Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2011

01-04-2011 | Laboratory Investigation - Human/Animal Tissue

Effects of combining low frequency ultrasound irradiation with papaverine on the permeability of the blood–tumor barrier

Authors: Jing-e Wang, Yun-hui Liu, Li-bo Liu, Chun-yi Xia, Zhen Zhang, Yi-xue Xue

Published in: Journal of Neuro-Oncology | Issue 2/2011

Login to get access

Abstract

This study was performed to determine whether low frequency ultrasound (LFU) irradiation, Papaverine (PA) infusion and combination LFU irradiation with PA infusion opened the blood–tumor barrier (BTB) by affecting tight junctions (TJ)-associated proteins zonula occluden-1 (ZO-1), occludin and caludin-5. In a rat brain glioma model, we found that the mRNA and protein expression levels of ZO-1, occludin and claudin-5 were decreased by LFU irradiation and PA infusion. LFU-induced and PA-induced decrease of ZO-1, occludin and claudin-5 was further decreased after combining LFU irradiation with PA infusion. Immunohistochemistry assay showed that the decreased expression of ZO-1, occludin and claudin-5 was the most obvious in the tumor capillaries. Meanwhile, Evans blue assay showed that the permeability of BTB was increased, and transmission electron microscopy (TEM) indicated that TJ was opened. This led to the conclusion that LFU irradiation and PA infusion together can open the BTB by paracellular pathway. Significantly down-regulated expression levels of ZO-1, occludin and claudin-5 might be one of the molecular mechanisms of combining LFU and PA enhancing the permeability of BTB.
Literature
1.
go back to reference Dietrich JB (2009) Alteration of blood-brain barrier function by methamphetamine and cocaine. Cell Tissue Res 336(3):385–392 [PubMed: 19350275]PubMedCrossRef Dietrich JB (2009) Alteration of blood-brain barrier function by methamphetamine and cocaine. Cell Tissue Res 336(3):385–392 [PubMed: 19350275]PubMedCrossRef
2.
go back to reference Mathupala SP (2009) Delivery of small-interfering RNA (siRNA) to the brain. Expert Opin Ther Pat 19(2):137–140 [PubMed: 19441914]PubMedCrossRef Mathupala SP (2009) Delivery of small-interfering RNA (siRNA) to the brain. Expert Opin Ther Pat 19(2):137–140 [PubMed: 19441914]PubMedCrossRef
3.
go back to reference Black KL, Ningaraj NS (2004) Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control 11:165–173 [PubMed: 15153840]PubMed Black KL, Ningaraj NS (2004) Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control 11:165–173 [PubMed: 15153840]PubMed
4.
go back to reference McDannold N, Vykhodtseva N, Hynynen K (2006) Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 51:793–807 [PubMed: 16467579]PubMedCrossRef McDannold N, Vykhodtseva N, Hynynen K (2006) Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 51:793–807 [PubMed: 16467579]PubMedCrossRef
5.
go back to reference Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006) Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105:445–454 [PubMed: 16961141]PubMedCrossRef Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006) Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105:445–454 [PubMed: 16961141]PubMedCrossRef
6.
go back to reference Reinhard M, Hetzel A, Krüger S, Kretzer S, Talazko J, Ziyeh S, Weber J, Els T (2006) Blood-brain barrier disruption by low-frequency ultrasound. Stroke 37(6):1546–1548 [PubMed: 16645131]PubMedCrossRef Reinhard M, Hetzel A, Krüger S, Kretzer S, Talazko J, Ziyeh S, Weber J, Els T (2006) Blood-brain barrier disruption by low-frequency ultrasound. Stroke 37(6):1546–1548 [PubMed: 16645131]PubMedCrossRef
7.
go back to reference Hynynen K (2008) Ultrasound for drug and gene delivery to the brain. Adv Drug Deliv Rev 60:1209–1217 [PubMed: 18486271]PubMedCrossRef Hynynen K (2008) Ultrasound for drug and gene delivery to the brain. Adv Drug Deliv Rev 60:1209–1217 [PubMed: 18486271]PubMedCrossRef
8.
go back to reference Zhang Z, Xia CY, Liu YH, Xue YX (2008) Low frequency ultrasound selected for evaluating permeation of blood-tumor barrier: experimental study in rats. Chin J Ultrasound Med 24:580–583 Zhang Z, Xia CY, Liu YH, Xue YX (2008) Low frequency ultrasound selected for evaluating permeation of blood-tumor barrier: experimental study in rats. Chin J Ultrasound Med 24:580–583
9.
go back to reference Kaku Y, Yonekawa Y, Tsukahara T, Kazekawa K (1992) Superselective intra-arterial infusion of papaverine for the treatment of cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg 77:842–847 [PubMed: 1432124]PubMedCrossRef Kaku Y, Yonekawa Y, Tsukahara T, Kazekawa K (1992) Superselective intra-arterial infusion of papaverine for the treatment of cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg 77:842–847 [PubMed: 1432124]PubMedCrossRef
10.
go back to reference McAuliffe W, Townsend M, Eskridge JM, Newell DW, Grady MS, Winn HR (1995) Intracranial pressure changes induced during papaverine infusion for treatment of vasospasm. J Neurosurg 83:430–434 [PubMed: 7666218]PubMedCrossRef McAuliffe W, Townsend M, Eskridge JM, Newell DW, Grady MS, Winn HR (1995) Intracranial pressure changes induced during papaverine infusion for treatment of vasospasm. J Neurosurg 83:430–434 [PubMed: 7666218]PubMedCrossRef
11.
go back to reference Xue H, Wang H, Kong L, Zhou H (1998) Opening blood-brain-barrier by intracarotid infusion of papaverine in treatment of malignant cerebral glioma. Chin Med J (Engl) 111(8):751–753 [PubMed: 11245034] Xue H, Wang H, Kong L, Zhou H (1998) Opening blood-brain-barrier by intracarotid infusion of papaverine in treatment of malignant cerebral glioma. Chin Med J (Engl) 111(8):751–753 [PubMed: 11245034]
12.
go back to reference Qiao WF, Liu K, Xue YX (2008) Elementary inquiry into the mechanism of annexation of bradykinin and papaverine on BTB opening. Chin Pharmacol Bull 24(11):1436–1440 Qiao WF, Liu K, Xue YX (2008) Elementary inquiry into the mechanism of annexation of bradykinin and papaverine on BTB opening. Chin Pharmacol Bull 24(11):1436–1440
13.
go back to reference Bernacki J, Dobrowolska A, Nierwińska K, Małecki A (2008) Physiology and pharmacological role of the blood-brain barrier. Pharmacol Rep 60(5):600–622 [PubMed: 19066407]PubMed Bernacki J, Dobrowolska A, Nierwińska K, Małecki A (2008) Physiology and pharmacological role of the blood-brain barrier. Pharmacol Rep 60(5):600–622 [PubMed: 19066407]PubMed
14.
go back to reference Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview. Structure, regulation, and clinical implications. Neurobiol Dis 16:1–13 [PubMed: 15207256]PubMedCrossRef Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview. Structure, regulation, and clinical implications. Neurobiol Dis 16:1–13 [PubMed: 15207256]PubMedCrossRef
15.
go back to reference Ningaraj NS, Rao MK, Black KL (2003) Adenosine 5-triphosphate-sensitive potassium channel-mediated blood-brain tumor barrier permeability increase in a rat brain tumor model. Cancer Res 63:8899–8911 [PubMed: 14695207]PubMed Ningaraj NS, Rao MK, Black KL (2003) Adenosine 5-triphosphate-sensitive potassium channel-mediated blood-brain tumor barrier permeability increase in a rat brain tumor model. Cancer Res 63:8899–8911 [PubMed: 14695207]PubMed
16.
go back to reference Ningaraj NS, Rao MK, Hashizume K, Asotra K, Black KL (2002) Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels. J Pharmacol Exp Ther 301:838–851 [PubMed: 12023511]PubMedCrossRef Ningaraj NS, Rao MK, Hashizume K, Asotra K, Black KL (2002) Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels. J Pharmacol Exp Ther 301:838–851 [PubMed: 12023511]PubMedCrossRef
17.
go back to reference McDannold N, Vykhodtseva N, Hynynen K (2008) Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption. Ultrasound Med Biol 34(6):930–937 [PubMed: 18294757]PubMedCrossRef McDannold N, Vykhodtseva N, Hynynen K (2008) Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption. Ultrasound Med Biol 34(6):930–937 [PubMed: 18294757]PubMedCrossRef
18.
go back to reference McDannold N, Vykhodtseva N, Hynynen K (2008) Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol 34(5):834–840 [PubMed:18207311]PubMedCrossRef McDannold N, Vykhodtseva N, Hynynen K (2008) Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol 34(5):834–840 [PubMed:18207311]PubMedCrossRef
19.
go back to reference Hynynen K, Vykhodtseva NI, Chung AH, Sorrentino V, Colucci V, Jolesz FA (1997) Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology 204:247–253 [PubMed:9205255]PubMed Hynynen K, Vykhodtseva NI, Chung AH, Sorrentino V, Colucci V, Jolesz FA (1997) Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology 204:247–253 [PubMed:9205255]PubMed
20.
go back to reference Vykhodtseva NI, Sorrentino V, Jolesz FA, Bronson RT, Hynynen K (2000) MRI detection of the thermal effects of focused ultrasound on the brain. Ultrasound Med Biol 26:871–880 [PubMed: 10942834]PubMedCrossRef Vykhodtseva NI, Sorrentino V, Jolesz FA, Bronson RT, Hynynen K (2000) MRI detection of the thermal effects of focused ultrasound on the brain. Ultrasound Med Biol 26:871–880 [PubMed: 10942834]PubMedCrossRef
21.
go back to reference Stewart PA, Hayakawa K, Farrell CL, Del Maestro RF (1987) Quantitative study of microvessel ultrastructure in human peritumoral brain tissue. Evidence for a blood-brain barrier defect. J Neurosurg 67(5):697–705PubMedCrossRef Stewart PA, Hayakawa K, Farrell CL, Del Maestro RF (1987) Quantitative study of microvessel ultrastructure in human peritumoral brain tissue. Evidence for a blood-brain barrier defect. J Neurosurg 67(5):697–705PubMedCrossRef
22.
go back to reference Guillemot L, Hammar E, Kaister C, Ritz J, Caille D, Jond L, Bauer C, Meda P, Citi S (2004) Disruption of the cingulin gene does not prevent tight junction formation but alters gene expression. J Cell Sci 117(Pt22):5245–5256 [PubMed: 15454572]PubMedCrossRef Guillemot L, Hammar E, Kaister C, Ritz J, Caille D, Jond L, Bauer C, Meda P, Citi S (2004) Disruption of the cingulin gene does not prevent tight junction formation but alters gene expression. J Cell Sci 117(Pt22):5245–5256 [PubMed: 15454572]PubMedCrossRef
23.
go back to reference Mamou J, Aristizábal O, Silverman RH, Ketterling JA, Turnbull DH (2009) High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging. Ultrasound Med Biol 35(7):1198–1208 [PubMed: 19394754]PubMedCrossRef Mamou J, Aristizábal O, Silverman RH, Ketterling JA, Turnbull DH (2009) High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging. Ultrasound Med Biol 35(7):1198–1208 [PubMed: 19394754]PubMedCrossRef
24.
go back to reference Shung K, Cannata J, Qifa Zhou M, Lee J (2009) High frequency ultrasound: a new frontier for ultrasound. Conf Proc IEEE Eng Med Biol Soc 2009:1953–1955 [PubMed: 19964020]PubMed Shung K, Cannata J, Qifa Zhou M, Lee J (2009) High frequency ultrasound: a new frontier for ultrasound. Conf Proc IEEE Eng Med Biol Soc 2009:1953–1955 [PubMed: 19964020]PubMed
25.
go back to reference Arens C, Glanz H (1999) Endoscopic high-frequency ultrasound of the larynx. Eur Arch Otorhinolaryngol 256(6):316–322 [PubMed: 1045283]PubMedCrossRef Arens C, Glanz H (1999) Endoscopic high-frequency ultrasound of the larynx. Eur Arch Otorhinolaryngol 256(6):316–322 [PubMed: 1045283]PubMedCrossRef
26.
go back to reference Semple JL, Gupta AK, From L, Harasiewicz KA, Sauder DN, Foster FS, Turnbull DH (1995) Does high-frequency (40–60 MHz) ultrasound imaging play a role in the clinical management of cutaneous melanoma? Ann Plast Surg 34(6):599–606 [PubMed: 7661536]PubMedCrossRef Semple JL, Gupta AK, From L, Harasiewicz KA, Sauder DN, Foster FS, Turnbull DH (1995) Does high-frequency (40–60 MHz) ultrasound imaging play a role in the clinical management of cutaneous melanoma? Ann Plast Surg 34(6):599–606 [PubMed: 7661536]PubMedCrossRef
27.
go back to reference Czarnota GJ, Kolios MC, Abraham J, Portnoy M, Ottensmeyer FP, Hunt JW, Sherar MD (1999) Ultrasound imaging of apoptosis: high-resolution non-invasive monitoring of programmed cell death in vitro, in situ and in vivo. Br J Cancer 81(3):520–527 [PubMed: 10507779]PubMedCrossRef Czarnota GJ, Kolios MC, Abraham J, Portnoy M, Ottensmeyer FP, Hunt JW, Sherar MD (1999) Ultrasound imaging of apoptosis: high-resolution non-invasive monitoring of programmed cell death in vitro, in situ and in vivo. Br J Cancer 81(3):520–527 [PubMed: 10507779]PubMedCrossRef
28.
go back to reference Collison IJ, Stratoudaki T, Clark M, Somekh MG (2008) Measurement of elastic nonlinearity using remote laser ultrasonics and CHeap Optical Transducers and dual frequency surface acoustic waves. Ultrasonics 48(6–7):471–477PubMedCrossRef Collison IJ, Stratoudaki T, Clark M, Somekh MG (2008) Measurement of elastic nonlinearity using remote laser ultrasonics and CHeap Optical Transducers and dual frequency surface acoustic waves. Ultrasonics 48(6–7):471–477PubMedCrossRef
29.
go back to reference Golubenko TA (1991) Low-frequency ultrasound in the treatment of osteoarthrosis patients. Vopr Kurortol Fizioter Lech Fiz Kult 2:36–39PubMed Golubenko TA (1991) Low-frequency ultrasound in the treatment of osteoarthrosis patients. Vopr Kurortol Fizioter Lech Fiz Kult 2:36–39PubMed
30.
go back to reference Serena T, Lee SK, Lam K, Attar P, Meneses P, Ennis W (2009) The impact of noncontact, nonthermal, low-frequency ultrasound on bacterial counts in experimental and chronic wounds. Ostomy Wound Manage 55(1):22–30 [PubMed: 19174586]PubMed Serena T, Lee SK, Lam K, Attar P, Meneses P, Ennis W (2009) The impact of noncontact, nonthermal, low-frequency ultrasound on bacterial counts in experimental and chronic wounds. Ostomy Wound Manage 55(1):22–30 [PubMed: 19174586]PubMed
31.
go back to reference Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93(1–3):384–398 [PubMed: 16934857]PubMedCrossRef Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93(1–3):384–398 [PubMed: 16934857]PubMedCrossRef
32.
go back to reference Behrens S, Daffertshofer M, Spiegel D, Hennerici M (1999) Low-frequency, low-intensity ultrasound accelerates thrombolysis through the skull. Ultrasound Med Biol 25(2):269–273 [PubMed: 103203316]PubMedCrossRef Behrens S, Daffertshofer M, Spiegel D, Hennerici M (1999) Low-frequency, low-intensity ultrasound accelerates thrombolysis through the skull. Ultrasound Med Biol 25(2):269–273 [PubMed: 103203316]PubMedCrossRef
33.
go back to reference Siegel RJ, Atar S, Fishbein MC, Brasch AV, Peterson TM, Nagai T, Pal D, Nishioka T, Chae JS, Birnbaum Y, Zanelli C, Luo H (2001) Noninvasive transcutaneous low frequency ultrasound enhances thrombolysis in peripheral and coronary arteries. Echocardiography 18(3):247–257 [PubMed: 11322908]PubMedCrossRef Siegel RJ, Atar S, Fishbein MC, Brasch AV, Peterson TM, Nagai T, Pal D, Nishioka T, Chae JS, Birnbaum Y, Zanelli C, Luo H (2001) Noninvasive transcutaneous low frequency ultrasound enhances thrombolysis in peripheral and coronary arteries. Echocardiography 18(3):247–257 [PubMed: 11322908]PubMedCrossRef
34.
go back to reference Rubiera M, Alexandrov AV (2010) Sonothrombolysis in the management of acute ischemic stroke. Am J Cardiovasc Drugs 10(1):5–10 [PubMed: 20104930]PubMedCrossRef Rubiera M, Alexandrov AV (2010) Sonothrombolysis in the management of acute ischemic stroke. Am J Cardiovasc Drugs 10(1):5–10 [PubMed: 20104930]PubMedCrossRef
35.
go back to reference Scheven BA, Shelton RM, Cooper PR, Walmsley AD, Smith AJ (2009) Therapeutic ultrasound for dental tissue repair. Med Hypotheses 73(4):591–593 [PubMed: 19553029]PubMedCrossRef Scheven BA, Shelton RM, Cooper PR, Walmsley AD, Smith AJ (2009) Therapeutic ultrasound for dental tissue repair. Med Hypotheses 73(4):591–593 [PubMed: 19553029]PubMedCrossRef
36.
go back to reference Quan-hong L, Shi-hui S, Ya-ping X, Hao Q, Jin-xuan Z, Yao-hui R, Meng L, Pan W (2004) Synergistic anti-tumor effect of ultrasound and hematoporphyrin on sarcoma180 cells with special reference to the changes of morphology and cytochrome oxidase activity of tumor cells. J Exp Clin Cancer Res 23(2):333–341 [PubMed: 15354420]PubMed Quan-hong L, Shi-hui S, Ya-ping X, Hao Q, Jin-xuan Z, Yao-hui R, Meng L, Pan W (2004) Synergistic anti-tumor effect of ultrasound and hematoporphyrin on sarcoma180 cells with special reference to the changes of morphology and cytochrome oxidase activity of tumor cells. J Exp Clin Cancer Res 23(2):333–341 [PubMed: 15354420]PubMed
37.
go back to reference Mitragotri S, Kost J (2004) Low-frequency sonophoresis: a review. Adv Drug Deliv Rev 56(5):589–601 [PubMed: 15019748]PubMedCrossRef Mitragotri S, Kost J (2004) Low-frequency sonophoresis: a review. Adv Drug Deliv Rev 56(5):589–601 [PubMed: 15019748]PubMedCrossRef
38.
go back to reference Sheikov N, McDannold N, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34(7):1093–1104 [PubMed: 18378064]PubMedCrossRef Sheikov N, McDannold N, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34(7):1093–1104 [PubMed: 18378064]PubMedCrossRef
39.
go back to reference Zhang Z, Xia CY, Liu YH, Xue YX (2007) The effect of low frequency ultrasound on opening blood-brain barrier in rat. Prog Anat Sci 13(4):343–345 Zhang Z, Xia CY, Liu YH, Xue YX (2007) The effect of low frequency ultrasound on opening blood-brain barrier in rat. Prog Anat Sci 13(4):343–345
40.
go back to reference Xie F, Boska MD, Lof J, Uberti MG, Tsutsui JM, Porter TR (2008) Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Ultrasound Med Biol 34(12):2028–2034PubMedCrossRef Xie F, Boska MD, Lof J, Uberti MG, Tsutsui JM, Porter TR (2008) Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Ultrasound Med Biol 34(12):2028–2034PubMedCrossRef
41.
go back to reference Hu G, Place AT, Minshall RD (2008) Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 171:177–189 [PubMed: 17897637]PubMedCrossRef Hu G, Place AT, Minshall RD (2008) Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 171:177–189 [PubMed: 17897637]PubMedCrossRef
42.
go back to reference Sheikov N, McDanold N, Vykhodtseva N, Jolesz F, Hynynen K (2004) Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30(7):979–989 [PubMed: 15313330]PubMedCrossRef Sheikov N, McDanold N, Vykhodtseva N, Jolesz F, Hynynen K (2004) Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30(7):979–989 [PubMed: 15313330]PubMedCrossRef
43.
go back to reference Zhang Z, Xia C, Xue Y, Liu Y (2009) Synergistic effect of low-frequency ultrasound and low-dose bradykinin on increasing permeability of the blood-tumor barrier by opening tight junction. J Neurosci Res 87(10):2282–2289 [PubMed: 19326437]PubMedCrossRef Zhang Z, Xia C, Xue Y, Liu Y (2009) Synergistic effect of low-frequency ultrasound and low-dose bradykinin on increasing permeability of the blood-tumor barrier by opening tight junction. J Neurosci Res 87(10):2282–2289 [PubMed: 19326437]PubMedCrossRef
44.
go back to reference Meairs S, Alonso A (2007) Ultrasound, microbubbles and the blood-brain barrier. Prog Biophys Mol Biol 93(1–3):354–362 [PubMed: 16959303]PubMedCrossRef Meairs S, Alonso A (2007) Ultrasound, microbubbles and the blood-brain barrier. Prog Biophys Mol Biol 93(1–3):354–362 [PubMed: 16959303]PubMedCrossRef
45.
go back to reference Bhattacharjee AK, Kondoh T, Ikeda M, Kohmura E (2002) MMP-9 and EBA immunoreactivity after papaverine mediated opening of the blood-brain barrier. Neuroreport 13(17):2217–2221 [PubMed: 12488800]PubMedCrossRef Bhattacharjee AK, Kondoh T, Ikeda M, Kohmura E (2002) MMP-9 and EBA immunoreactivity after papaverine mediated opening of the blood-brain barrier. Neuroreport 13(17):2217–2221 [PubMed: 12488800]PubMedCrossRef
46.
go back to reference Poch G, KuKovetz WR (1971) Papaverine-induced inhibition of phosphodiesterase activity in various mammalian tissues. Life Sci 10:133–144 [PubMed: 4325052]CrossRef Poch G, KuKovetz WR (1971) Papaverine-induced inhibition of phosphodiesterase activity in various mammalian tissues. Life Sci 10:133–144 [PubMed: 4325052]CrossRef
47.
go back to reference Polson JB, Krzanowski JJ, Fitzpatrick SzentivanyiA (1978) Studies on the inhibition of phosphodiesterase-catalyzed cyclic AMP and cyclic GMP breakdown and relaxation of canine tracheal smooth muscle. Biochem Pharmacol 27:254–256 [PubMed: 203292]PubMedCrossRef Polson JB, Krzanowski JJ, Fitzpatrick SzentivanyiA (1978) Studies on the inhibition of phosphodiesterase-catalyzed cyclic AMP and cyclic GMP breakdown and relaxation of canine tracheal smooth muscle. Biochem Pharmacol 27:254–256 [PubMed: 203292]PubMedCrossRef
48.
go back to reference Yuan SY (2002) Protein kinase signaling in the modulation of microvascular permeability. Vascul Pharmacol 39(4–5):213–223 [PubMed: 12747961]PubMedCrossRef Yuan SY (2002) Protein kinase signaling in the modulation of microvascular permeability. Vascul Pharmacol 39(4–5):213–223 [PubMed: 12747961]PubMedCrossRef
49.
go back to reference Dye JF, Leach L, Clark P, Firth JA (2001) Cyclic AMP and acidic fibroblast growth factor have opposing effects on tight and adherens junctions in microvascular endothelial cells in vitro. Microvasc Res 62(2):94–113 [PubMed: 11516239]PubMedCrossRef Dye JF, Leach L, Clark P, Firth JA (2001) Cyclic AMP and acidic fibroblast growth factor have opposing effects on tight and adherens junctions in microvascular endothelial cells in vitro. Microvasc Res 62(2):94–113 [PubMed: 11516239]PubMedCrossRef
50.
go back to reference Ishizaki T, Chiba H, Kojima T, Fujibe M, Soma T, Miyajima H, Nagasawa K, Wada I, Sawada N (2003) Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood-brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp Cell Re 290(2):275–288 [PubMed: 14567987]CrossRef Ishizaki T, Chiba H, Kojima T, Fujibe M, Soma T, Miyajima H, Nagasawa K, Wada I, Sawada N (2003) Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood-brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp Cell Re 290(2):275–288 [PubMed: 14567987]CrossRef
51.
go back to reference Sugita M, Black KL (1998) Cyclic GMP-specific phosphodiesterase inhibition and intracarotid bradykinin infusion enhances permeability into brain tumors. Cancer Res 58(5):914–920 [PubMed: 9500450]PubMed Sugita M, Black KL (1998) Cyclic GMP-specific phosphodiesterase inhibition and intracarotid bradykinin infusion enhances permeability into brain tumors. Cancer Res 58(5):914–920 [PubMed: 9500450]PubMed
52.
go back to reference Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103(3):755–766 [PubMed: 35281720]PubMedCrossRef Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103(3):755–766 [PubMed: 35281720]PubMedCrossRef
53.
go back to reference Anderson JM (2001) Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 16:126–130 [PubMed: 11443232]PubMed Anderson JM (2001) Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 16:126–130 [PubMed: 11443232]PubMed
54.
go back to reference Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane peotein localizing at tight junctions. J Cell Biol 123(6 Pt 2):1777–1788 [PubMed: 8276896]PubMedCrossRef Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane peotein localizing at tight junctions. J Cell Biol 123(6 Pt 2):1777–1788 [PubMed: 8276896]PubMedCrossRef
55.
go back to reference Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110:1603–1613 [PubMed: 9247194]PubMed Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110:1603–1613 [PubMed: 9247194]PubMed
56.
go back to reference Morita K, Sasaki H, Fujimoto K, Furuse M, Tsukita S (1999) Claudin-11/OSP-based tight junctions of myelin sheaths in brain and sertoli cells in testis. J Cell Biol 145:579–588 [PubMed: 10225958]PubMedCrossRef Morita K, Sasaki H, Fujimoto K, Furuse M, Tsukita S (1999) Claudin-11/OSP-based tight junctions of myelin sheaths in brain and sertoli cells in testis. J Cell Biol 145:579–588 [PubMed: 10225958]PubMedCrossRef
57.
go back to reference Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, Chiba H (2003) Tight junctions and human diseases. Med Electron Microsc 36(3):147–156 [PubMed: 14505058]PubMedCrossRef Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, Chiba H (2003) Tight junctions and human diseases. Med Electron Microsc 36(3):147–156 [PubMed: 14505058]PubMedCrossRef
58.
go back to reference Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K (2004) Cellular mechanisms of the blood brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30:979–989 [PubMed: 15313330]PubMedCrossRef Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K (2004) Cellular mechanisms of the blood brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30:979–989 [PubMed: 15313330]PubMedCrossRef
59.
go back to reference Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24:12–20 [PubMed: 15588592]PubMedCrossRef Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24:12–20 [PubMed: 15588592]PubMedCrossRef
60.
go back to reference Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23:87–96 [PubMed: 16624562]PubMedCrossRef Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23:87–96 [PubMed: 16624562]PubMedCrossRef
61.
go back to reference Juffermans LJ, Kamp O, Dijkmans PA, Visser CA, Musters RJ (2008) Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. Ultrasound Med Biol 34:502–508 [PubMed: 15153840]PubMedCrossRef Juffermans LJ, Kamp O, Dijkmans PA, Visser CA, Musters RJ (2008) Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. Ultrasound Med Biol 34:502–508 [PubMed: 15153840]PubMedCrossRef
62.
go back to reference Hsu SH, Huang TB (2004) Bioeffect of ultrasound on endothelial cells in vitro. Biomol Eng 21(3–5):99–104 [PubMed: 17993242]PubMedCrossRef Hsu SH, Huang TB (2004) Bioeffect of ultrasound on endothelial cells in vitro. Biomol Eng 21(3–5):99–104 [PubMed: 17993242]PubMedCrossRef
63.
go back to reference Li JK, Lin JC, Liu HC, Sun JS, Ruaan RC, Shih C, Chang WH (2006) Comparison of ultrasound and electromagnetic field effects on osteoblast growth. Ultrasound Med Biol 32(5):769–775 [PubMed: 16677936]PubMedCrossRef Li JK, Lin JC, Liu HC, Sun JS, Ruaan RC, Shih C, Chang WH (2006) Comparison of ultrasound and electromagnetic field effects on osteoblast growth. Ultrasound Med Biol 32(5):769–775 [PubMed: 16677936]PubMedCrossRef
64.
go back to reference Parvizi J, Parpura V, Greenleaf JF, Bolander ME (2002) Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J Orthop Res 20(1):51–57 [PubMed: 11853090]PubMedCrossRef Parvizi J, Parpura V, Greenleaf JF, Bolander ME (2002) Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J Orthop Res 20(1):51–57 [PubMed: 11853090]PubMedCrossRef
65.
go back to reference Hayashi M, Tomita M (2007) Mechanistic analysis for drug permeation through intestinal membrane. Drug Metab Pharmacokinet 22(2):67–77 [PubMed: 17495413]PubMedCrossRef Hayashi M, Tomita M (2007) Mechanistic analysis for drug permeation through intestinal membrane. Drug Metab Pharmacokinet 22(2):67–77 [PubMed: 17495413]PubMedCrossRef
66.
go back to reference Minshall RD, Malik AB (2006) Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol 176(1):107–144PubMedCrossRef Minshall RD, Malik AB (2006) Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol 176(1):107–144PubMedCrossRef
67.
go back to reference Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38(6):323–337 [PubMed: 12529927]PubMedCrossRef Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38(6):323–337 [PubMed: 12529927]PubMedCrossRef
68.
go back to reference Brown RC, Davis TP (2002) Calcium modulation of adherens and tight junction function: a potential mechanism for blood-brain barrier disruption after stroke. Stroke 33(6):1706–1711 [PubMed: 12053015]PubMedCrossRef Brown RC, Davis TP (2002) Calcium modulation of adherens and tight junction function: a potential mechanism for blood-brain barrier disruption after stroke. Stroke 33(6):1706–1711 [PubMed: 12053015]PubMedCrossRef
Metadata
Title
Effects of combining low frequency ultrasound irradiation with papaverine on the permeability of the blood–tumor barrier
Authors
Jing-e Wang
Yun-hui Liu
Li-bo Liu
Chun-yi Xia
Zhen Zhang
Yi-xue Xue
Publication date
01-04-2011
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2011
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-010-0321-7

Other articles of this Issue 2/2011

Journal of Neuro-Oncology 2/2011 Go to the issue