederman MS, et al. Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit Care Med. 2003;31(3):676–82.CrossRefPubMed
19.
go back to reference Gattinoni L, Carlesso E, Langer T. Towards ultraprotective mechanical ventilation. Curr Opin Anaesthesiol. 2012;25(2):141–7.CrossRefPubMed Gattinoni L, Carlesso E, Langer T. Towards ultraprotective mechanical ventilation. Curr Opin Anaesthesiol. 2012;25(2):141–7.CrossRefPubMed
20.
go back to reference Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110(6):1402–11.CrossRefPubMed Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110(6):1402–11.CrossRefPubMed
21.
go back to reference Simon P, Girrbach F, Petroff D, et al. Individualized versus Fixed Positive End-expiratory Pressure for Intraoperative Mechanical Ventilation in Obese Patients: A Secondary Analysis. Anesthesiology. 2021;134(6):887–900.CrossRefPubMed Simon P, Girrbach F, Petroff D, et al. Individualized versus Fixed Positive End-expiratory Pressure for Intraoperative Mechanical Ventilation in Obese Patients: A Secondary Analysis. Anesthesiology. 2021;134(6):887–900.CrossRefPubMed
22.
go back to reference Reinius H, Jonsson L, Gustafsson S, et al. Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study. Anesthesiology. 2009;111(5):979–87.CrossRefPubMed Reinius H, Jonsson L, Gustafsson S, et al. Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study. Anesthesiology. 2009;111(5):979–87.CrossRefPubMed
23.
go back to reference Neumann P, Rothen HU, Berglund JE, Valtysson J, Magnusson A, Hedenstierna G. Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration. Acta Anaesthesiol Scand. 1999;43(3):295–301.CrossRefPubMed Neumann P, Rothen HU, Berglund JE, Valtysson J, Magnusson A, Hedenstierna G. Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration. Acta Anaesthesiol Scand. 1999;43(3):295–301.CrossRefPubMed
24.
go back to reference Pereira SM, Tucci MR, Morais CCA, et al. Individual Positive End-expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and Reduce Postoperative Atelectasis. Anesthesiology. 2018;129(6):1070–81.CrossRefPubMed Pereira SM, Tucci MR, Morais CCA, et al. Individual Positive End-expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and Reduce Postoperative Atelectasis. Anesthesiology. 2018;129(6):1070–81.CrossRefPubMed
25.
go back to reference Xu Q, Guo X, Liu J, et al. Effects of dynamic individualized PEEP guided by driving pressure in laparoscopic surgery on postoperative atelectasis in elderly patients: a prospective randomized controlled trial. BMC Anesthesiol. 2022;22(1):72.CrossRefPubMedPubMedCentral Xu Q, Guo X, Liu J, et al. Effects of dynamic individualized PEEP guided by driving pressure in laparoscopic surgery on postoperative atelectasis in elderly patients: a prospective randomized controlled trial. BMC Anesthesiol. 2022;22(1):72.CrossRefPubMedPubMedCentral
26.
go back to reference Li J, Ma S, Chang X, et al. Effect of pressure-controlled ventilation-volume guaranteed mode combined with individualized positive end-expiratory pressure on respiratory mechanics, oxygenation and lung injury in patients undergoing laparoscopic surgery in Trendelenburg position. J Clin Monit Comput. 2022;36(4):1155–64.CrossRefPubMed Li J, Ma S, Chang X, et al. Effect of pressure-controlled ventilation-volume guaranteed mode combined with individualized positive end-expiratory pressure on respiratory mechanics, oxygenation and lung injury in patients undergoing laparoscopic surgery in Trendelenburg position. J Clin Monit Comput. 2022;36(4):1155–64.CrossRefPubMed
27.
go back to reference Liu K, Huang C, Xu M, et al. PEEP guided by electrical impedance tomography during one-lung ventilation in elderly patients undergoing thoracoscopic surgery. Ann Transl Med. 2019;7(23):757.CrossRefPubMedPubMedCentral Liu K, Huang C, Xu M, et al. PEEP guided by electrical impedance tomography during one-lung ventilation in elderly patients undergoing thoracoscopic surgery. Ann Transl Med. 2019;7(23):757.CrossRefPubMedPubMedCentral
28.
go back to reference Pak O, Sydykov A, Kosanovic D, et al. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. Adv Exp Med Biol. 2017;967:195–225.CrossRefPubMed Pak O, Sydykov A, Kosanovic D, et al. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. Adv Exp Med Biol. 2017;967:195–225.CrossRefPubMed
29.
go back to reference Misthos P, Katsaragakis S, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg. 2005;27(3):379–82. discussion 382-373CrossRefPubMed Misthos P, Katsaragakis S, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg. 2005;27(3):379–82. discussion 382-373CrossRefPubMed
30.
go back to reference Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. Eur J Cardiothorac Surg. 2006;29(4):591–5.CrossRefPubMed Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. Eur J Cardiothorac Surg. 2006;29(4):591–5.CrossRefPubMed
Metadata
Title
Effects of individualized positive end-expiratory pressure on intraoperative oxygenation in thoracic surgical patients: study protocol for a prospective randomized controlled trial
Authors
Xu-Ming Liu
Xin-Lu Chang
Jing-Yi Sun
Wen-Wen Hao
Li-Xin An
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Trials / Issue 1/2024
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-023-07883-z

Other articles of this Issue 1/2024

Trials 1/2024 Go to the issue