Skip to main content
Top
Published in: Brain Structure and Function 6/2017

01-08-2017 | Methods Paper

Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function

Authors: Antonino Naro, Alessia Bramanti, Antonino Leo, Alfredo Manuli, Francesca Sciarrone, Margherita Russo, Placido Bramanti, Rocco Salvatore Calabrò

Published in: Brain Structure and Function | Issue 6/2017

Login to get access

Abstract

The cerebellum regulates several motor functions through two main mechanisms, the cerebellum-brain inhibition (CBI) and the motor surround inhibition (MSI). Although the exact cerebellar structures and functions involved in such processes are partially known, Purkinje cells (PC) and their surrounding interneuronal networks may play a pivotal role concerning CBI and MSI. Cerebellar transcranial alternating current stimulation (tACS) has been proven to shape specific cerebellar components in a feasible, safe, effective, and non-invasive manner. The aim of our study was to characterize the cerebellar structures and functions subtending CBI and MSI using a tACS approach. Fifteen healthy individuals underwent a cerebellar tACS protocol at 10, 50, and 300 Hz, or a sham-tACS over the right cerebellar hemisphere. We measured the tACS aftereffects on motor-evoked potential (MEP) amplitude, CBI induced by tACS (tiCBI) at different frequencies, MSI, and hand motor task performance. None of the participants had any side effect related to tACS. After 50-Hz tACS, we observed a clear tiCBI-50Hz weakening (about +30%, p < 0.001) paralleled by a MEP amplitude increase (about +30%, p = 0.001) and a reduction of the time required to complete some motor task (about −20%, p = 0.01), lasting up to 30 min. The 300-Hz tACS induced a selective, specific tiCBI-300Hz and tiCBI-50Hz modulation in surrounding muscles (about −15%, p = 0.01) and MSI potentiation (about +40%, p < 0.001). The 10-Hz tACS and the sham-tACS were ineffective (p > 0.6). Our preliminary data suggest that PC may represent the last mediator of tiCBI and that the surrounding interneuronal network may have an important role in updating MSI, tiCBI, and M1 excitability during tonic muscle contraction, by acting onto the PC. The knowledge of these neurophysiological issues offers new cues to design innovative, non-invasive neuromodulation protocols to shape cerebellar–cerebral functions.
Literature
go back to reference Ali MM, Sellers KK, Fröhlich F (2013) Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci 33:11262–11275PubMedCrossRef Ali MM, Sellers KK, Fröhlich F (2013) Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci 33:11262–11275PubMedCrossRef
go back to reference Amassian VE, Maccabee PJ (2006) Transcranial magnetic stimulation. Conf Proc IEEE Eng Med Biol Soc 1:1620–1623PubMed Amassian VE, Maccabee PJ (2006) Transcranial magnetic stimulation. Conf Proc IEEE Eng Med Biol Soc 1:1620–1623PubMed
go back to reference Antal A, Paulus W (2013) Transcranial alternating current stimulation (tACS). Front Human Neurosci 7:317CrossRef Antal A, Paulus W (2013) Transcranial alternating current stimulation (tACS). Front Human Neurosci 7:317CrossRef
go back to reference Antonenko D, Faxel M, Grittner U, Lavidor M, Flöel A (2016) Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults. Neural Plast 2016:4274127PubMedPubMedCentralCrossRef Antonenko D, Faxel M, Grittner U, Lavidor M, Flöel A (2016) Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults. Neural Plast 2016:4274127PubMedPubMedCentralCrossRef
go back to reference Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681PubMedCrossRef Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681PubMedCrossRef
go back to reference Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591(7):1987–2000PubMedPubMedCentralCrossRef Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591(7):1987–2000PubMedPubMedCentralCrossRef
go back to reference Beck S, Richardson SP, Shamim EA, Dang N, Schubert M, Hallett M (2008) Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci 28:10363–10369PubMedPubMedCentralCrossRef Beck S, Richardson SP, Shamim EA, Dang N, Schubert M, Hallett M (2008) Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci 28:10363–10369PubMedPubMedCentralCrossRef
go back to reference Bestmann S (2008) The physiological basis of transcranial magnetic stimulation. Trends Cogn Sci 12:81–83PubMedCrossRef Bestmann S (2008) The physiological basis of transcranial magnetic stimulation. Trends Cogn Sci 12:81–83PubMedCrossRef
go back to reference Bortoletto M, Pellicciari MC, Rodella C, Miniussi C (2015) The interaction with task-induced activity is more important than polarization: a tDCS study. Brain Stimul 8(2):269–276PubMedCrossRef Bortoletto M, Pellicciari MC, Rodella C, Miniussi C (2015) The interaction with task-induced activity is more important than polarization: a tDCS study. Brain Stimul 8(2):269–276PubMedCrossRef
go back to reference Brookhart JM, Blaachly PH (1952) Cerebellar unit responses to DC polarization. Am J Physiol 171:711 Brookhart JM, Blaachly PH (1952) Cerebellar unit responses to DC polarization. Am J Physiol 171:711
go back to reference Brunamonti E, Chiricozzi FR, Clausi S, Olivito G, Giusti MA, Molinari M et al (2014) Cerebellar damage impairs executive control and monitoring of movement generation. PLoS One 9:e85997PubMedPubMedCentralCrossRef Brunamonti E, Chiricozzi FR, Clausi S, Olivito G, Giusti MA, Molinari M et al (2014) Cerebellar damage impairs executive control and monitoring of movement generation. PLoS One 9:e85997PubMedPubMedCentralCrossRef
go back to reference Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K et al (2016) Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum. doi:10.1007/s12311-016-0763-3 PubMedCentral Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K et al (2016) Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum. doi:10.​1007/​s12311-016-0763-3 PubMedCentral
go back to reference Canolty RT, Soltani M, Dalal SS, Edwards E, Dronkers NF, Nagarajan SS, Kirsch HE, Barbaro NM, Knight RT (2007) Spatiotemporal dynamics of word processing in the human brain. Front Neurosci 151(1):185–196CrossRef Canolty RT, Soltani M, Dalal SS, Edwards E, Dronkers NF, Nagarajan SS, Kirsch HE, Barbaro NM, Knight RT (2007) Spatiotemporal dynamics of word processing in the human brain. Front Neurosci 151(1):185–196CrossRef
go back to reference Cerminara NL, Lang EJ, Sillitoe RV, Apps R (2015) Re-defining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 16(2):79–93PubMedPubMedCentralCrossRef Cerminara NL, Lang EJ, Sillitoe RV, Apps R (2015) Re-defining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 16(2):79–93PubMedPubMedCentralCrossRef
go back to reference Chan CY, Nicholson C (1986) Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol 371:89–114PubMedPubMedCentralCrossRef Chan CY, Nicholson C (1986) Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol 371:89–114PubMedPubMedCentralCrossRef
go back to reference Chothia M, Doeltgen S, Bradnam LV (2016) Anodal cerebellar direct current stimulation reduces facilitation of propriospinal neurons in healthy humans. Brain Stimul 9(3):364–371PubMedCrossRef Chothia M, Doeltgen S, Bradnam LV (2016) Anodal cerebellar direct current stimulation reduces facilitation of propriospinal neurons in healthy humans. Brain Stimul 9(3):364–371PubMedCrossRef
go back to reference Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41.PubMedCrossRef Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41.PubMedCrossRef
go back to reference D’Angelo E, Solinas S, Mapelli J, Gandolfi D, Mapelli L, Prestori F (2013) The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front Neural Circ 7:93 D’Angelo E, Solinas S, Mapelli J, Gandolfi D, Mapelli L, Prestori F (2013) The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front Neural Circ 7:93
go back to reference Dalal S, Osipova D, Bertrand O, Jerbi K (2013) Oscillatory activity of the human cerebellum: the intracranial electrocerebellogram revisited. Neurosci Biobehav Rev 37:585–593PubMedCrossRef Dalal S, Osipova D, Bertrand O, Jerbi K (2013) Oscillatory activity of the human cerebellum: the intracranial electrocerebellogram revisited. Neurosci Biobehav Rev 37:585–593PubMedCrossRef
go back to reference Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R (2004) Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol 557:689–700PubMedCrossRef Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R (2004) Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol 557:689–700PubMedCrossRef
go back to reference Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A et al (1998a) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508:625–633 Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A et al (1998a) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508:625–633
go back to reference Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A et al (1998b) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268 Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A et al (1998b) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268
go back to reference Di Lazzaro V, Oliviero A, Mazzone P, Pilato F, Saturno E, Insola A et al (2002) Direct demonstration of long latency cortico-cortical inhibition in normal subjects and in a patient with vascular parkinsonism. Clin Neurophysiol 113:1673–1679PubMedCrossRef Di Lazzaro V, Oliviero A, Mazzone P, Pilato F, Saturno E, Insola A et al (2002) Direct demonstration of long latency cortico-cortical inhibition in normal subjects and in a patient with vascular parkinsonism. Clin Neurophysiol 113:1673–1679PubMedCrossRef
go back to reference Fazio R, Dunham KJ, Griswold S, Denney RL (2013) An Improved Measure of Handedness: the Fazio Laterality Inventory. Appl Neuropsychol Adult 20(3):197–202 Fazio R, Dunham KJ, Griswold S, Denney RL (2013) An Improved Measure of Handedness: the Fazio Laterality Inventory. Appl Neuropsychol Adult 20(3):197–202
go back to reference Fellows SJ, Ernst J, Schwarz M, Töpper R, Noth J (2001) Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol 112(10):1793–1802PubMedCrossRef Fellows SJ, Ernst J, Schwarz M, Töpper R, Noth J (2001) Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol 112(10):1793–1802PubMedCrossRef
go back to reference Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, Zago S, Barbieri S, Priori A (2008) Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci 20:1687–1697PubMedCrossRef Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, Zago S, Barbieri S, Priori A (2008) Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci 20:1687–1697PubMedCrossRef
go back to reference Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, Mameli F, Rosa M, Giannicola G, Zago S, Priori A (2013) Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum 12:485–492PubMedCrossRef Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, Mameli F, Rosa M, Giannicola G, Zago S, Priori A (2013) Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum 12:485–492PubMedCrossRef
go back to reference Feurra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, Rossi S (2011) Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci 31(34):12165–12170PubMedCrossRef Feurra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, Rossi S (2011) Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci 31(34):12165–12170PubMedCrossRef
go back to reference Fuggetta G, Fiaschi A, Manganotti P (2005) Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study. Neuroimage 27:896–908PubMedCrossRef Fuggetta G, Fiaschi A, Manganotti P (2005) Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study. Neuroimage 27:896–908PubMedCrossRef
go back to reference Galea JM, Jayaram G, Ajagbe L, Celnik P (2009a) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29(28):9115–9122 Galea JM, Jayaram G, Ajagbe L, Celnik P (2009a) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29(28):9115–9122
go back to reference Galea JM, Jayaram G, Ajagbe L, Celnik P (2009b) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29:9115–9122 Galea JM, Jayaram G, Ajagbe L, Celnik P (2009b) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29:9115–9122
go back to reference Gauthier A, Mollica A, Moruzzi G (1955) Increased barbiturate resistance of bulbo-reticular responses to localized polarization of the cerebellar cortex. Boll Soc Ital Biol Sper 31:1217–1218PubMed Gauthier A, Mollica A, Moruzzi G (1955) Increased barbiturate resistance of bulbo-reticular responses to localized polarization of the cerebellar cortex. Boll Soc Ital Biol Sper 31:1217–1218PubMed
go back to reference Grasselli G, Hansel C (2014) Cerebellar long-term potentiation: cellular mechanisms and role in learning. Int Rev Neurobiol 117:39–51PubMedCrossRef Grasselli G, Hansel C (2014) Cerebellar long-term potentiation: cellular mechanisms and role in learning. Int Rev Neurobiol 117:39–51PubMedCrossRef
go back to reference Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, Galea JM, Groiss SJ, Hiraoka K, Kassavetis P, Lesage E, Manto M, Miall RC, Priori A, Sadnicka A, Ugawa Y, Ziemann U (2014) Non-invasive cerebellar stimulation—a consensus paper. Cerebellum 13(1):121–138PubMedCrossRef Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, Galea JM, Groiss SJ, Hiraoka K, Kassavetis P, Lesage E, Manto M, Miall RC, Priori A, Sadnicka A, Ugawa Y, Ziemann U (2014) Non-invasive cerebellar stimulation—a consensus paper. Cerebellum 13(1):121–138PubMedCrossRef
go back to reference Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, Ferrucci R, Fregni F, Galea JM, Hamada M, Manto M, Miall RC, Morales-Quezada L, Pope PA, Priori A, Rothwell J, Tomlinson SP, Celnik P (2016) Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist 22(1):83–97PubMedPubMedCentralCrossRef Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, Ferrucci R, Fregni F, Galea JM, Hamada M, Manto M, Miall RC, Morales-Quezada L, Pope PA, Priori A, Rothwell J, Tomlinson SP, Celnik P (2016) Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist 22(1):83–97PubMedPubMedCentralCrossRef
go back to reference Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, Rothwell JC (2012) Cerebellar modulation of human associative plasticity. J Physiol 590:2365–2374PubMedPubMedCentralCrossRef Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, Rothwell JC (2012) Cerebellar modulation of human associative plasticity. J Physiol 590:2365–2374PubMedPubMedCentralCrossRef
go back to reference Helfrich RF, Knepper H, Nolte G, Strüber D, Rach S, Herrmann CS, Schneider TR, Engel AK (2014a) Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol 12:e1002031 Helfrich RF, Knepper H, Nolte G, Strüber D, Rach S, Herrmann CS, Schneider TR, Engel AK (2014a) Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol 12:e1002031
go back to reference Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS (2014b) Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol 24(3):333–339 Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS (2014b) Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol 24(3):333–339
go back to reference Herrmann CS, Rach S, Neuling T, Strüber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Human Neurosci 7:279CrossRef Herrmann CS, Rach S, Neuling T, Strüber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Human Neurosci 7:279CrossRef
go back to reference Hirose S, Jimura K, Kunimatsu A, Abe O, Ohtomo K, Miyashita Y et al (2014) Changes in cerebro-cerebellar interaction during response inhibition after performance improvement. Neuroimage 99:142–148PubMedCrossRef Hirose S, Jimura K, Kunimatsu A, Abe O, Ohtomo K, Miyashita Y et al (2014) Changes in cerebro-cerebellar interaction during response inhibition after performance improvement. Neuroimage 99:142–148PubMedCrossRef
go back to reference Hull CA, Chu Y, Thanawala M, Regehr WG (2013) Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells. J Neurosci 33(14):5895–5902PubMedPubMedCentralCrossRef Hull CA, Chu Y, Thanawala M, Regehr WG (2013) Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells. J Neurosci 33(14):5895–5902PubMedPubMedCentralCrossRef
go back to reference Jayaram G, Galea JM, Bastian AJ, Celnik P (2011) Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex 21(8):1901–1909PubMedPubMedCentralCrossRef Jayaram G, Galea JM, Bastian AJ, Celnik P (2011) Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex 21(8):1901–1909PubMedPubMedCentralCrossRef
go back to reference Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A (2012) Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol 107:2950–2957PubMedPubMedCentralCrossRef Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A (2012) Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol 107:2950–2957PubMedPubMedCentralCrossRef
go back to reference Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P (2012) Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol 22:403–407PubMedPubMedCentralCrossRef Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P (2012) Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol 22:403–407PubMedPubMedCentralCrossRef
go back to reference Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121:1437–1449PubMedCrossRef Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121:1437–1449PubMedCrossRef
go back to reference Kassavetis P, Hoffland BS, Saifee TA, Bhatia KP, van de Warrenburg BP, Rothwell JC, Edwards MJ (2011) Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res 209(3):437–442PubMedCrossRef Kassavetis P, Hoffland BS, Saifee TA, Bhatia KP, van de Warrenburg BP, Rothwell JC, Edwards MJ (2011) Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res 209(3):437–442PubMedCrossRef
go back to reference Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23:4899–4912PubMed Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23:4899–4912PubMed
go back to reference Khan B, Hodics T, Hervey N, Kondraske G, Stowe AM, Alexandrakis G (2013) Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation. J Biomed Opt 18(11):116003PubMedPubMedCentralCrossRef Khan B, Hodics T, Hervey N, Kondraske G, Stowe AM, Alexandrakis G (2013) Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation. J Biomed Opt 18(11):116003PubMedPubMedCentralCrossRef
go back to reference Kim CH, Oh SH, Lee JH, Chang SO, Kim J, Kim SJ (2012) Lobule-specific membrane excitability of cerebellar Purkinje cells. J Physiol 590(2):273–288PubMedCrossRef Kim CH, Oh SH, Lee JH, Chang SO, Kim J, Kim SJ (2012) Lobule-specific membrane excitability of cerebellar Purkinje cells. J Physiol 590(2):273–288PubMedCrossRef
go back to reference Knöpfel T, Grandes P (2002) Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. Cerebellum 1(1):19–26PubMedCrossRef Knöpfel T, Grandes P (2002) Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. Cerebellum 1(1):19–26PubMedCrossRef
go back to reference Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S et al (2008) Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol 119:2559–2569PubMedCrossRef Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S et al (2008) Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol 119:2559–2569PubMedCrossRef
go back to reference Kukke SN, Paine RW, Chao C, de Campos AC, Hallett M (2014) Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation. J Clin Neurophysiol 31(3):246–252PubMedPubMedCentralCrossRef Kukke SN, Paine RW, Chao C, de Campos AC, Hallett M (2014) Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation. J Clin Neurophysiol 31(3):246–252PubMedPubMedCentralCrossRef
go back to reference Lisman JE, Idiart MA (1995) Storage of 7+/-2 short-term memories in oscillatory subcycles. Science 267(5203):1512–1515PubMedCrossRef Lisman JE, Idiart MA (1995) Storage of 7+/-2 short-term memories in oscillatory subcycles. Science 267(5203):1512–1515PubMedCrossRef
go back to reference Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213PubMedPubMedCentralCrossRef Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213PubMedPubMedCentralCrossRef
go back to reference Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y et al (2005) Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci 8:202–211PubMedCrossRef Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y et al (2005) Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci 8:202–211PubMedCrossRef
go back to reference Lu MK, Tsai CH, Ziemann U (2012) Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex. Front Hum Neurosci 6:260PubMedPubMedCentralCrossRef Lu MK, Tsai CH, Ziemann U (2012) Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex. Front Hum Neurosci 6:260PubMedPubMedCentralCrossRef
go back to reference Maex R, De Schutter E (1998) Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80:2521–2537PubMed Maex R, De Schutter E (1998) Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80:2521–2537PubMed
go back to reference Manganotti P, Formaggio E, Storti SF, De Massari D, Zamboni A, Bertoldo A, Fiaschi A, Toffolo GM (2012) Time–frequency analysis of short-lasting modulation of EEG induced by intracortical and transcallosal paired TMS over motor areas. J Neurophysiol 107(9):2475–2484PubMedCrossRef Manganotti P, Formaggio E, Storti SF, De Massari D, Zamboni A, Bertoldo A, Fiaschi A, Toffolo GM (2012) Time–frequency analysis of short-lasting modulation of EEG induced by intracortical and transcallosal paired TMS over motor areas. J Neurophysiol 107(9):2475–2484PubMedCrossRef
go back to reference Manoli Z, Grossman N, Samaras T (2012) Theoretical investigation of transcranial alternating current stimulation using realistic head model. Conf Proc IEEE Eng Med Biol Soc 2012:4156–4159PubMed Manoli Z, Grossman N, Samaras T (2012) Theoretical investigation of transcranial alternating current stimulation using realistic head model. Conf Proc IEEE Eng Med Biol Soc 2012:4156–4159PubMed
go back to reference Manto M (2010) Cerebellar disorders. A practical approach to diagnosis and management. Cambridge University Press, CambridgeCrossRef Manto M (2010) Cerebellar disorders. A practical approach to diagnosis and management. Cambridge University Press, CambridgeCrossRef
go back to reference Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M et al (2012) Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487PubMedPubMedCentralCrossRef Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M et al (2012) Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487PubMedPubMedCentralCrossRef
go back to reference Mapelli L, Pagani M, Garrido JA, D’Angelo E (2015) Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front Cell Neurosci 9:169.PubMedPubMedCentralCrossRef Mapelli L, Pagani M, Garrido JA, D’Angelo E (2015) Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front Cell Neurosci 9:169.PubMedPubMedCentralCrossRef
go back to reference Mehta AR, Brittain JS, Brown P (2014) The selective influence of rhythmic cortical versus cerebellar transcranial stimulation on human physiological tremor. J Neurosci 34:7501–7508PubMedPubMedCentralCrossRef Mehta AR, Brittain JS, Brown P (2014) The selective influence of rhythmic cortical versus cerebellar transcranial stimulation on human physiological tremor. J Neurosci 34:7501–7508PubMedPubMedCentralCrossRef
go back to reference Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117:1623–1629PubMedCrossRef Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117:1623–1629PubMedCrossRef
go back to reference Mittmann W, Koch U, Hausser M (2005) Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J Physiol 563:369–378PubMedCrossRef Mittmann W, Koch U, Hausser M (2005) Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J Physiol 563:369–378PubMedCrossRef
go back to reference Moliadze V, Antal A, Paulus W (2010) Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol 588(Pt 24):4891–4904PubMedPubMedCentralCrossRef Moliadze V, Antal A, Paulus W (2010) Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol 588(Pt 24):4891–4904PubMedPubMedCentralCrossRef
go back to reference Moliadze V, Atalay D, Antal A, Paulus W (2012) Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul 5:505–511PubMedCrossRef Moliadze V, Atalay D, Antal A, Paulus W (2012) Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul 5:505–511PubMedCrossRef
go back to reference Mollica A, Moruzzi G, Naquet R (1953a) Discharge of bulbo-reticular impulses and electroencephalographic reactions in awakening induced by positive polarization of the cerebellar cortex. Boll Soc Ital Biol Sper 29:435–436 Mollica A, Moruzzi G, Naquet R (1953a) Discharge of bulbo-reticular impulses and electroencephalographic reactions in awakening induced by positive polarization of the cerebellar cortex. Boll Soc Ital Biol Sper 29:435–436
go back to reference Mollica A, Moruzzi G, Naquet R (1953b) Effects of positive polarization of the cerebellar cortex on the discharge of bulbo-reticular impulses and on decerebrate rigidity. Boll Soc Ital Biol Sper 29:401–402 Mollica A, Moruzzi G, Naquet R (1953b) Effects of positive polarization of the cerebellar cortex on the discharge of bulbo-reticular impulses and on decerebrate rigidity. Boll Soc Ital Biol Sper 29:401–402
go back to reference Mollica A, Moruzzi G, Naquet R (1953c) Reticular discharges induced by polarization of the cerebellum, their relation with postural tonis and the arousal reaction. Electroencephalogr Clin Neurophysiol 5:571–584 Mollica A, Moruzzi G, Naquet R (1953c) Reticular discharges induced by polarization of the cerebellum, their relation with postural tonis and the arousal reaction. Electroencephalogr Clin Neurophysiol 5:571–584
go back to reference Nardone R, Höller Y, Taylor A, Thomschewski A, Orioli A, Frey V, Trinka E, Brigo F (2015) Noninvasive spinal cord stimulation: technical aspects and therapeutic applications: spinal cord stimulation. Neuromodulation 18:580–591PubMedCrossRef Nardone R, Höller Y, Taylor A, Thomschewski A, Orioli A, Frey V, Trinka E, Brigo F (2015) Noninvasive spinal cord stimulation: technical aspects and therapeutic applications: spinal cord stimulation. Neuromodulation 18:580–591PubMedCrossRef
go back to reference Naro A, Russo M, Leo A, Cannavò A, Manuli A, Bramanti A, Bramanti P, Calabrò RS (2016) Cortical connectivity modulation induced by cerebellar oscillatory transcranial direct current stimulation in patients with chronic disorders of consciousness: a marker of covert cognition? Clin Neurophysiol 127:1845–1854PubMedCrossRef Naro A, Russo M, Leo A, Cannavò A, Manuli A, Bramanti A, Bramanti P, Calabrò RS (2016) Cortical connectivity modulation induced by cerebellar oscillatory transcranial direct current stimulation in patients with chronic disorders of consciousness: a marker of covert cognition? Clin Neurophysiol 127:1845–1854PubMedCrossRef
go back to reference Nightingale NR, Goodridge VD, Sheppard RJ, Christie JL (1983) The dielectric properties of the cerebellum, cerebrum and brain stem of mouse brain at radiowave and microwave frequencies. Phys Med Biol 28:897–903PubMedCrossRef Nightingale NR, Goodridge VD, Sheppard RJ, Christie JL (1983) The dielectric properties of the cerebellum, cerebrum and brain stem of mouse brain at radiowave and microwave frequencies. Phys Med Biol 28:897–903PubMedCrossRef
go back to reference Oliveri M, Koch G, Torriero S, Caltagirone C (2005) Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett 376:188–193PubMedCrossRef Oliveri M, Koch G, Torriero S, Caltagirone C (2005) Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett 376:188–193PubMedCrossRef
go back to reference Ottersen OP (1993) Neurostransmitters in the cerebellum. Rev Neurol (Paris) 149:629–636 Ottersen OP (1993) Neurostransmitters in the cerebellum. Rev Neurol (Paris) 149:629–636
go back to reference Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, Buzsáki G (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci 30:11476–11485PubMedPubMedCentralCrossRef Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, Buzsáki G (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci 30:11476–11485PubMedPubMedCentralCrossRef
go back to reference Panyakaew P, Cho HJ, Srivanitchapoom P, Popa T, Wu T, Hallett M (2016) Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation. Eur J Neurosci 43:1075–1081PubMedPubMedCentralCrossRef Panyakaew P, Cho HJ, Srivanitchapoom P, Popa T, Wu T, Hallett M (2016) Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation. Eur J Neurosci 43:1075–1081PubMedPubMedCentralCrossRef
go back to reference Parazzini M, Rossi E, Ferrucci R, Liorni I, Priori A, Ravazzani P (2014) Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin Neurophysiol 125:577–584PubMedCrossRef Parazzini M, Rossi E, Ferrucci R, Liorni I, Priori A, Ravazzani P (2014) Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin Neurophysiol 125:577–584PubMedCrossRef
go back to reference Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRef Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRef
go back to reference Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990PubMed Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990PubMed
go back to reference Pinto AD, Chen R (2001) Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res 140:505–510PubMedCrossRef Pinto AD, Chen R (2001) Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res 140:505–510PubMedCrossRef
go back to reference Pitcher JB, Doeltgen SH, Goldsworthy MR, Schneider LA, Vallence AM, Smith AE, Semmler JG, McDonnell MN, Ridding MC (2015) A comparison of two methods for estimating 50 % of the maximal motor evoked potential. Clin Neurophysiol 126:2337–2341PubMedCrossRef Pitcher JB, Doeltgen SH, Goldsworthy MR, Schneider LA, Vallence AM, Smith AE, Semmler JG, McDonnell MN, Ridding MC (2015) A comparison of two methods for estimating 50 % of the maximal motor evoked potential. Clin Neurophysiol 126:2337–2341PubMedCrossRef
go back to reference Pompeiano O, Cotti E (1959a) Opposite effects exercised by polarization of various vermian cerebellar lamellae on a single deitersian unit. Boll Soc Ital Biol Sper 35:387–388 Pompeiano O, Cotti E (1959a) Opposite effects exercised by polarization of various vermian cerebellar lamellae on a single deitersian unit. Boll Soc Ital Biol Sper 35:387–388
go back to reference Pompeiano O, Cotti E (1959b) Topographic localization of the deitersian response to polarization of the vermian cerebellar cortex of the anterior lobe. Boll Soc Ital Biol Sper 35:385–386 Pompeiano O, Cotti E (1959b) Topographic localization of the deitersian response to polarization of the vermian cerebellar cortex of the anterior lobe. Boll Soc Ital Biol Sper 35:385–386
go back to reference Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, Meunier S, Kishore A (2013) Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex 23:305–314PubMedCrossRef Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, Meunier S, Kishore A (2013) Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex 23:305–314PubMedCrossRef
go back to reference Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R (2014) Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol 592(16):3345–3369PubMedPubMedCentralCrossRef Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R (2014) Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol 592(16):3345–3369PubMedPubMedCentralCrossRef
go back to reference Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2:215–228PubMedPubMedCentralCrossRef Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2:215–228PubMedPubMedCentralCrossRef
go back to reference Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, Bikson M (2013) Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol 591(10):2563–2578PubMedPubMedCentralCrossRef Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, Bikson M (2013) Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol 591(10):2563–2578PubMedPubMedCentralCrossRef
go back to reference Rampersad SM, Janssen AM, Lucka F, Aydin U, Lanfer B, Lew S et al (2014) Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng 22:441–452PubMedCrossRef Rampersad SM, Janssen AM, Lucka F, Aydin U, Lanfer B, Lew S et al (2014) Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng 22:441–452PubMedCrossRef
go back to reference Reato D, Rahman A, Bikson M, Parra LC (2013) Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci 7:687.PubMedPubMedCentralCrossRef Reato D, Rahman A, Bikson M, Parra LC (2013) Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci 7:687.PubMedPubMedCentralCrossRef
go back to reference Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC, Cohen LG (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586(2):325–351PubMedCrossRef Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC, Cohen LG (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586(2):325–351PubMedCrossRef
go back to reference Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M (2009) Natural frequencies of human corticothalamic circuits. J Neurosci 29:7679–7685PubMedCrossRef Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M (2009) Natural frequencies of human corticothalamic circuits. J Neurosci 29:7679–7685PubMedCrossRef
go back to reference Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol 126:1071–1107PubMedCrossRef Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol 126:1071–1107PubMedCrossRef
go back to reference Rubia K, Smith AB, Taylor E, Brammer M (2007) Linear agecorrelated functional development of right inferior frontostriato- cerebellar networks during response inhibition and anterior cingulate during error-related processes. Hum Brain Mapp 28:1163–1177PubMedCrossRef Rubia K, Smith AB, Taylor E, Brammer M (2007) Linear agecorrelated functional development of right inferior frontostriato- cerebellar networks during response inhibition and anterior cingulate during error-related processes. Hum Brain Mapp 28:1163–1177PubMedCrossRef
go back to reference Sadnicka A, Kassavetis P, Saifee TA, Pareés I, Rothwell JC, Edwards MJ (2013) Cerebellar transcranial direct current stimulation does not alter motor surround inhibition. Int J Neurosci 123(6):425–432PubMedCrossRef Sadnicka A, Kassavetis P, Saifee TA, Pareés I, Rothwell JC, Edwards MJ (2013) Cerebellar transcranial direct current stimulation does not alter motor surround inhibition. Int J Neurosci 123(6):425–432PubMedCrossRef
go back to reference Shah B, Nguyen TT, Madhavan S (2013) Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimul 6:966–968PubMedCrossRef Shah B, Nguyen TT, Madhavan S (2013) Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimul 6:966–968PubMedCrossRef
go back to reference Shinoda Y, Kakei S, Futami T, Wannier T (1993) Thalamocortical organization in the cerebello-thalamo-cortical system. Cereb Cortex 3:421–429PubMedCrossRef Shinoda Y, Kakei S, Futami T, Wannier T (1993) Thalamocortical organization in the cerebello-thalamo-cortical system. Cereb Cortex 3:421–429PubMedCrossRef
go back to reference Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16PubMedCrossRef Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16PubMedCrossRef
go back to reference Smith AM, Walker LA, Freedman MS, De Meulemeester C, Hogan MJ, Cameron I (2009) fMRI investigation of disinhibition in cognitively impaired patients with multiple sclerosis. J Neurol Sci 281:58–63PubMedCrossRef Smith AM, Walker LA, Freedman MS, De Meulemeester C, Hogan MJ, Cameron I (2009) fMRI investigation of disinhibition in cognitively impaired patients with multiple sclerosis. J Neurol Sci 281:58–63PubMedCrossRef
go back to reference Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, Morris PG, Matthews PM, Johansen-Berg H (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 29(16):5202–5206PubMedCrossRef Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, Morris PG, Matthews PM, Johansen-Berg H (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 29(16):5202–5206PubMedCrossRef
go back to reference Tanaka H, Harada M, Arai M, Hirata K (2003) Cognitive dysfunction in cortical cerebellar atrophy correlates with impairment of the inhibitory system. Neuropsychobiology 47:206–11.PubMedCrossRef Tanaka H, Harada M, Arai M, Hirata K (2003) Cognitive dysfunction in cortical cerebellar atrophy correlates with impairment of the inhibitory system. Neuropsychobiology 47:206–11.PubMedCrossRef
go back to reference Tomlinson SP, Davis NJ, Bracewell RM (2013) Brain stimulation studies of non-motor cerebellar function: a systematic review. Neurosci Biobehav Rev 37:766–789PubMedCrossRef Tomlinson SP, Davis NJ, Bracewell RM (2013) Brain stimulation studies of non-motor cerebellar function: a systematic review. Neurosci Biobehav Rev 37:766–789PubMedCrossRef
go back to reference Torriero S, Oliveri M, Koch G, Lo Gerfo E, Salerno S, Ferlazzo F et al (2011) Changes in cerebello-motor connectivity during procedural learning by actual execution and observation. J Cogn Neurosci 23:338–348PubMedCrossRef Torriero S, Oliveri M, Koch G, Lo Gerfo E, Salerno S, Ferlazzo F et al (2011) Changes in cerebello-motor connectivity during procedural learning by actual execution and observation. J Cogn Neurosci 23:338–348PubMedCrossRef
go back to reference Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD (1991) Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol 441:57–72PubMedPubMedCentralCrossRef Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD (1991) Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol 441:57–72PubMedPubMedCentralCrossRef
go back to reference Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1994) Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Ann Neurol 36:618–624PubMedCrossRef Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1994) Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Ann Neurol 36:618–624PubMedCrossRef
go back to reference Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1995) Magnetic stimulation over the cerebellum in humans. Ann Neurol 37:703–713PubMedCrossRef Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1995) Magnetic stimulation over the cerebellum in humans. Ann Neurol 37:703–713PubMedCrossRef
go back to reference Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, Kanazawa I (1997) Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol 104:453–458PubMedCrossRef Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, Kanazawa I (1997) Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol 104:453–458PubMedCrossRef
go back to reference Van Der Werf YD, Sadikot AF, Strafella AP, Paus T (2006) The neural response to transcranial magnetic stimulation of the huaman motor cortex. Exp Brain Res 175:246–255CrossRef Van Der Werf YD, Sadikot AF, Strafella AP, Paus T (2006) The neural response to transcranial magnetic stimulation of the huaman motor cortex. Exp Brain Res 175:246–255CrossRef
go back to reference Vos BP, Maex R, Volny-Luraghi A, De Schutter E (1999a) Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci 19:RC6 Vos BP, Maex R, Volny-Luraghi A, De Schutter E (1999a) Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci 19:RC6
go back to reference Vos BP, Volny-Luraghi A, De Schutter E (1999b) Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur J Neurosci 11:2621–2634 Vos BP, Volny-Luraghi A, De Schutter E (1999b) Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur J Neurosci 11:2621–2634
go back to reference Wang DJ, Su LD, Wang YN, Yang D, Sun CL, Zhou L, Wang XX, Shen Y (2014) Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J Neurosci 34(6):2355–2364PubMedCrossRef Wang DJ, Su LD, Wang YN, Yang D, Sun CL, Zhou L, Wang XX, Shen Y (2014) Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J Neurosci 34(6):2355–2364PubMedCrossRef
go back to reference Werhahn KJ, Taylor J, Ridding M, Meyer BU, Rothwell JC (1996) Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol 101(1):58–66PubMedCrossRef Werhahn KJ, Taylor J, Ridding M, Meyer BU, Rothwell JC (1996) Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol 101(1):58–66PubMedCrossRef
go back to reference Wolf SL, Lecraw DE, Barton LA, Jann BB (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head injured patients. Exp Neurol 104:125–132PubMedCrossRef Wolf SL, Lecraw DE, Barton LA, Jann BB (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head injured patients. Exp Neurol 104:125–132PubMedCrossRef
go back to reference Yedlin M, Kwan H, Murphy JT, Nguyen-Huu H, Wong YC (1974) Electrical conductivity in cat cerebellar cortex. Exp Neurol 43:555–569PubMedCrossRef Yedlin M, Kwan H, Murphy JT, Nguyen-Huu H, Wong YC (1974) Electrical conductivity in cat cerebellar cortex. Exp Neurol 43:555–569PubMedCrossRef
go back to reference Zaehle T, Rach S, Herrmann CS (2010) Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS ONE 5(11):e13766PubMedPubMedCentralCrossRef Zaehle T, Rach S, Herrmann CS (2010) Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS ONE 5(11):e13766PubMedPubMedCentralCrossRef
go back to reference Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli A, Siebner HR, Classen J, Cohen LG, Rothwell J (2008) Consensus: motor cortex plasticity protocols. Brain Stimul 1:164–182PubMedCrossRef Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli A, Siebner HR, Classen J, Cohen LG, Rothwell J (2008) Consensus: motor cortex plasticity protocols. Brain Stimul 1:164–182PubMedCrossRef
Metadata
Title
Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function
Authors
Antonino Naro
Alessia Bramanti
Antonino Leo
Alfredo Manuli
Francesca Sciarrone
Margherita Russo
Placido Bramanti
Rocco Salvatore Calabrò
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1355-1

Other articles of this Issue 6/2017

Brain Structure and Function 6/2017 Go to the issue