Skip to main content
Top
Published in: Clinical Pharmacokinetics 5/2010

01-05-2010 | Review Article

Effects of Hypothermia on Pharmacokinetics and Pharmacodynamics

A Systematic Review of Preclinical and Clinical Studies

Authors: Marcel P. H. van den Broek, PharmD, Floris Groenendaal, Antoine C. G. Egberts, Carin M. A. Rademaker

Published in: Clinical Pharmacokinetics | Issue 5/2010

Login to get access

Abstract

Examples of clinical applications of therapeutic hypothermia in modern clinical medicine include traumatic cardiac arrest, ischaemic stroke and, more recently, acute perinatal asphyxia in neonates. The exact mechanism of (neuro)protection by hypothermia is unknown. Since most enzymatic processes exhibit temperature dependency, it can be expected that therapeutic hypothermia may cause alterations in both pharmacokinetic and pharmacodynamic parameters, which could result in an increased risk of drug toxicity or therapy failure. Generalizable knowledge about the effect of therapeutic hypothermia on pharmacokinetics and pharmacodynamics could lead to more appropriate dosing and thereby prediction of clinical effects. This article reviews the evidence on the influence of therapeutic hypothermia on individual pharmacokinetic and pharmacodynamic parameters. A literature search was conducted within the PubMed, Embase and Cochrane databases from January 1965 to September 2008, comparing pharmacokinetic and/or pharmacodynamic parameters in hypothermia and normothermia regarding preclinical (animal) and clinical (human) studies. During hypothermia, pharmacokinetic parameters alter, resulting in drug and metabolite accumulation in the plasma for the majority of drugs. Impaired clearance is the most striking effect. Based on impaired clearance, dosages should be decreased considerably, especially for drugs with a low therapeutic index. Hypothetically, high-clearance compounds are affected more than low-clearance compounds because of the additional effect of impaired hepatic blood flow. The volume of distribution also changes, which may lead to therapy failure when it increases and could lead to toxicity when it decreases. The pH-partitioning hypothesis could contribute to the changes in the volumes of distribution for weak bases and acids, depending on their acid dissociation constants and acid-base status. Pharmacodynamic parameters may also alter, depending on the hypothermic regimen, drug target location, pharmacological mechanism and metabolic pathway of inactivation. The pharmacological response changes when target sensitivity alters. Rewarming patients to normothermia can also result in toxicity or therapy failure. The integrated effect of hypothermia on pharmacokinetic and pharmacodynamic properties of individual drugs is unclear. Therefore, therapeutic drug monitoring is currently considered essential for drugs with a low therapeutic index, drugs with active metabolites, high-clearance compounds and drugs that are inactivated by enzymes at the site of effect. Because most of the studies (74%) included in this review contain preclinical data, clinical pharmacokinetic/pharmacodynamic studies are essential for the development of substantiated dose regimens to avoid toxicity and therapy failure in patients treated with hypothermia.
Literature
1.
go back to reference Varon J, Acosta P. Therapeutic hypothermia: past, present, and future. Chest 2008; 133(5): 1267–74PubMedCrossRef Varon J, Acosta P. Therapeutic hypothermia: past, present, and future. Chest 2008; 133(5): 1267–74PubMedCrossRef
2.
go back to reference Seder DB, Jarrah S. Therapeutic hypothermia for cardiac arrest: a practical approach. Curr Neurol Neurosci Rep 2008; 8(6): 508–17PubMedCrossRef Seder DB, Jarrah S. Therapeutic hypothermia for cardiac arrest: a practical approach. Curr Neurol Neurosci Rep 2008; 8(6): 508–17PubMedCrossRef
3.
go back to reference Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 2008; 55(3): 363–89PubMedCrossRef Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 2008; 55(3): 363–89PubMedCrossRef
4.
go back to reference Nathan HJ, Parlea L, Dupuis JY, et al. Safety of deliberate intraoperative and postoperative hypothermia for patients undergoing coronary artery surgery: a randomized trial. J Thorac Cardiovasc Surg 2004; 127(5): 1270–5PubMedCrossRef Nathan HJ, Parlea L, Dupuis JY, et al. Safety of deliberate intraoperative and postoperative hypothermia for patients undergoing coronary artery surgery: a randomized trial. J Thorac Cardiovasc Surg 2004; 127(5): 1270–5PubMedCrossRef
5.
go back to reference Shiozaki T, Sugimoto H, Taneda M, et al. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg 1993; 79(3): 363–8PubMedCrossRef Shiozaki T, Sugimoto H, Taneda M, et al. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg 1993; 79(3): 363–8PubMedCrossRef
6.
go back to reference van Bel F, Groenendaal F. Long-term pharmacologic neuroprotection after birth asphyxia: where do we stand?. Neonatology 2008; 94(3): 203–10PubMedCrossRef van Bel F, Groenendaal F. Long-term pharmacologic neuroprotection after birth asphyxia: where do we stand?. Neonatology 2008; 94(3): 203–10PubMedCrossRef
7.
go back to reference Edwards AD, Yue X, Squier MV, et al. Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia. Biochem Biophys Res Commun 1995; 217(3): 1193–9PubMedCrossRef Edwards AD, Yue X, Squier MV, et al. Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia. Biochem Biophys Res Commun 1995; 217(3): 1193–9PubMedCrossRef
8.
go back to reference Gonzalez FF, Ferriero DM. Therapeutics for neonatal brain injury. Pharmacol Ther 2008; 120(1): 43–53PubMedCrossRef Gonzalez FF, Ferriero DM. Therapeutics for neonatal brain injury. Pharmacol Ther 2008; 120(1): 43–53PubMedCrossRef
9.
go back to reference Groenendaal F, van Bel F. Neuroprotection after perinatal asphyxia: recent advances and future perspectives. In: Mishra OP, editor. Mechanisms of hypoxic brain injury in the newborn and potential strategies for neuroprotection. Trivandrum: Transworld Research Network, 2007: 77–97 Groenendaal F, van Bel F. Neuroprotection after perinatal asphyxia: recent advances and future perspectives. In: Mishra OP, editor. Mechanisms of hypoxic brain injury in the newborn and potential strategies for neuroprotection. Trivandrum: Transworld Research Network, 2007: 77–97
10.
go back to reference Zhu C, Wang X, Xu F, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005; 12(2): 162–76PubMedCrossRef Zhu C, Wang X, Xu F, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005; 12(2): 162–76PubMedCrossRef
11.
go back to reference Azzopardi D, Brocklehurst P, Edwards D, et al. The TOBY study. Whole body hypothermia for the treatment of perinatal asphyxial encephalopathy: a randomised controlled trial. BMC Pediatr 2008; 8: 17PubMedCrossRef Azzopardi D, Brocklehurst P, Edwards D, et al. The TOBY study. Whole body hypothermia for the treatment of perinatal asphyxial encephalopathy: a randomised controlled trial. BMC Pediatr 2008; 8: 17PubMedCrossRef
12.
go back to reference Globus MY, Alonso O, Dietrich WD, et al. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem 1995; 65(4): 1704–11PubMedCrossRef Globus MY, Alonso O, Dietrich WD, et al. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem 1995; 65(4): 1704–11PubMedCrossRef
13.
go back to reference Roka A, Melinda KT, Vasarhelyi B, et al. Elevated morphine concentrations in neonates treated with morphine and prolonged hypothermia for hypoxic ischemic encephalopathy. Pediatrics 2008; 121(4): e844–9PubMedCrossRef Roka A, Melinda KT, Vasarhelyi B, et al. Elevated morphine concentrations in neonates treated with morphine and prolonged hypothermia for hypoxic ischemic encephalopathy. Pediatrics 2008; 121(4): e844–9PubMedCrossRef
14.
go back to reference Subramanian S, Agarwal R, Deorari AK, et al. Acute renal failure in neonates. Indian J Pediatr 2008; 75(4): 385–91PubMedCrossRef Subramanian S, Agarwal R, Deorari AK, et al. Acute renal failure in neonates. Indian J Pediatr 2008; 75(4): 385–91PubMedCrossRef
15.
go back to reference Tarcan A, Tiker F, Guvenir H, et al. Hepatic involvement in perinatal asphyxia. J Matern Fetal Neonatal Med 2007; 20(5): 407–10PubMedCrossRef Tarcan A, Tiker F, Guvenir H, et al. Hepatic involvement in perinatal asphyxia. J Matern Fetal Neonatal Med 2007; 20(5): 407–10PubMedCrossRef
16.
go back to reference Bartelink IH, Rademaker CM, Schobben AF, et al. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet 2006; 45(11): 1077–97PubMedCrossRef Bartelink IH, Rademaker CM, Schobben AF, et al. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet 2006; 45(11): 1077–97PubMedCrossRef
17.
go back to reference Gupta BD, Sharma P, Bagla J, et al. Renal failure in asphyxiated neonates. Indian Pediatr 2005; 42(9): 928–34PubMed Gupta BD, Sharma P, Bagla J, et al. Renal failure in asphyxiated neonates. Indian Pediatr 2005; 42(9): 928–34PubMed
18.
go back to reference Eicher DJ, Wagner CL, Katikaneni LP, et al. Moderate hypothermia in neonatal encephalopathy: safety outcomes. Pediatr Neurol 2005; 32(1): 18–24PubMedCrossRef Eicher DJ, Wagner CL, Katikaneni LP, et al. Moderate hypothermia in neonatal encephalopathy: safety outcomes. Pediatr Neurol 2005; 32(1): 18–24PubMedCrossRef
19.
go back to reference Nouri S, Mahdhaoui N, Beizig S, et al. Acute renal failure in full term neonates with perinatal asphyxia: prospective study of 87 cases. Arch Pediatr 2008; 15(3): 229–35PubMedCrossRef Nouri S, Mahdhaoui N, Beizig S, et al. Acute renal failure in full term neonates with perinatal asphyxia: prospective study of 87 cases. Arch Pediatr 2008; 15(3): 229–35PubMedCrossRef
20.
go back to reference Karlsson M, Satas S, Stone J, et al. Liver enzymes cannot be used to predict liver damage after global hypoxia-ischemia in a neonatal pig model. Neonatology 2009; 96(4): 211–8PubMedCrossRef Karlsson M, Satas S, Stone J, et al. Liver enzymes cannot be used to predict liver damage after global hypoxia-ischemia in a neonatal pig model. Neonatology 2009; 96(4): 211–8PubMedCrossRef
21.
go back to reference Stavchansky S, Tung IL. Effect of hypothermia on the intestinal absorption of uracil and L-dopa in the rat. J Pharm Sci 1987; 76(9): 688–91PubMedCrossRef Stavchansky S, Tung IL. Effect of hypothermia on the intestinal absorption of uracil and L-dopa in the rat. J Pharm Sci 1987; 76(9): 688–91PubMedCrossRef
22.
go back to reference Shepherd AMM, Emslie-Smith D, Stevenson IH. Antipyrine elimination in patients with hypothermia. Br J Clin Pharmacol 1976; 3(5): 958–9P Shepherd AMM, Emslie-Smith D, Stevenson IH. Antipyrine elimination in patients with hypothermia. Br J Clin Pharmacol 1976; 3(5): 958–9P
23.
24.
go back to reference Filippi L, la Marca G, Fiorini P, et al. Topiramate concentrations in neonates treated with prolonged whole body hypothermia for hypoxic ischemic encephalopathy. Epilepsia 2009; 50(11): 2355–61PubMedCrossRef Filippi L, la Marca G, Fiorini P, et al. Topiramate concentrations in neonates treated with prolonged whole body hypothermia for hypoxic ischemic encephalopathy. Epilepsia 2009; 50(11): 2355–61PubMedCrossRef
25.
go back to reference Koren G, Barker C, Bohn D, et al. Influence of hypothermia on the pharmacokinetics of gentamicin and theophylline in piglets. Crit Care Med 1985; 13(10): 844–7PubMedCrossRef Koren G, Barker C, Bohn D, et al. Influence of hypothermia on the pharmacokinetics of gentamicin and theophylline in piglets. Crit Care Med 1985; 13(10): 844–7PubMedCrossRef
26.
go back to reference Miller RD, Agoston S, van der Pol F, et al. Hypothermia and the pharmacokinetics and pharmacodynamics of pancuronium in the cat. J Pharmacol Exp Ther 1978; 207(2): 532–8PubMed Miller RD, Agoston S, van der Pol F, et al. Hypothermia and the pharmacokinetics and pharmacodynamics of pancuronium in the cat. J Pharmacol Exp Ther 1978; 207(2): 532–8PubMed
27.
go back to reference Ham J, Miller RD, Benet LZ, et al. Pharmacokinetics and pharmacodynamics of d-tubocurarine during hypothermia in the cat. Anesthesiology 1978; 49(5): 324–9PubMedCrossRef Ham J, Miller RD, Benet LZ, et al. Pharmacokinetics and pharmacodynamics of d-tubocurarine during hypothermia in the cat. Anesthesiology 1978; 49(5): 324–9PubMedCrossRef
28.
go back to reference Bansinath M, Turndorf H, Puig MM. Influence of hypo and hyperthermia on disposition of morphine. J Clin Pharmacol 1988; 28(9): 860–4PubMed Bansinath M, Turndorf H, Puig MM. Influence of hypo and hyperthermia on disposition of morphine. J Clin Pharmacol 1988; 28(9): 860–4PubMed
29.
go back to reference Tortorici MA, Kochanek PM, Bies RR, et al. Therapeutic hypothermia-induced pharmacokinetic alterations on CYP2E1 chlorzoxazone-mediated metabolism in a cardiac arrest rat model. Crit Care Med 2006; 34(3): 785–91PubMed Tortorici MA, Kochanek PM, Bies RR, et al. Therapeutic hypothermia-induced pharmacokinetic alterations on CYP2E1 chlorzoxazone-mediated metabolism in a cardiac arrest rat model. Crit Care Med 2006; 34(3): 785–91PubMed
30.
go back to reference Schaible DH, Cupit GC, Swedlow DB, et al. High-dose pentobarbital pharmacokinetics in hypothermic brain-injured children. J Pediatr 1982; 100(4): 655–60PubMedCrossRef Schaible DH, Cupit GC, Swedlow DB, et al. High-dose pentobarbital pharmacokinetics in hypothermic brain-injured children. J Pediatr 1982; 100(4): 655–60PubMedCrossRef
31.
go back to reference Iida Y, Nishi S, Asada A. Effect of mild therapeutic hypothermia on phenytoin pharmacokinetics. Ther Drug Monit 2001; 23(3): 192–7PubMedCrossRef Iida Y, Nishi S, Asada A. Effect of mild therapeutic hypothermia on phenytoin pharmacokinetics. Ther Drug Monit 2001; 23(3): 192–7PubMedCrossRef
32.
go back to reference Heier T, Clough D, Wright PM, et al. The influence of mild hypothermia on the pharmacokinetics and time course of action of neostigmine in anesthetized volunteers. Anesthesiology 2002; 97(1): 90–5PubMedCrossRef Heier T, Clough D, Wright PM, et al. The influence of mild hypothermia on the pharmacokinetics and time course of action of neostigmine in anesthetized volunteers. Anesthesiology 2002; 97(1): 90–5PubMedCrossRef
33.
go back to reference Fukuoka N, Aibiki M, Tsukamoto T, et al. Biphasic concentration change during continuous midazolam administration in brain-injured patients undergoing therapeutic moderate hypothermia. Resuscitation 2004; 60(2): 225–30PubMedCrossRef Fukuoka N, Aibiki M, Tsukamoto T, et al. Biphasic concentration change during continuous midazolam administration in brain-injured patients undergoing therapeutic moderate hypothermia. Resuscitation 2004; 60(2): 225–30PubMedCrossRef
34.
go back to reference Kadar D, Tang BK, Conn AW. The fate of phenobarbitone in children in hypothermia and at normal body temperature. Can Anaesth Soc J 1982; 29(1): 16–23PubMedCrossRef Kadar D, Tang BK, Conn AW. The fate of phenobarbitone in children in hypothermia and at normal body temperature. Can Anaesth Soc J 1982; 29(1): 16–23PubMedCrossRef
35.
go back to reference Leslie K, Bjorksten AR, Ugoni A, et al. Mild core hypothermia and anesthetic requirement for loss of responsiveness during propofol anesthesia for craniotomy. Anesth Analg 2002; 94(5): 1298–303PubMedCrossRef Leslie K, Bjorksten AR, Ugoni A, et al. Mild core hypothermia and anesthetic requirement for loss of responsiveness during propofol anesthesia for craniotomy. Anesth Analg 2002; 94(5): 1298–303PubMedCrossRef
36.
go back to reference Delin NA, Kjartansson KB, Pollock L, et al. Redistribution of regional blood flow in hypothermia. J Thorac Cardiovasc Surg 1965; 49: 511–6PubMed Delin NA, Kjartansson KB, Pollock L, et al. Redistribution of regional blood flow in hypothermia. J Thorac Cardiovasc Surg 1965; 49: 511–6PubMed
37.
go back to reference Lazenby WD, Ko W, Zelano JA, et al. Effects of temperature and flow rate on regional blood flow and metabolism during cardiopulmonary bypass. Ann Thorac Surg 1992; 53(6): 957–64PubMedCrossRef Lazenby WD, Ko W, Zelano JA, et al. Effects of temperature and flow rate on regional blood flow and metabolism during cardiopulmonary bypass. Ann Thorac Surg 1992; 53(6): 957–64PubMedCrossRef
38.
go back to reference Kondratiev TV, Myhre ES, Simonsen O, et al. Cardiovascular effects of epinephrine during rewarming from hypothermia in an intact animal model. J Appl Physiol 2006; 100(2): 457–64PubMedCrossRef Kondratiev TV, Myhre ES, Simonsen O, et al. Cardiovascular effects of epinephrine during rewarming from hypothermia in an intact animal model. J Appl Physiol 2006; 100(2): 457–64PubMedCrossRef
39.
go back to reference Chen RY, Chien S. Plasma volume, red cell volume, and thoracic duct lymph flow in hypothermia. Am J Physiol 1977; 233(5): H605–12PubMed Chen RY, Chien S. Plasma volume, red cell volume, and thoracic duct lymph flow in hypothermia. Am J Physiol 1977; 233(5): H605–12PubMed
40.
go back to reference Chen RY, Chien S. Hemodynamic functions and blood viscosity in surface hypothermia. Am J Physiol 1978; 235(2): H136–43PubMed Chen RY, Chien S. Hemodynamic functions and blood viscosity in surface hypothermia. Am J Physiol 1978; 235(2): H136–43PubMed
41.
go back to reference D’Amato HE, Hegnauer AH. Blood volume in the hypothermic dog. Am J Physiol 1953; 173(1): 100–2PubMed D’Amato HE, Hegnauer AH. Blood volume in the hypothermic dog. Am J Physiol 1953; 173(1): 100–2PubMed
42.
go back to reference Lofstrom B. Changes in blood volume in induced hypothermia. Acta Anaesthesiol Scand 1957; 1(1–2): 1–13PubMedCrossRef Lofstrom B. Changes in blood volume in induced hypothermia. Acta Anaesthesiol Scand 1957; 1(1–2): 1–13PubMedCrossRef
43.
go back to reference Wong KC. Physiology and pharmacology of hypothermia. West J Med 1983; 138(2): 227–32PubMed Wong KC. Physiology and pharmacology of hypothermia. West J Med 1983; 138(2): 227–32PubMed
44.
go back to reference Groenendaal F, De Vooght KMK, van Bel F. Blood gas values during hypothermia in asphyxiated term neonates. Pediatrics 2009; 123: 170–2PubMedCrossRef Groenendaal F, De Vooght KMK, van Bel F. Blood gas values during hypothermia in asphyxiated term neonates. Pediatrics 2009; 123: 170–2PubMedCrossRef
45.
go back to reference Strichartz GR, Sanchez V, Arthur GR, et al. Fundamental properties of local anesthetics: II. Measured octanol: buffer partition coefficients and pKa values of clinically used drugs. Anesth Analg 1990; 71(2): 158–70PubMedCrossRef Strichartz GR, Sanchez V, Arthur GR, et al. Fundamental properties of local anesthetics: II. Measured octanol: buffer partition coefficients and pKa values of clinically used drugs. Anesth Analg 1990; 71(2): 158–70PubMedCrossRef
46.
go back to reference Lönnqvist PA, Herngren L. Plasma protein binding of lidocaine during hypothermic conditions. Perfusion 1993; 8: 221–4CrossRef Lönnqvist PA, Herngren L. Plasma protein binding of lidocaine during hypothermic conditions. Perfusion 1993; 8: 221–4CrossRef
47.
go back to reference Kalser SC, Kelvington EJ, Randolph MM. Drug metabolism in hypothermia: uptake, metabolism and excretion of S35-sulfanilamide by the isolated, perfused rat liver. J Pharmacol Exp Ther 1968; 159(2): 389–98PubMed Kalser SC, Kelvington EJ, Randolph MM. Drug metabolism in hypothermia: uptake, metabolism and excretion of S35-sulfanilamide by the isolated, perfused rat liver. J Pharmacol Exp Ther 1968; 159(2): 389–98PubMed
48.
go back to reference Perlovich GL, Volkova TV, Bauer-Brandl A. Thermodynamic study of sublimation, solubility, solvation, and distribution processes of atenolol and pindolol. Mol Pharm 2007; 4(6): 929–35PubMedCrossRef Perlovich GL, Volkova TV, Bauer-Brandl A. Thermodynamic study of sublimation, solubility, solvation, and distribution processes of atenolol and pindolol. Mol Pharm 2007; 4(6): 929–35PubMedCrossRef
49.
go back to reference Kato Y, Hirate J, Sakaguchi K, et al. Enhancement of phenytoin binding to tissues in rats by heat treatment. J Pharm Pharmacol 1989; 41(2): 125–6PubMedCrossRef Kato Y, Hirate J, Sakaguchi K, et al. Enhancement of phenytoin binding to tissues in rats by heat treatment. J Pharm Pharmacol 1989; 41(2): 125–6PubMedCrossRef
50.
go back to reference McAllister Jr RG, Tan TG. Effect of hypothermia on drug metabolism: in vitro studies with propranolol and verapamil. Pharmacology 1980; 20(2): 95–100PubMedCrossRef McAllister Jr RG, Tan TG. Effect of hypothermia on drug metabolism: in vitro studies with propranolol and verapamil. Pharmacology 1980; 20(2): 95–100PubMedCrossRef
51.
go back to reference McAllister Jr RG, Tan TG, Todd EP. Effect of hypothermia on the metabolism of propranolol, quinidine, and verapamil [abstract]. Clin Pharmacol Ther 1978; 23(1): 121 McAllister Jr RG, Tan TG, Todd EP. Effect of hypothermia on the metabolism of propranolol, quinidine, and verapamil [abstract]. Clin Pharmacol Ther 1978; 23(1): 121
52.
go back to reference Fritz HG, Holzmayr M, Walter B, et al. The effect of mild hypothermia on plasma fentanyl concentration and biotransformation in juvenile pigs. Anesth Analg 2005; 100(4): 996–1002PubMedCrossRef Fritz HG, Holzmayr M, Walter B, et al. The effect of mild hypothermia on plasma fentanyl concentration and biotransformation in juvenile pigs. Anesth Analg 2005; 100(4): 996–1002PubMedCrossRef
53.
go back to reference Kalser SC, Kelvington EJ, Kunig R, et al. Drug metabolism in hypothermia: uptake, metabolism and excretion of C14-procaine by the isolated, perfused rat liver. J Pharmacol Exp Ther 1968; 164(2): 396–404PubMed Kalser SC, Kelvington EJ, Kunig R, et al. Drug metabolism in hypothermia: uptake, metabolism and excretion of C14-procaine by the isolated, perfused rat liver. J Pharmacol Exp Ther 1968; 164(2): 396–404PubMed
54.
go back to reference Kalser SC, Kelvington EJ, Randolph MM, et al. Drug metabolism in hypothermia: I. Biliary excretion of C 14-atropine metabolites in the intact and nephrectomized rat. J Pharmacol Exp Ther 1965; 147: 252–9PubMed Kalser SC, Kelvington EJ, Randolph MM, et al. Drug metabolism in hypothermia: I. Biliary excretion of C 14-atropine metabolites in the intact and nephrectomized rat. J Pharmacol Exp Ther 1965; 147: 252–9PubMed
55.
go back to reference Kalser SC, Kelvington EJ, Randolph MM, et al. Drug metabolism in hypothermia: II. C 14-atropine uptake, metabolism and excretion by the isolated, perfused rat liver. J Pharmacol Exp Ther 1965; 147: 260–9PubMed Kalser SC, Kelvington EJ, Randolph MM, et al. Drug metabolism in hypothermia: II. C 14-atropine uptake, metabolism and excretion by the isolated, perfused rat liver. J Pharmacol Exp Ther 1965; 147: 260–9PubMed
56.
go back to reference Mortensen B, Dale O. Effects of hypothermia on the elimination of ethanol, diazepam and oxazepam in rat liver slice incubations. Acta Anaesthesiol Scand 1995; 39(2): 199–204PubMedCrossRef Mortensen B, Dale O. Effects of hypothermia on the elimination of ethanol, diazepam and oxazepam in rat liver slice incubations. Acta Anaesthesiol Scand 1995; 39(2): 199–204PubMedCrossRef
57.
go back to reference Daemen MJ, Thijssen HH, Vervoort-Peters HT, et al. The effect of pento-barbitone anaesthesia and hypothermia on the hepatic clearance of in-docyanine green and S(−)-acenocoumarol in the rat. J Pharm Pharmacol 1986; 38(2): 122–5PubMedCrossRef Daemen MJ, Thijssen HH, Vervoort-Peters HT, et al. The effect of pento-barbitone anaesthesia and hypothermia on the hepatic clearance of in-docyanine green and S(−)-acenocoumarol in the rat. J Pharm Pharmacol 1986; 38(2): 122–5PubMedCrossRef
58.
go back to reference Nishida K, Okazaki M, Sakamoto R, et al. Change in pharmacokinetics of model compounds with different elimination processes in rats during hypothermia. Biol Pharm Bull 2007; 30(9): 1763–7PubMedCrossRef Nishida K, Okazaki M, Sakamoto R, et al. Change in pharmacokinetics of model compounds with different elimination processes in rats during hypothermia. Biol Pharm Bull 2007; 30(9): 1763–7PubMedCrossRef
59.
go back to reference Beaufort TM, Proost JH, Maring J, et al. Effect of hypothermia on the hepatic uptake and biliary excretion of vecuronium in the isolated perfused rat liver. Anesthesiology 2001; 94(2): 270–9PubMedCrossRef Beaufort TM, Proost JH, Maring J, et al. Effect of hypothermia on the hepatic uptake and biliary excretion of vecuronium in the isolated perfused rat liver. Anesthesiology 2001; 94(2): 270–9PubMedCrossRef
60.
go back to reference Lundgren-Eriksson L, Carlsson A, Eksborg S, et al. Pharmacokinetics of doxorubicin and epirubicin in mice during chlorpromazine-induced hypothermia. Cancer Chemother Pharmacol 1997; 40(5): 419–24PubMedCrossRef Lundgren-Eriksson L, Carlsson A, Eksborg S, et al. Pharmacokinetics of doxorubicin and epirubicin in mice during chlorpromazine-induced hypothermia. Cancer Chemother Pharmacol 1997; 40(5): 419–24PubMedCrossRef
61.
go back to reference Satas S, Hoem NO, Melby K, et al. Influence of mild hypothermia after hypoxia-ischemia on the pharmacokinetics of gentamicin in newborn pigs. Biol Neonate 2000; 77(1): 50–7PubMedCrossRef Satas S, Hoem NO, Melby K, et al. Influence of mild hypothermia after hypoxia-ischemia on the pharmacokinetics of gentamicin in newborn pigs. Biol Neonate 2000; 77(1): 50–7PubMedCrossRef
62.
go back to reference Leslie K, Sessler DI, Bjorksten AR, et al. Mild hypothermia alters propofol pharmacokinetics and increases the duration of action of atracurium. Anesth Analg 1995; 80(5): 1007–14PubMed Leslie K, Sessler DI, Bjorksten AR, et al. Mild hypothermia alters propofol pharmacokinetics and increases the duration of action of atracurium. Anesth Analg 1995; 80(5): 1007–14PubMed
63.
go back to reference Caldwell JE, Heier T, Wright PM, et al. Temperature-dependent pharmacokinetics and pharmacodynamics of vecuronium. Anesthesiology 2000; 92(1): 84–93PubMedCrossRef Caldwell JE, Heier T, Wright PM, et al. Temperature-dependent pharmacokinetics and pharmacodynamics of vecuronium. Anesthesiology 2000; 92(1): 84–93PubMedCrossRef
64.
go back to reference Kalser SC, Kelly MP, Forbes EB, et al. Drug metabolism in hypothermia: uptake, metabolism and biliary excretion of pentobarbital-2-C 14 by the isolated, perfused rat liver in hypothermia and euthermia. J Pharmacol Exp Ther 1969; 170(1): 145–52PubMed Kalser SC, Kelly MP, Forbes EB, et al. Drug metabolism in hypothermia: uptake, metabolism and biliary excretion of pentobarbital-2-C 14 by the isolated, perfused rat liver in hypothermia and euthermia. J Pharmacol Exp Ther 1969; 170(1): 145–52PubMed
65.
go back to reference Greven J. The effect of hypothermia on the diuretic action of furosemide in anesthetized rats. Naunyn Schmiedebergs Arch Pharmacol 1973; 280(1): 71–8PubMedCrossRef Greven J. The effect of hypothermia on the diuretic action of furosemide in anesthetized rats. Naunyn Schmiedebergs Arch Pharmacol 1973; 280(1): 71–8PubMedCrossRef
66.
go back to reference Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med 2007; 35(9): 2196–204PubMedCrossRef Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med 2007; 35(9): 2196–204PubMedCrossRef
67.
go back to reference Taniguchi H, Pyerin W. Phospholipid bilayer membranes play decisive roles in the cytochrome P-450-dependent monooxygenase system. J Cancer Res Clin Oncol 1988; 114(4): 335–40PubMedCrossRef Taniguchi H, Pyerin W. Phospholipid bilayer membranes play decisive roles in the cytochrome P-450-dependent monooxygenase system. J Cancer Res Clin Oncol 1988; 114(4): 335–40PubMedCrossRef
68.
go back to reference Soons PA, De Boer A, Cohen AF, et al. Assessment of hepatic blood flow in healthy subjects by continuous infusion of indocyanine green. Br J Clin Pharmacol 1991; 32(6): 697–704PubMed Soons PA, De Boer A, Cohen AF, et al. Assessment of hepatic blood flow in healthy subjects by continuous infusion of indocyanine green. Br J Clin Pharmacol 1991; 32(6): 697–704PubMed
69.
go back to reference Withey WR, Chapman BJ, Munday KA. Cause of the reduction in renal blood flow in the hypothermic (27 degrees C) dog. Resuscitation 1974; 3(4): 265–71PubMedCrossRef Withey WR, Chapman BJ, Munday KA. Cause of the reduction in renal blood flow in the hypothermic (27 degrees C) dog. Resuscitation 1974; 3(4): 265–71PubMedCrossRef
70.
go back to reference Withey WR, Chapman BJ, Munday KA. Distribution of blood flow in the hypothermic (27 degrees C) dog kidney. Clin Sci Mol Med Suppl 1976; 51(6): 583–8PubMed Withey WR, Chapman BJ, Munday KA. Distribution of blood flow in the hypothermic (27 degrees C) dog kidney. Clin Sci Mol Med Suppl 1976; 51(6): 583–8PubMed
71.
go back to reference Munday KA, Noble AR. Renin secretion in the hypothermic dog. J Physiol 1970; 206(2): 38–9P Munday KA, Noble AR. Renin secretion in the hypothermic dog. J Physiol 1970; 206(2): 38–9P
72.
go back to reference Liu X, Borooah M, Stone S, et al. Serum gentamicin concentrations in en-cephalopathic infants are not affected by therapeutic hypothermia. Pediatrics 2009; 124(1): 310–5PubMedCrossRef Liu X, Borooah M, Stone S, et al. Serum gentamicin concentrations in en-cephalopathic infants are not affected by therapeutic hypothermia. Pediatrics 2009; 124(1): 310–5PubMedCrossRef
73.
74.
go back to reference Steen H, Merema M, Meijer DK. A multispecific uptake system for taurocholate, cardiac glycosides and cationic drugs in the liver. Biochem Pharmacol 1992; 44(12): 2323–31PubMedCrossRef Steen H, Merema M, Meijer DK. A multispecific uptake system for taurocholate, cardiac glycosides and cationic drugs in the liver. Biochem Pharmacol 1992; 44(12): 2323–31PubMedCrossRef
75.
go back to reference Tiribelli C, Lunazzi GC, Sottocasa GL. Biochemical and molecular aspects of the hepatic uptake of organic anions. Biochim Biophys Acta 1990; 1031(3): 261–75PubMedCrossRef Tiribelli C, Lunazzi GC, Sottocasa GL. Biochemical and molecular aspects of the hepatic uptake of organic anions. Biochim Biophys Acta 1990; 1031(3): 261–75PubMedCrossRef
76.
go back to reference Rademaker CMA, de Vries LS. Pharmacology review: lidocaine for neonatal seizure management. Neoreviews 2008; 9: e585–9CrossRef Rademaker CMA, de Vries LS. Pharmacology review: lidocaine for neonatal seizure management. Neoreviews 2008; 9: e585–9CrossRef
77.
go back to reference Horrow JC, Bartkowski RR. Pancuronium, unlike other nondepolarizing relaxants, retains potency at hypothermia. Anesthesiology 1983; 58(4): 357–61PubMedCrossRef Horrow JC, Bartkowski RR. Pancuronium, unlike other nondepolarizing relaxants, retains potency at hypothermia. Anesthesiology 1983; 58(4): 357–61PubMedCrossRef
78.
go back to reference Puig MM, Warner W, Tang CK, et al. Effects of temperature on the interaction of morphine with opioid receptors. Br J Anaesth 1987; 59: 1459–64PubMedCrossRef Puig MM, Warner W, Tang CK, et al. Effects of temperature on the interaction of morphine with opioid receptors. Br J Anaesth 1987; 59: 1459–64PubMedCrossRef
79.
go back to reference Riishede L, Nielsen-Kudsk F. Myocardial effects of adrenaline, isoprenaline and dobutamine at hypothermic conditions. Pharmacol Toxicol 1990; 66(5): 354–60PubMedCrossRef Riishede L, Nielsen-Kudsk F. Myocardial effects of adrenaline, isoprenaline and dobutamine at hypothermic conditions. Pharmacol Toxicol 1990; 66(5): 354–60PubMedCrossRef
80.
go back to reference Heier T, Caldwell JE, Sessler DI, et al. Mild intraoperative hypothermia increases duration of action and spontaneous recovery of vecuronium blockade during nitrous oxide-isoflurane anesthesia in humans. Anesthesiology 1991; 74(5): 815–9PubMedCrossRef Heier T, Caldwell JE, Sessler DI, et al. Mild intraoperative hypothermia increases duration of action and spontaneous recovery of vecuronium blockade during nitrous oxide-isoflurane anesthesia in humans. Anesthesiology 1991; 74(5): 815–9PubMedCrossRef
81.
go back to reference Swapna I, SathyaSaikumar KV, Murthy ChR, et al. Alterations in kinetic and thermotropic properties of cerebral membrane-bound acetylcholineesterase during thioacetamide-induced hepatic encephalopathy: correlation with membrane lipid changes. Brain Res 2007; 1153: 188–95PubMedCrossRef Swapna I, SathyaSaikumar KV, Murthy ChR, et al. Alterations in kinetic and thermotropic properties of cerebral membrane-bound acetylcholineesterase during thioacetamide-induced hepatic encephalopathy: correlation with membrane lipid changes. Brain Res 2007; 1153: 188–95PubMedCrossRef
82.
go back to reference Broadley KJ, Duncan C. The contribution of metabolism to the hypothermia-induced supersensitivity of guinea-pig isolated atria; selective supersensitivity for beta-adrenoceptor agonists and their positive inotropic responses. Gen Pharmacol 1977; 8(5–6): 305–10PubMed Broadley KJ, Duncan C. The contribution of metabolism to the hypothermia-induced supersensitivity of guinea-pig isolated atria; selective supersensitivity for beta-adrenoceptor agonists and their positive inotropic responses. Gen Pharmacol 1977; 8(5–6): 305–10PubMed
83.
go back to reference Simantov R, Snowman AM, Snyder SH. Temperature and ionic influences on opiate receptor binding. Mol Pharmacol 1976; 12(6): 977–86PubMed Simantov R, Snowman AM, Snyder SH. Temperature and ionic influences on opiate receptor binding. Mol Pharmacol 1976; 12(6): 977–86PubMed
84.
go back to reference Heier T, Caldwell JE, Sharma ML, et al. Mild intraoperative hypothermia does not change the pharmacodynamics (concentration-effect relationship) of vecuronium in humans. Anesth Analg 1994; 78(5): 973–7PubMedCrossRef Heier T, Caldwell JE, Sharma ML, et al. Mild intraoperative hypothermia does not change the pharmacodynamics (concentration-effect relationship) of vecuronium in humans. Anesth Analg 1994; 78(5): 973–7PubMedCrossRef
85.
go back to reference Tortorici MA, Mu Y, Kochanek PM, et al. Moderate hypothermia prevents cardiac arrest-mediated suppression of drug metabolism and induction of interleukin-6 in rats. Crit Care Med 2009; 37(1): 263–9PubMedCrossRef Tortorici MA, Mu Y, Kochanek PM, et al. Moderate hypothermia prevents cardiac arrest-mediated suppression of drug metabolism and induction of interleukin-6 in rats. Crit Care Med 2009; 37(1): 263–9PubMedCrossRef
86.
go back to reference Holley FO, Ponganis KV, Stanski DR. Effect of cardiopulmonary bypass on the pharmacokinetics of drugs. Clin Pharmacokinet 1982; 7(3): 234–51PubMedCrossRef Holley FO, Ponganis KV, Stanski DR. Effect of cardiopulmonary bypass on the pharmacokinetics of drugs. Clin Pharmacokinet 1982; 7(3): 234–51PubMedCrossRef
87.
go back to reference Mand’ak J, Zivny P, Lonsky V, et al. Changes in metabolism and blood flow in peripheral tissue (skeletal muscle) during cardiac surgery with cardiopulmonary bypass: the biochemical microdialysis study. Perfusion 2004; 19(1): 53–63PubMedCrossRef Mand’ak J, Zivny P, Lonsky V, et al. Changes in metabolism and blood flow in peripheral tissue (skeletal muscle) during cardiac surgery with cardiopulmonary bypass: the biochemical microdialysis study. Perfusion 2004; 19(1): 53–63PubMedCrossRef
88.
go back to reference Wissing H, Kuhn I, Rietbrock S, et al. Pharmacokinetics of inhaled anaesthetics in a clinical setting: comparison of desflurane, isoflurane and sevoflurane. Br J Anaesth 2000; 84(4): 443–9PubMedCrossRef Wissing H, Kuhn I, Rietbrock S, et al. Pharmacokinetics of inhaled anaesthetics in a clinical setting: comparison of desflurane, isoflurane and sevoflurane. Br J Anaesth 2000; 84(4): 443–9PubMedCrossRef
89.
go back to reference Dale O, Brown Jr BR. Clinical pharmacokinetics of the inhalational anaesthetics. Clin Pharmacokinet 1987; 12(3): 145–67PubMedCrossRef Dale O, Brown Jr BR. Clinical pharmacokinetics of the inhalational anaesthetics. Clin Pharmacokinet 1987; 12(3): 145–67PubMedCrossRef
90.
go back to reference Zhou JX, Liu J. The effect of temperature on solubility of volatile anesthetics in human tissues. Anesth Analg 2001; 93(1): 234–8PubMedCrossRef Zhou JX, Liu J. The effect of temperature on solubility of volatile anesthetics in human tissues. Anesth Analg 2001; 93(1): 234–8PubMedCrossRef
91.
go back to reference Mager DE, Woo S, Jusko WJ. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet 2009; 24(1): 16–24PubMedCrossRef Mager DE, Woo S, Jusko WJ. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet 2009; 24(1): 16–24PubMedCrossRef
92.
93.
94.
go back to reference Goteti K, Brassil PJ, Good SS, et al. Estimation of human drug clearance using multiexponential techniques. J Clin Pharmacol 2008; 48(10): 1226–36PubMedCrossRef Goteti K, Brassil PJ, Good SS, et al. Estimation of human drug clearance using multiexponential techniques. J Clin Pharmacol 2008; 48(10): 1226–36PubMedCrossRef
95.
go back to reference Sui X, Sun J, Wu X, et al. Predicting the volume of distribution of drugs in humans. Curr Drug Metab 2008; 9(6): 574–80PubMedCrossRef Sui X, Sun J, Wu X, et al. Predicting the volume of distribution of drugs in humans. Curr Drug Metab 2008; 9(6): 574–80PubMedCrossRef
Metadata
Title
Effects of Hypothermia on Pharmacokinetics and Pharmacodynamics
A Systematic Review of Preclinical and Clinical Studies
Authors
Marcel P. H. van den Broek, PharmD
Floris Groenendaal
Antoine C. G. Egberts
Carin M. A. Rademaker
Publication date
01-05-2010
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 5/2010
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/11319360-000000000-00000

Other articles of this Issue 5/2010

Clinical Pharmacokinetics 5/2010 Go to the issue