Skip to main content
Top
Published in: Behavioral and Brain Functions 1/2011

Open Access 01-12-2011 | Research

Effects of early life trauma are dependent on genetic predisposition: a rat study

Authors: Toni-Lee Sterley, Fleur M Howells, Vivienne A Russell

Published in: Behavioral and Brain Functions | Issue 1/2011

Login to get access

Abstract

Background

Trauma experienced early in life increases the risk of developing a number of psychological and/or behavioural disorders. It is unclear, however, how genetic predisposition to a behavioural disorder, such as attention-deficit/hyperactivity disorder (ADHD), modifies the long-term effects of early life trauma. There is substantial evidence from family and twin studies for susceptibility to ADHD being inherited, implying a strong genetic component to the disorder. In the present study we used an inbred animal model of ADHD, the spontaneously hypertensive rat (SHR), to investigate the long-term consequences of early life trauma on emotional behaviour in individuals predisposed to developing ADHD-like behaviour.

Methods

We applied a rodent model of early life trauma, maternal separation, to SHR and Wistar-Kyoto rats (WKY), the normotensive control strain from which SHR were originally derived. The effects of maternal separation (removal of pups from dam for 3 h/day during the first 2 weeks of life) on anxiety-like behaviour (elevated-plus maze) and depressive-like behaviour (forced swim test) were assessed in prepubescent rats (postnatal day 28 and 31). Basal levels of plasma corticosterone were measured using radioimmunoassay.

Results

The effect of maternal separation on SHR and WKY differed in a number of behavioural measures. Similar to its reported effect in other rat strains, maternal separation increased the anxiety-like behaviour of WKY (decreased open arm entries) but not SHR. Maternal separation increased the activity of SHR in the novel environment of the elevated plus-maze, while it decreased that of WKY. Overall, SHR showed a more active response in the elevated plus-maze and forced swim test than WKY, regardless of treatment, and were also found to have higher basal plasma corticosterone compared to WKY. Maternal separation increased basal levels of plasma corticosterone in SHR females only, possibly through adaptive mechanisms involved in maintaining their active response in behavioural tests. Basal plasma corticosterone was found to correlate positively with an active response to a novel environment and inescapable stress across all rats.

Conclusion

SHR are resilient to the anxiogenic effects of maternal separation, and develop a non-anxious, active response to a novel environment following chronic mild stress during the early stages of development. Our findings highlight the importance of genetic predisposition in determining the outcome of early life adversity. SHR may provide a model of early life trauma leading to the development of hyperactivity rather than anxiety and depression. Basal levels of corticosterone correlate with the behavioural response to early life trauma, and may therefore provide a useful marker for susceptibility to a certain behavioural temperament.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zehle S: Methylphenidate treatment recovers stress-induced elevated dendritic spine densities in the rodent dorsal anterior cingulate cortex. Dev Neurobiol. 2007, 67 (14): 1891-900. 10.1002/dneu.20543.PubMedCrossRef Zehle S: Methylphenidate treatment recovers stress-induced elevated dendritic spine densities in the rodent dorsal anterior cingulate cortex. Dev Neurobiol. 2007, 67 (14): 1891-900. 10.1002/dneu.20543.PubMedCrossRef
2.
go back to reference Heim C, Nemeroff CB: The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry. 1999, 46 (11): 1509-22. 10.1016/S0006-3223(99)00224-3.PubMedCrossRef Heim C, Nemeroff CB: The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry. 1999, 46 (11): 1509-22. 10.1016/S0006-3223(99)00224-3.PubMedCrossRef
3.
go back to reference Teicher MH: The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev. 2003, 27 (1-2): 33-44. 10.1016/S0149-7634(03)00007-1.PubMedCrossRef Teicher MH: The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev. 2003, 27 (1-2): 33-44. 10.1016/S0149-7634(03)00007-1.PubMedCrossRef
4.
go back to reference Nestler EJ: Neurobiology of depression. Neuron. 2002, 34 (1): 13-25. 10.1016/S0896-6273(02)00653-0.PubMedCrossRef Nestler EJ: Neurobiology of depression. Neuron. 2002, 34 (1): 13-25. 10.1016/S0896-6273(02)00653-0.PubMedCrossRef
5.
go back to reference Caldji C: The effects of early rearing environment on the development of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology. 2000, 22 (3): 219-29. 10.1016/S0893-133X(99)00110-4.PubMedCrossRef Caldji C: The effects of early rearing environment on the development of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology. 2000, 22 (3): 219-29. 10.1016/S0893-133X(99)00110-4.PubMedCrossRef
6.
go back to reference Sanchez MM, Ladd CO, Plotsky PM: Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol. 2001, 13 (3): 419-49. 10.1017/S0954579401003029.PubMedCrossRef Sanchez MM, Ladd CO, Plotsky PM: Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol. 2001, 13 (3): 419-49. 10.1017/S0954579401003029.PubMedCrossRef
7.
go back to reference Plotsky PM, Meaney MJ: Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res. 1993, 18 (3): 195-200.PubMedCrossRef Plotsky PM, Meaney MJ: Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res. 1993, 18 (3): 195-200.PubMedCrossRef
9.
go back to reference Diagnostic and Statistical Manual of Mental Disorders: Text Revision. 2000, Washington, DC: American Psychiatric Association, Fourth Diagnostic and Statistical Manual of Mental Disorders: Text Revision. 2000, Washington, DC: American Psychiatric Association, Fourth
10.
go back to reference Faraone SV, Doyle AE: Genetic influences on attention deficit hyperactivity disorder. Curr Psychiatry Rep. 2000, 2 (2): 143-6. 10.1007/s11920-000-0059-6.PubMedCrossRef Faraone SV, Doyle AE: Genetic influences on attention deficit hyperactivity disorder. Curr Psychiatry Rep. 2000, 2 (2): 143-6. 10.1007/s11920-000-0059-6.PubMedCrossRef
11.
go back to reference Skounti M, Philalithis A, Galanakis E: Variations in prevalence of attention deficit hyperactivity disorder worldwide. Eur J Pediatr. 2007, 166 (2): 117-23.PubMedCrossRef Skounti M, Philalithis A, Galanakis E: Variations in prevalence of attention deficit hyperactivity disorder worldwide. Eur J Pediatr. 2007, 166 (2): 117-23.PubMedCrossRef
12.
go back to reference Sagvolden T: A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005, 28 (3): 397-419. discussion 419-68PubMedCrossRef Sagvolden T: A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005, 28 (3): 397-419. discussion 419-68PubMedCrossRef
13.
go back to reference Muller DJ: Serotonin transporter gene and adverse life events in adult ADHD. Am J Med Genet B Neuropsychiatr Genet. 2008, 147B (8): 1461-9. 10.1002/ajmg.b.30706.PubMedCrossRef Muller DJ: Serotonin transporter gene and adverse life events in adult ADHD. Am J Med Genet B Neuropsychiatr Genet. 2008, 147B (8): 1461-9. 10.1002/ajmg.b.30706.PubMedCrossRef
14.
go back to reference Rosenfeld P, Wetmore JB, Levine S: Effects of repeated maternal separations on the adrenocortical response to stress of preweanling rats. Physiol Behav. 1992, 52 (4): 787-91. 10.1016/0031-9384(92)90415-X.PubMedCrossRef Rosenfeld P, Wetmore JB, Levine S: Effects of repeated maternal separations on the adrenocortical response to stress of preweanling rats. Physiol Behav. 1992, 52 (4): 787-91. 10.1016/0031-9384(92)90415-X.PubMedCrossRef
15.
go back to reference Lehmann J: The maternal separation paradigm and adult emotionality and cognition in male and female Wistar rats. Pharmacol Biochem Behav. 1999, 64 (4): 705-15. 10.1016/S0091-3057(99)00150-1.PubMedCrossRef Lehmann J: The maternal separation paradigm and adult emotionality and cognition in male and female Wistar rats. Pharmacol Biochem Behav. 1999, 64 (4): 705-15. 10.1016/S0091-3057(99)00150-1.PubMedCrossRef
16.
go back to reference Wigger A, Neumann ID: Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav. 1999, 66 (2): 293-302. 10.1016/S0031-9384(98)00300-X.PubMedCrossRef Wigger A, Neumann ID: Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav. 1999, 66 (2): 293-302. 10.1016/S0031-9384(98)00300-X.PubMedCrossRef
17.
go back to reference El Khoury A: Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2006, 30 (3): 535-40. 10.1016/j.pnpbp.2005.11.011.PubMedCrossRef El Khoury A: Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2006, 30 (3): 535-40. 10.1016/j.pnpbp.2005.11.011.PubMedCrossRef
18.
go back to reference Lippmann M: Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci. 2007, 25 (10): 3091-8. 10.1111/j.1460-9568.2007.05522.x.PubMedCrossRef Lippmann M: Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci. 2007, 25 (10): 3091-8. 10.1111/j.1460-9568.2007.05522.x.PubMedCrossRef
19.
go back to reference Ladd CO: Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo-pituitary-adrenal axis following neonatal maternal separation. Biol Psychiatry. 2004, 55 (4): 367-75. 10.1016/j.biopsych.2003.10.007.PubMedCrossRef Ladd CO: Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo-pituitary-adrenal axis following neonatal maternal separation. Biol Psychiatry. 2004, 55 (4): 367-75. 10.1016/j.biopsych.2003.10.007.PubMedCrossRef
20.
go back to reference Huot RL: Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology (Berl). 2001, 158 (4): 366-73. 10.1007/s002130100701.CrossRef Huot RL: Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology (Berl). 2001, 158 (4): 366-73. 10.1007/s002130100701.CrossRef
21.
go back to reference Lee JH: Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res. 2007, 58 (1): 32-9. 10.1016/j.neures.2007.01.008.PubMedCrossRef Lee JH: Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res. 2007, 58 (1): 32-9. 10.1016/j.neures.2007.01.008.PubMedCrossRef
22.
go back to reference Zhang TY, Meaney MJ: Epigenetics and the environmental regulation of the genome and its function. Annu Rev Psychol. 61: 439-66. C1-3 Zhang TY, Meaney MJ: Epigenetics and the environmental regulation of the genome and its function. Annu Rev Psychol. 61: 439-66. C1-3
23.
go back to reference Rutter M: Gene-environment interdependence. Dev Sci. 2007, 10 (1): 12-8. 10.1111/j.1467-7687.2007.00557.x.PubMedCrossRef Rutter M: Gene-environment interdependence. Dev Sci. 2007, 10 (1): 12-8. 10.1111/j.1467-7687.2007.00557.x.PubMedCrossRef
24.
go back to reference Stevens SE: Dopamine transporter gene polymorphism moderates the effects of severe deprivation on ADHD symptoms: developmental continuities in gene-environment interplay. Am J Med Genet B Neuropsychiatr Genet. 2009, 150B (6): 753-61. 10.1002/ajmg.b.31010.PubMedCrossRef Stevens SE: Dopamine transporter gene polymorphism moderates the effects of severe deprivation on ADHD symptoms: developmental continuities in gene-environment interplay. Am J Med Genet B Neuropsychiatr Genet. 2009, 150B (6): 753-61. 10.1002/ajmg.b.31010.PubMedCrossRef
25.
go back to reference Polanczyk G: Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: replication and extension. Arch Gen Psychiatry. 2009, 66 (9): 978-85. 10.1001/archgenpsychiatry.2009.114.PubMedCentralPubMedCrossRef Polanczyk G: Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: replication and extension. Arch Gen Psychiatry. 2009, 66 (9): 978-85. 10.1001/archgenpsychiatry.2009.114.PubMedCentralPubMedCrossRef
26.
go back to reference Caspi A: Role of genotype in the cycle of violence in maltreated children. Science. 2002, 297 (5582): 851-4. 10.1126/science.1072290.PubMedCrossRef Caspi A: Role of genotype in the cycle of violence in maltreated children. Science. 2002, 297 (5582): 851-4. 10.1126/science.1072290.PubMedCrossRef
27.
go back to reference Caspi A: Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003, 301 (5631): 386-9. 10.1126/science.1083968.PubMedCrossRef Caspi A: Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003, 301 (5631): 386-9. 10.1126/science.1083968.PubMedCrossRef
28.
go back to reference Rutter M, Thapar A, Pickles A: Gene-environment interactions: biologically valid pathway or artifact?. Arch Gen Psychiatry. 2009, 66 (12): 1287-9. 10.1001/archgenpsychiatry.2009.167.PubMedCrossRef Rutter M, Thapar A, Pickles A: Gene-environment interactions: biologically valid pathway or artifact?. Arch Gen Psychiatry. 2009, 66 (12): 1287-9. 10.1001/archgenpsychiatry.2009.167.PubMedCrossRef
29.
go back to reference Desbonnet L: Sexually dimorphic effects of maternal separation stress on corticotrophin-releasing factor and vasopressin systems in the adult rat brain. Int J Dev Neurosci. 2008, 26 (3-4): 259-68. 10.1016/j.ijdevneu.2008.02.004.PubMedCrossRef Desbonnet L: Sexually dimorphic effects of maternal separation stress on corticotrophin-releasing factor and vasopressin systems in the adult rat brain. Int J Dev Neurosci. 2008, 26 (3-4): 259-68. 10.1016/j.ijdevneu.2008.02.004.PubMedCrossRef
30.
go back to reference Renard GM, Rivarola MA, Suarez MM: Sexual dimorphism in rats: effects of early maternal separation and variable chronic stress on pituitary-adrenal axis and behavior. Int J Dev Neurosci. 2007, 25 (6): 373-9. 10.1016/j.ijdevneu.2007.07.001.PubMedCrossRef Renard GM, Rivarola MA, Suarez MM: Sexual dimorphism in rats: effects of early maternal separation and variable chronic stress on pituitary-adrenal axis and behavior. Int J Dev Neurosci. 2007, 25 (6): 373-9. 10.1016/j.ijdevneu.2007.07.001.PubMedCrossRef
31.
go back to reference Spivey JM: Adolescent female rats are more resistant than males to the effects of early stress on prefrontal cortex and impulsive behavior. Dev Psychobiol. 2009, 51 (3): 277-88. 10.1002/dev.20362.PubMedCentralPubMedCrossRef Spivey JM: Adolescent female rats are more resistant than males to the effects of early stress on prefrontal cortex and impulsive behavior. Dev Psychobiol. 2009, 51 (3): 277-88. 10.1002/dev.20362.PubMedCentralPubMedCrossRef
32.
go back to reference Slotten HA: Long-lasting changes in behavioural and neuroendocrine indices in the rat following neonatal maternal separation: gender-dependent effects. Brain Res. 2006, 1097 (1): 123-32. 10.1016/j.brainres.2006.04.066.PubMedCrossRef Slotten HA: Long-lasting changes in behavioural and neuroendocrine indices in the rat following neonatal maternal separation: gender-dependent effects. Brain Res. 2006, 1097 (1): 123-32. 10.1016/j.brainres.2006.04.066.PubMedCrossRef
33.
34.
go back to reference Sagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000, 24 (1): 31-9. 10.1016/S0149-7634(99)00058-5.PubMedCrossRef Sagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000, 24 (1): 31-9. 10.1016/S0149-7634(99)00058-5.PubMedCrossRef
35.
go back to reference Sagvolden T: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57 (11): 1239-47. 10.1016/j.biopsych.2005.02.002.PubMedCrossRef Sagvolden T: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57 (11): 1239-47. 10.1016/j.biopsych.2005.02.002.PubMedCrossRef
36.
go back to reference Okamoto K, Aoki K: Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963, 27: 282-93.PubMedCrossRef Okamoto K, Aoki K: Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963, 27: 282-93.PubMedCrossRef
37.
go back to reference Howells FM, Bindewald L, Russell VA: Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats. Behav Brain Funct. 2009, 5: 24-10.1186/1744-9081-5-24.PubMedCentralPubMedCrossRef Howells FM, Bindewald L, Russell VA: Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats. Behav Brain Funct. 2009, 5: 24-10.1186/1744-9081-5-24.PubMedCentralPubMedCrossRef
38.
go back to reference Pryce CR: Comparison of the effects of early handling and early deprivation on conditioned stimulus, context, and spatial learning and memory in adult rats. Behav Neurosci. 2003, 117 (5): 883-93.PubMedCrossRef Pryce CR: Comparison of the effects of early handling and early deprivation on conditioned stimulus, context, and spatial learning and memory in adult rats. Behav Neurosci. 2003, 117 (5): 883-93.PubMedCrossRef
39.
go back to reference Hofer MA, Brunelli SA, Shair HN: Potentiation of isolation-induced vocalization by brief exposure of rat pups to maternal cues. Dev Psychobiol. 1994, 27 (8): 503-17. 10.1002/dev.420270804.PubMedCrossRef Hofer MA, Brunelli SA, Shair HN: Potentiation of isolation-induced vocalization by brief exposure of rat pups to maternal cues. Dev Psychobiol. 1994, 27 (8): 503-17. 10.1002/dev.420270804.PubMedCrossRef
40.
go back to reference Ziabreva I: Separation-induced receptor changes in the hippocampus and amygdala of Octodon degus: influence of maternal vocalizations. J Neurosci. 2003, 23 (12): 5329-36.PubMed Ziabreva I: Separation-induced receptor changes in the hippocampus and amygdala of Octodon degus: influence of maternal vocalizations. J Neurosci. 2003, 23 (12): 5329-36.PubMed
41.
go back to reference Cryan JF, Valentino RJ, Lucki I: Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev. 2005, 29 (4-5): 547-69. 10.1016/j.neubiorev.2005.03.008.PubMedCrossRef Cryan JF, Valentino RJ, Lucki I: Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev. 2005, 29 (4-5): 547-69. 10.1016/j.neubiorev.2005.03.008.PubMedCrossRef
42.
go back to reference Cryan JF, Page ME, Lucki I: Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology (Berl). 2005, 182 (3): 335-44. 10.1007/s00213-005-0093-5.CrossRef Cryan JF, Page ME, Lucki I: Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology (Berl). 2005, 182 (3): 335-44. 10.1007/s00213-005-0093-5.CrossRef
43.
go back to reference Detke MJ, Lucki I: Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res. 1996, 73 (1-2): 43-6.PubMedCrossRef Detke MJ, Lucki I: Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res. 1996, 73 (1-2): 43-6.PubMedCrossRef
44.
go back to reference Mezadri TJ: Repeated rat-forced swim test: reducing the number of animals to evaluate gradual effects of antidepressants. J Neurosci Methods. 195 (2): 200-5. Mezadri TJ: Repeated rat-forced swim test: reducing the number of animals to evaluate gradual effects of antidepressants. J Neurosci Methods. 195 (2): 200-5.
45.
go back to reference Pitychoutis PM: Neurochemical and behavioral alterations in an inflammatory model of depression: sex differences exposed. Neuroscience. 2009, 159 (4): 1216-32. 10.1016/j.neuroscience.2009.01.072.PubMedCrossRef Pitychoutis PM: Neurochemical and behavioral alterations in an inflammatory model of depression: sex differences exposed. Neuroscience. 2009, 159 (4): 1216-32. 10.1016/j.neuroscience.2009.01.072.PubMedCrossRef
46.
go back to reference Stern CA, Carobrez AP, Bertoglio LJ: Aversive learning as a mechanism for lack of repeated anxiolytic-like effect in the elevated plus-maze. Pharmacol Biochem Behav. 2008, 90 (4): 545-50. 10.1016/j.pbb.2008.04.013.PubMedCrossRef Stern CA, Carobrez AP, Bertoglio LJ: Aversive learning as a mechanism for lack of repeated anxiolytic-like effect in the elevated plus-maze. Pharmacol Biochem Behav. 2008, 90 (4): 545-50. 10.1016/j.pbb.2008.04.013.PubMedCrossRef
47.
go back to reference Lamprea MR, Garcia AM, Morato S: Effects of reversible inactivation of the medial septum on rat exploratory behavior in the elevated plus-maze using a test-retest paradigm. Behav Brain Res. 210 (1): 67-73. Lamprea MR, Garcia AM, Morato S: Effects of reversible inactivation of the medial septum on rat exploratory behavior in the elevated plus-maze using a test-retest paradigm. Behav Brain Res. 210 (1): 67-73.
48.
go back to reference Walf AA, Frye CA: The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007, 2 (2): 322-8. 10.1038/nprot.2007.44.PubMedCentralPubMedCrossRef Walf AA, Frye CA: The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007, 2 (2): 322-8. 10.1038/nprot.2007.44.PubMedCentralPubMedCrossRef
49.
go back to reference Detke MJ, Rickels M, Lucki I: Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl). 1995, 121 (1): 66-72. 10.1007/BF02245592.CrossRef Detke MJ, Rickels M, Lucki I: Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl). 1995, 121 (1): 66-72. 10.1007/BF02245592.CrossRef
50.
go back to reference Porsolt RD, Le Pichon M, Jalfre M: Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977, 266 (5604): 730-2. 10.1038/266730a0.PubMedCrossRef Porsolt RD, Le Pichon M, Jalfre M: Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977, 266 (5604): 730-2. 10.1038/266730a0.PubMedCrossRef
51.
go back to reference Neumann ID: Differential effects of periodic maternal separation on adult stress coping in a rat model of extremes in trait anxiety. Neuroscience. 2005, 132 (3): 867-77. 10.1016/j.neuroscience.2005.01.034.PubMedCrossRef Neumann ID: Differential effects of periodic maternal separation on adult stress coping in a rat model of extremes in trait anxiety. Neuroscience. 2005, 132 (3): 867-77. 10.1016/j.neuroscience.2005.01.034.PubMedCrossRef
52.
go back to reference Heim C: The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology. 2008, 33 (6): 693-710. 10.1016/j.psyneuen.2008.03.008.PubMedCrossRef Heim C: The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology. 2008, 33 (6): 693-710. 10.1016/j.psyneuen.2008.03.008.PubMedCrossRef
53.
go back to reference Kelleher I: Associations between childhood trauma, bullying and psychotic symptoms among a school-based adolescent sample. Br J Psychiatry. 2008, 193 (5): 378-82. 10.1192/bjp.bp.108.049536.PubMedCrossRef Kelleher I: Associations between childhood trauma, bullying and psychotic symptoms among a school-based adolescent sample. Br J Psychiatry. 2008, 193 (5): 378-82. 10.1192/bjp.bp.108.049536.PubMedCrossRef
54.
go back to reference Ford JD: Child maltreatment, other trauma exposure, and posttraumatic symptomatology among children with oppositional defiant and attention deficit hyperactivity disorders. Child Maltreat. 2000, 5 (3): 205-17. 10.1177/1077559500005003001.PubMedCrossRef Ford JD: Child maltreatment, other trauma exposure, and posttraumatic symptomatology among children with oppositional defiant and attention deficit hyperactivity disorders. Child Maltreat. 2000, 5 (3): 205-17. 10.1177/1077559500005003001.PubMedCrossRef
55.
go back to reference McCabe KM: The relation between violence exposure and conduct problems among adolescents: a prospective study. Am J Orthopsychiatry. 2005, 75 (4): 575-84.PubMedCrossRef McCabe KM: The relation between violence exposure and conduct problems among adolescents: a prospective study. Am J Orthopsychiatry. 2005, 75 (4): 575-84.PubMedCrossRef
56.
go back to reference Holmes SE, Slaughter JR, Kashani J: Risk factors in childhood that lead to the development of conduct disorder and antisocial personality disorder. Child Psychiatry Hum Dev. 2001, 31 (3): 183-93. 10.1023/A:1026425304480.PubMedCrossRef Holmes SE, Slaughter JR, Kashani J: Risk factors in childhood that lead to the development of conduct disorder and antisocial personality disorder. Child Psychiatry Hum Dev. 2001, 31 (3): 183-93. 10.1023/A:1026425304480.PubMedCrossRef
57.
go back to reference Heim C, Nemeroff CB: The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001, 49 (12): 1023-39. 10.1016/S0006-3223(01)01157-X.PubMedCrossRef Heim C, Nemeroff CB: The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001, 49 (12): 1023-39. 10.1016/S0006-3223(01)01157-X.PubMedCrossRef
58.
go back to reference Aisa B: Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology. 2007, 32 (3): 256-66. 10.1016/j.psyneuen.2006.12.013.PubMedCrossRef Aisa B: Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology. 2007, 32 (3): 256-66. 10.1016/j.psyneuen.2006.12.013.PubMedCrossRef
59.
go back to reference Lahmame A: Brain corticotropin-releasing factor immunoreactivity and receptors in five inbred rat strains: relationship to forced swimming behaviour. Brain Res. 1997, 750 (1-2): 285-92. 10.1016/S0006-8993(96)01368-6.PubMedCrossRef Lahmame A: Brain corticotropin-releasing factor immunoreactivity and receptors in five inbred rat strains: relationship to forced swimming behaviour. Brain Res. 1997, 750 (1-2): 285-92. 10.1016/S0006-8993(96)01368-6.PubMedCrossRef
60.
go back to reference Armario A, Gavalda A, Marti J: Comparison of the behavioural and endocrine response to forced swimming stress in five inbred strains of rats. Psychoneuroendocrinology. 1995, 20 (8): 879-90. 10.1016/0306-4530(95)00018-6.PubMedCrossRef Armario A, Gavalda A, Marti J: Comparison of the behavioural and endocrine response to forced swimming stress in five inbred strains of rats. Psychoneuroendocrinology. 1995, 20 (8): 879-90. 10.1016/0306-4530(95)00018-6.PubMedCrossRef
61.
go back to reference Elliott BM, Grunberg NE: Effects of social and physical enrichment on open field activity differ in male and female Sprague-Dawley rats. Behav Brain Res. 2005, 165 (2): 187-96. 10.1016/j.bbr.2005.06.025.PubMedCrossRef Elliott BM, Grunberg NE: Effects of social and physical enrichment on open field activity differ in male and female Sprague-Dawley rats. Behav Brain Res. 2005, 165 (2): 187-96. 10.1016/j.bbr.2005.06.025.PubMedCrossRef
62.
go back to reference McAuley JD: Wistar-Kyoto rats as an animal model of anxiety vulnerability: support for a hypervigilance hypothesis. Behav Brain Res. 2009, 204 (1): 162-8. 10.1016/j.bbr.2009.05.036.PubMedCentralPubMedCrossRef McAuley JD: Wistar-Kyoto rats as an animal model of anxiety vulnerability: support for a hypervigilance hypothesis. Behav Brain Res. 2009, 204 (1): 162-8. 10.1016/j.bbr.2009.05.036.PubMedCentralPubMedCrossRef
63.
go back to reference Servatius RJ: Rapid avoidance acquisition in Wistar-Kyoto rats. Behav Brain Res. 2008, 192 (2): 191-7. 10.1016/j.bbr.2008.04.006.PubMedCrossRef Servatius RJ: Rapid avoidance acquisition in Wistar-Kyoto rats. Behav Brain Res. 2008, 192 (2): 191-7. 10.1016/j.bbr.2008.04.006.PubMedCrossRef
64.
go back to reference Fox NA: Behavioral inhibition: linking biology and behavior within a developmental framework. Annu Rev Psychol. 2005, 56: 235-62. 10.1146/annurev.psych.55.090902.141532.PubMedCrossRef Fox NA: Behavioral inhibition: linking biology and behavior within a developmental framework. Annu Rev Psychol. 2005, 56: 235-62. 10.1146/annurev.psych.55.090902.141532.PubMedCrossRef
65.
go back to reference Pardon MC: Stress reactivity of the brain noradrenergic system in three rat strains differing in their neuroendocrine and behavioral responses to stress: implications for susceptibility to stress-related neuropsychiatric disorders. Neuroscience. 2002, 115 (1): 229-42. 10.1016/S0306-4522(02)00364-0.PubMedCrossRef Pardon MC: Stress reactivity of the brain noradrenergic system in three rat strains differing in their neuroendocrine and behavioral responses to stress: implications for susceptibility to stress-related neuropsychiatric disorders. Neuroscience. 2002, 115 (1): 229-42. 10.1016/S0306-4522(02)00364-0.PubMedCrossRef
66.
go back to reference Ramos A: A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav Brain Res. 1997, 85 (1): 57-69. 10.1016/S0166-4328(96)00164-7.PubMedCrossRef Ramos A: A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav Brain Res. 1997, 85 (1): 57-69. 10.1016/S0166-4328(96)00164-7.PubMedCrossRef
67.
go back to reference Blair C, Peters R, Granger D: Physiological and neuropsychological correlates of approach/withdrawal tendencies in preschool: further examination of the behavioral inhibition system/behavioral activation system scales for young children. Dev Psychobiol. 2004, 45 (3): 113-24. 10.1002/dev.20022.PubMedCrossRef Blair C, Peters R, Granger D: Physiological and neuropsychological correlates of approach/withdrawal tendencies in preschool: further examination of the behavioral inhibition system/behavioral activation system scales for young children. Dev Psychobiol. 2004, 45 (3): 113-24. 10.1002/dev.20022.PubMedCrossRef
68.
go back to reference Fox NA: Evidence for a gene-environment interaction in predicting behavioral inhibition in middle childhood. Psychol Sci. 2005, 16 (12): 921-6. 10.1111/j.1467-9280.2005.01637.x.PubMedCrossRef Fox NA: Evidence for a gene-environment interaction in predicting behavioral inhibition in middle childhood. Psychol Sci. 2005, 16 (12): 921-6. 10.1111/j.1467-9280.2005.01637.x.PubMedCrossRef
69.
go back to reference Essex MJ: Early risk factors and developmental pathways to chronic high inhibition and social anxiety disorder in adolescence. Am J Psychiatry. 2010, 167 (1): 40-6. 10.1176/appi.ajp.2009.07010051.PubMedCentralPubMedCrossRef Essex MJ: Early risk factors and developmental pathways to chronic high inhibition and social anxiety disorder in adolescence. Am J Psychiatry. 2010, 167 (1): 40-6. 10.1176/appi.ajp.2009.07010051.PubMedCentralPubMedCrossRef
70.
go back to reference Enoch MA: Early life stress, MAOA, and gene-environment interactions predict behavioral disinhibition in children. Genes Brain Behav. 2010, 9 (1): 65-74. 10.1111/j.1601-183X.2009.00535.x.PubMedCentralPubMedCrossRef Enoch MA: Early life stress, MAOA, and gene-environment interactions predict behavioral disinhibition in children. Genes Brain Behav. 2010, 9 (1): 65-74. 10.1111/j.1601-183X.2009.00535.x.PubMedCentralPubMedCrossRef
71.
go back to reference Lopez-Rubalcava C, Lucki I: Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology. 2000, 22 (2): 191-9. 10.1016/S0893-133X(99)00100-1.PubMedCrossRef Lopez-Rubalcava C, Lucki I: Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology. 2000, 22 (2): 191-9. 10.1016/S0893-133X(99)00100-1.PubMedCrossRef
72.
go back to reference Lucki I: The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol. 1997, 8 (6-7): 523-32.PubMedCrossRef Lucki I: The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol. 1997, 8 (6-7): 523-32.PubMedCrossRef
73.
go back to reference Cryan JF, Lucki I: Antidepressant-like behavioral effects mediated by 5-Hydroxytryptamine(2C) receptors. J Pharmacol Exp Ther. 2000, 295 (3): 1120-6.PubMed Cryan JF, Lucki I: Antidepressant-like behavioral effects mediated by 5-Hydroxytryptamine(2C) receptors. J Pharmacol Exp Ther. 2000, 295 (3): 1120-6.PubMed
74.
go back to reference Brenes JC, Padilla M, Fornaguera J: A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats. Behav Brain Res. 2009, 197 (1): 125-37. 10.1016/j.bbr.2008.08.014.PubMedCrossRef Brenes JC, Padilla M, Fornaguera J: A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats. Behav Brain Res. 2009, 197 (1): 125-37. 10.1016/j.bbr.2008.08.014.PubMedCrossRef
75.
go back to reference Russell VA, Wiggins TM: Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Metab Brain Dis. 2000, 15 (4): 297-304. 10.1023/A:1011175225512.PubMedCrossRef Russell VA, Wiggins TM: Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Metab Brain Dis. 2000, 15 (4): 297-304. 10.1023/A:1011175225512.PubMedCrossRef
76.
go back to reference Aston-Jones G, Rajkowski J, Cohen J: Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry. 1999, 46 (9): 1309-20. 10.1016/S0006-3223(99)00140-7.PubMedCrossRef Aston-Jones G, Rajkowski J, Cohen J: Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry. 1999, 46 (9): 1309-20. 10.1016/S0006-3223(99)00140-7.PubMedCrossRef
77.
go back to reference Aston-Jones G, Cohen JD: An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005, 28: 403-50. 10.1146/annurev.neuro.28.061604.135709.PubMedCrossRef Aston-Jones G, Cohen JD: An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005, 28: 403-50. 10.1146/annurev.neuro.28.061604.135709.PubMedCrossRef
78.
go back to reference Howells FM, Russell VA: Glutamate-stimulated release of norepinephrine in hippocampal slices of animal models of attention-deficit/hyperactivity disorder (spontaneously hypertensive rat) and depression/anxiety-like behaviours (Wistar-Kyoto rat). Brain Res. 2008, 1200: 107-15.PubMedCrossRef Howells FM, Russell VA: Glutamate-stimulated release of norepinephrine in hippocampal slices of animal models of attention-deficit/hyperactivity disorder (spontaneously hypertensive rat) and depression/anxiety-like behaviours (Wistar-Kyoto rat). Brain Res. 2008, 1200: 107-15.PubMedCrossRef
79.
go back to reference Russell VA: Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab Brain Dis. 2001, 16 (3-4): 143-9.PubMedCrossRef Russell VA: Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab Brain Dis. 2001, 16 (3-4): 143-9.PubMedCrossRef
80.
go back to reference Malkesman O, Weller A: Two different putative genetic animal models of childhood depression--a review. Prog Neurobiol. 2009, 88 (3): 153-69. 10.1016/j.pneurobio.2009.03.003.PubMedCrossRef Malkesman O, Weller A: Two different putative genetic animal models of childhood depression--a review. Prog Neurobiol. 2009, 88 (3): 153-69. 10.1016/j.pneurobio.2009.03.003.PubMedCrossRef
81.
go back to reference Tejani-Butt S, Kluczynski J, Pare WP: Strain-dependent modification of behavior following antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2003, 27 (1): 7-14. 10.1016/S0278-5846(02)00308-1.PubMedCrossRef Tejani-Butt S, Kluczynski J, Pare WP: Strain-dependent modification of behavior following antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2003, 27 (1): 7-14. 10.1016/S0278-5846(02)00308-1.PubMedCrossRef
82.
go back to reference Elliott BM: Effects of nicotine on elevated plus maze and locomotor activity in male and female adolescent and adult rats. Pharmacol Biochem Behav. 2004, 77 (1): 21-8. 10.1016/j.pbb.2003.09.016.PubMedCrossRef Elliott BM: Effects of nicotine on elevated plus maze and locomotor activity in male and female adolescent and adult rats. Pharmacol Biochem Behav. 2004, 77 (1): 21-8. 10.1016/j.pbb.2003.09.016.PubMedCrossRef
83.
go back to reference Ferguson SA, Gray EP: Aging effects on elevated plus maze behavior in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley male and female rats. Physiol Behav. 2005, 85 (5): 621-8. 10.1016/j.physbeh.2005.06.009.PubMedCrossRef Ferguson SA, Gray EP: Aging effects on elevated plus maze behavior in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley male and female rats. Physiol Behav. 2005, 85 (5): 621-8. 10.1016/j.physbeh.2005.06.009.PubMedCrossRef
Metadata
Title
Effects of early life trauma are dependent on genetic predisposition: a rat study
Authors
Toni-Lee Sterley
Fleur M Howells
Vivienne A Russell
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Behavioral and Brain Functions / Issue 1/2011
Electronic ISSN: 1744-9081
DOI
https://doi.org/10.1186/1744-9081-7-11

Other articles of this Issue 1/2011

Behavioral and Brain Functions 1/2011 Go to the issue