Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2009

Open Access 01-12-2009 | Research article

Effects of acute hypoventilation and hyperventilation on exhaled carbon monoxide measurement in healthy volunteers

Authors: Franco Cavaliere, Carmen Volpe, Riccardo Gargaruti, Andrea Poscia, Michele Di Donato, Giovanni Grieco, Umberto Moscato

Published in: BMC Pulmonary Medicine | Issue 1/2009

Login to get access

Abstract

Background

High levels of exhaled carbon monoxide (eCO) are a marker of airway or lung inflammation. We investigated whether hypo- or hyperventilation can affect measured values.

Methods

Ten healthy volunteers were trained to achieve sustained end-tidal CO2 (etCO2) concentrations of 30 (hyperventilation), 40 (normoventilation), and 50 mmHg (hypoventilation). As soon as target etCO2 values were achieved for 120 sec, exhaled breath was analyzed for eCO with a photoacoustic spectrometer. At etCO2 values of 30 and 40 mmHg exhaled breath was sampled both after a deep inspiration and after a normal one. All measurements were performed in two different environmental conditions: A) ambient CO concentration = 0.8 ppm and B) ambient CO concentration = 1.7 ppm.

Results

During normoventilation, eCO mean (standard deviation) was 11.5 (0.8) ppm; it decreased to 10.3 (0.8) ppm during hyperventilation (p < 0.01) and increased to 11.9 (0.8) ppm during hypoventilation (p < 0.01). eCO changes were less pronounced than the correspondent etCO2 changes (hyperventilation: 10% Vs 25% decrease; hypoventilation 3% Vs 25% increase). Taking a deep inspiration before breath sampling was associated with lower eCO values (p < 0.01), while environmental CO levels did not affect eCO measurement.

Conclusions

eCO measurements should not be performed during marked acute hyperventilation, like that induced in this study, but the influence of less pronounced hyperventilation or of hypoventilation is probably negligible in clinical practice
Appendix
Available only for authorised users
Literature
1.
go back to reference Wu L, Wang R: Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005, 57 (4): 585-630. 10.1124/pr.57.4.3.CrossRefPubMed Wu L, Wang R: Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005, 57 (4): 585-630. 10.1124/pr.57.4.3.CrossRefPubMed
2.
go back to reference Ryter SW, Alam J, Choi AM: Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006, 86 (2): 583-650. 10.1152/physrev.00011.2005.CrossRefPubMed Ryter SW, Alam J, Choi AM: Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006, 86 (2): 583-650. 10.1152/physrev.00011.2005.CrossRefPubMed
3.
go back to reference Chatkin J, Fritscher L, de Abreu C, Cavalet-Blanco D, Chatkin G: Exhaled carbon monoxide as a marker for evaluating smoking abstinence in a Brazilian population sample. Prim Care Respir J. 2007, 16 (1): 36-40. 10.3132/pcrj.2007.00008.CrossRefPubMed Chatkin J, Fritscher L, de Abreu C, Cavalet-Blanco D, Chatkin G: Exhaled carbon monoxide as a marker for evaluating smoking abstinence in a Brazilian population sample. Prim Care Respir J. 2007, 16 (1): 36-40. 10.3132/pcrj.2007.00008.CrossRefPubMed
4.
go back to reference Jones AY, Lam PK: End-expiratory carbon monoxide levels in healthy subjects living in a densely populated urban environment. Sci Total Environ. 2006, 354 (2-3): 150-6. 10.1016/j.scitotenv.2005.02.018.CrossRefPubMed Jones AY, Lam PK: End-expiratory carbon monoxide levels in healthy subjects living in a densely populated urban environment. Sci Total Environ. 2006, 354 (2-3): 150-6. 10.1016/j.scitotenv.2005.02.018.CrossRefPubMed
5.
go back to reference Hayashi M, Takahashi T, Morimatsu H, Fujii H, Taga N: Increased carbon monoxide concentration in exhaled air after surgery and anesthesia. Anesth Analg. 2004, 99 (2): 444-8. 10.1213/01.ANE.0000123821.51802.F3.CrossRefPubMed Hayashi M, Takahashi T, Morimatsu H, Fujii H, Taga N: Increased carbon monoxide concentration in exhaled air after surgery and anesthesia. Anesth Analg. 2004, 99 (2): 444-8. 10.1213/01.ANE.0000123821.51802.F3.CrossRefPubMed
6.
go back to reference Zegdi R, Perrin D, Burdin M, Boiteau R, Tenaillon A: Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Med. 2002, 28 (6): 793-6. 10.1007/s00134-002-1269-7.CrossRefPubMed Zegdi R, Perrin D, Burdin M, Boiteau R, Tenaillon A: Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Med. 2002, 28 (6): 793-6. 10.1007/s00134-002-1269-7.CrossRefPubMed
7.
go back to reference Ohara Y, Ohrui T, Morikawa T, He M, Yasuda : Exhaled carbon monoxide levels in school-age children with episodic asthma. Pediatr Pulmonol. 2006, 41 (5): 470-4. 10.1002/ppul.20395.CrossRefPubMed Ohara Y, Ohrui T, Morikawa T, He M, Yasuda : Exhaled carbon monoxide levels in school-age children with episodic asthma. Pediatr Pulmonol. 2006, 41 (5): 470-4. 10.1002/ppul.20395.CrossRefPubMed
8.
go back to reference Montuschi P, Corradi M, Ciabattoni G, Nightingale J, Kharitonov SA, Barnes PJ: Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med. 1999, 160 (1): 216-20.CrossRefPubMed Montuschi P, Corradi M, Ciabattoni G, Nightingale J, Kharitonov SA, Barnes PJ: Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med. 1999, 160 (1): 216-20.CrossRefPubMed
9.
go back to reference Montuschi P, Kharitonov SA, Barnes PJ: Exhaled carbon monoxide and nitric oxide in COPD. Chest. 2001, 120 (2): 496-501. 10.1378/chest.120.2.496.CrossRefPubMed Montuschi P, Kharitonov SA, Barnes PJ: Exhaled carbon monoxide and nitric oxide in COPD. Chest. 2001, 120 (2): 496-501. 10.1378/chest.120.2.496.CrossRefPubMed
10.
go back to reference Sylvester KP, Patey RA, Rafferty GF, Rees D, Thein SL: Exhaled carbon monoxide levels in children with sickle cell disease. Eur J Pediatr. 2005, 164 (3): 162-5. 10.1007/s00431-004-1605-8.CrossRefPubMed Sylvester KP, Patey RA, Rafferty GF, Rees D, Thein SL: Exhaled carbon monoxide levels in children with sickle cell disease. Eur J Pediatr. 2005, 164 (3): 162-5. 10.1007/s00431-004-1605-8.CrossRefPubMed
11.
go back to reference Andersson JA, Uddman R, Cardell LO: Increased carbon monoxide levels in the nasal airways of subjects with a history of seasonal allergic rhinitis and in patients with upper respiratory tract infection. Clin Exp Allergy. 2002, 32 (2): 224-7. 10.1046/j.1365-2222.2002.00532.x.CrossRefPubMed Andersson JA, Uddman R, Cardell LO: Increased carbon monoxide levels in the nasal airways of subjects with a history of seasonal allergic rhinitis and in patients with upper respiratory tract infection. Clin Exp Allergy. 2002, 32 (2): 224-7. 10.1046/j.1365-2222.2002.00532.x.CrossRefPubMed
12.
go back to reference Biernacki WA, Kharitonov SA, Barnes PJ: Exhaled carbon monoxide in patients with lower respiratory tract infection. Respir Med. 2001, 95 (12): 1003-5. 10.1053/rmed.2001.1196.CrossRefPubMed Biernacki WA, Kharitonov SA, Barnes PJ: Exhaled carbon monoxide in patients with lower respiratory tract infection. Respir Med. 2001, 95 (12): 1003-5. 10.1053/rmed.2001.1196.CrossRefPubMed
13.
go back to reference Zegdi R, Caid R, Louw Van De A, Perrin D, Burdin M: Exhaled carbon monoxide in mechanically ventilated critically ill patients: influence of inspired oxygen fraction. Intensive Care Med. 2000, 26 (9): 1228-31. 10.1007/s001340000590.CrossRefPubMed Zegdi R, Caid R, Louw Van De A, Perrin D, Burdin M: Exhaled carbon monoxide in mechanically ventilated critically ill patients: influence of inspired oxygen fraction. Intensive Care Med. 2000, 26 (9): 1228-31. 10.1007/s001340000590.CrossRefPubMed
14.
go back to reference Schober P, Kalmanowicz M, Loer SA: Effects of inspiratory oxygen concentration on endtidal carbon monoxide concentration. J Clin Monit Comput. 2006, 20 (2): 89-94. 10.1007/s10877-006-9011-6.CrossRefPubMed Schober P, Kalmanowicz M, Loer SA: Effects of inspiratory oxygen concentration on endtidal carbon monoxide concentration. J Clin Monit Comput. 2006, 20 (2): 89-94. 10.1007/s10877-006-9011-6.CrossRefPubMed
15.
go back to reference Adachi T, Hirota K, Hara T, Sasaki Y, Hara Y: Exhaled carbon monoxide levels change in relation to inspired oxygen fraction during general anesthesia. Anesth Analg. 2007, 105 (3): 696-9. 10.1213/01.ane.0000278118.60543.7a.CrossRefPubMed Adachi T, Hirota K, Hara T, Sasaki Y, Hara Y: Exhaled carbon monoxide levels change in relation to inspired oxygen fraction during general anesthesia. Anesth Analg. 2007, 105 (3): 696-9. 10.1213/01.ane.0000278118.60543.7a.CrossRefPubMed
16.
go back to reference Coburn RF, Forster RE, Kane PB: Considerations of the physiological variables that determine the blood carboxyhaemoglobin concentration in man. J Clin Invest. 1965, 44: 1899-910. 10.1172/JCI105296.CrossRefPubMedPubMedCentral Coburn RF, Forster RE, Kane PB: Considerations of the physiological variables that determine the blood carboxyhaemoglobin concentration in man. J Clin Invest. 1965, 44: 1899-910. 10.1172/JCI105296.CrossRefPubMedPubMedCentral
17.
go back to reference Cope KA, Watson MT, Foster M, Sehnert SS, Risby TH: Effects of ventilation on the collection of exhaled breath in humans. J Appl Physiol. 2004, 96 (4): 1371-9. 10.1152/japplphysiol.01034.2003.CrossRefPubMed Cope KA, Watson MT, Foster M, Sehnert SS, Risby TH: Effects of ventilation on the collection of exhaled breath in humans. J Appl Physiol. 2004, 96 (4): 1371-9. 10.1152/japplphysiol.01034.2003.CrossRefPubMed
18.
go back to reference Harren FJM, Cotti G, Oomens J, Lintel Hekkert S: Photoacoustic spectroscopy in trace gas monitoring. Encyclopedia of Analytical Chemistry. 2000, John Wiley & Sons Ltd. Chichester, 2203-26. [RA Meyers (Series Editor)] Harren FJM, Cotti G, Oomens J, Lintel Hekkert S: Photoacoustic spectroscopy in trace gas monitoring. Encyclopedia of Analytical Chemistry. 2000, John Wiley & Sons Ltd. Chichester, 2203-26. [RA Meyers (Series Editor)]
19.
go back to reference Taskar V, John J, Larsson A, Wetterberg T, Jonson B: Dynamics of carbon dioxide elimination following ventilator resetting. Chest. 1995, 108 (1): 196-202. 10.1378/chest.108.1.196.CrossRefPubMed Taskar V, John J, Larsson A, Wetterberg T, Jonson B: Dynamics of carbon dioxide elimination following ventilator resetting. Chest. 1995, 108 (1): 196-202. 10.1378/chest.108.1.196.CrossRefPubMed
20.
go back to reference Jarvis MJ, Belcher M, Vesey C, Hutchison DCS: Low cost carbon monoxide monitors in smoking assessment. Thorax. 1986, 41 (11): 886-7. 10.1136/thx.41.11.886.CrossRefPubMedPubMedCentral Jarvis MJ, Belcher M, Vesey C, Hutchison DCS: Low cost carbon monoxide monitors in smoking assessment. Thorax. 1986, 41 (11): 886-7. 10.1136/thx.41.11.886.CrossRefPubMedPubMedCentral
21.
go back to reference Khambatta HJ, Sullivan SF: Carbon dioxide production and washout during passive hyperventilation alkalosis. J Appl Physiol. 1974, 37 (5): 665-9.PubMed Khambatta HJ, Sullivan SF: Carbon dioxide production and washout during passive hyperventilation alkalosis. J Appl Physiol. 1974, 37 (5): 665-9.PubMed
22.
go back to reference Mohan OE, Cooper DM, Jensen SC, Armon Y, Landaw EM: CO2 washout kinetics in acute hypercapnia. Respir Physiol. 1991, 86 (2): 159-70. 10.1016/0034-5687(91)90078-W.CrossRefPubMed Mohan OE, Cooper DM, Jensen SC, Armon Y, Landaw EM: CO2 washout kinetics in acute hypercapnia. Respir Physiol. 1991, 86 (2): 159-70. 10.1016/0034-5687(91)90078-W.CrossRefPubMed
23.
go back to reference Coburn RF: The carbon monoxide body stores. Ann NY Acad Sci. 1970, 174 (1): 11-22. 10.1111/j.1749-6632.1970.tb49768.x.CrossRefPubMed Coburn RF: The carbon monoxide body stores. Ann NY Acad Sci. 1970, 174 (1): 11-22. 10.1111/j.1749-6632.1970.tb49768.x.CrossRefPubMed
24.
go back to reference Fowle AS, Matthews CM, Campbell EJ: The rapid distribution of H2O and CO2 in the body in relation to the immediate carbon dioxide storage capacity. Clin Sci. 1964, 27: 51-65.PubMed Fowle AS, Matthews CM, Campbell EJ: The rapid distribution of H2O and CO2 in the body in relation to the immediate carbon dioxide storage capacity. Clin Sci. 1964, 27: 51-65.PubMed
25.
go back to reference Zetterquist W, Marteus H, Johannesson M, Nordval SL, Ihre E: Exhaled carbon monoxide is not elevated in patients with asthma or cystic fibrosis. Eur Respir J. 2002, 20 (1): 92-9. 10.1183/09031936.02.00245302.CrossRefPubMed Zetterquist W, Marteus H, Johannesson M, Nordval SL, Ihre E: Exhaled carbon monoxide is not elevated in patients with asthma or cystic fibrosis. Eur Respir J. 2002, 20 (1): 92-9. 10.1183/09031936.02.00245302.CrossRefPubMed
26.
go back to reference Togores B, Bosch M, Agustí AGN: The measurement of exhaled carbon monoxide is influenced by airway obstruction. Eur Resp J. 2000, 15 (1): 177-80. 10.1183/09031936.00.15117700.CrossRef Togores B, Bosch M, Agustí AGN: The measurement of exhaled carbon monoxide is influenced by airway obstruction. Eur Resp J. 2000, 15 (1): 177-80. 10.1183/09031936.00.15117700.CrossRef
27.
go back to reference Deveci SE, Deveci F, Açik Y, Ozan AT: The measurement of exhaled carbon monoxide in healthy smokers and non-smokers. Respir Med. 2004, 98 (6): 551-6. 10.1016/j.rmed.2003.11.018.CrossRefPubMed Deveci SE, Deveci F, Açik Y, Ozan AT: The measurement of exhaled carbon monoxide in healthy smokers and non-smokers. Respir Med. 2004, 98 (6): 551-6. 10.1016/j.rmed.2003.11.018.CrossRefPubMed
28.
go back to reference Carpagnano GE, Kharitonov SA, Foschino-Barbaro MP, Resta O, Barnes PJ: Increased inflammatory markers in the exhaled breath condensate of cigarette smokers. Eur Respir J. 2003, 21 (4): 589-93. 10.1183/09031936.03.00022203.CrossRefPubMed Carpagnano GE, Kharitonov SA, Foschino-Barbaro MP, Resta O, Barnes PJ: Increased inflammatory markers in the exhaled breath condensate of cigarette smokers. Eur Respir J. 2003, 21 (4): 589-93. 10.1183/09031936.03.00022203.CrossRefPubMed
29.
go back to reference Yamaya M, Sekizawa K, Ishizuka S, Monma M, Mizuta K, Sasaki H: Increased Carbon Monoxide in Exhaled Air of Subjects with Upper Respiratory Tract Infections. Am J Respir Crit Care Med. 1998, 158: 311-314.CrossRefPubMed Yamaya M, Sekizawa K, Ishizuka S, Monma M, Mizuta K, Sasaki H: Increased Carbon Monoxide in Exhaled Air of Subjects with Upper Respiratory Tract Infections. Am J Respir Crit Care Med. 1998, 158: 311-314.CrossRefPubMed
30.
go back to reference Zayasu K, Sekizawa K, Okinaga S, Yamaya M, Ohrui T, Sasaki H: Increased Carbon Monoxide in Exhaled Air of Asthmatic Patients. Am J Respir Crit Care Med. 1997, 156: 1140-1143.CrossRefPubMed Zayasu K, Sekizawa K, Okinaga S, Yamaya M, Ohrui T, Sasaki H: Increased Carbon Monoxide in Exhaled Air of Asthmatic Patients. Am J Respir Crit Care Med. 1997, 156: 1140-1143.CrossRefPubMed
31.
go back to reference Paredi P, Shah PL, Montuschi P, Sullivan P, Hodson ME, Kharitonov SA, Barnes PJ: Increased carbon monoxide in exhaled air of patients with cystic fibrosis. Thorax. 1999, 54: 917-920. 10.1136/thx.54.10.917.CrossRefPubMedPubMedCentral Paredi P, Shah PL, Montuschi P, Sullivan P, Hodson ME, Kharitonov SA, Barnes PJ: Increased carbon monoxide in exhaled air of patients with cystic fibrosis. Thorax. 1999, 54: 917-920. 10.1136/thx.54.10.917.CrossRefPubMedPubMedCentral
32.
go back to reference Horváth I, Loukides S, Wodehouse T, Csiszér E, Cole PJ, Kharitonov SA, Barnes PJ: Comparison of exhaled and nasal nitric oxide and exhaled carbon monoxide levels in bronchiectatic patients with and without primary ciliary dyskinesia. Thorax. 2003, 58 (1): 68-72. 10.1136/thorax.58.1.68.CrossRefPubMedPubMedCentral Horváth I, Loukides S, Wodehouse T, Csiszér E, Cole PJ, Kharitonov SA, Barnes PJ: Comparison of exhaled and nasal nitric oxide and exhaled carbon monoxide levels in bronchiectatic patients with and without primary ciliary dyskinesia. Thorax. 2003, 58 (1): 68-72. 10.1136/thorax.58.1.68.CrossRefPubMedPubMedCentral
33.
go back to reference De las Heras D, Fernández J, Ginès P, Cárdenas A, Ortega R, Navasa M, Barberá JA, Calahorra B, Guevara M, Bataller R, Jiménez W, Arroyo V, Rodés J: Increased carbon monoxide production in patients with cirrhosis with and without spontaneous bacterial peritonitis. Hepatology. 2003, 38 (2): 452-9. 10.1053/jhep.2003.50304.CrossRefPubMed De las Heras D, Fernández J, Ginès P, Cárdenas A, Ortega R, Navasa M, Barberá JA, Calahorra B, Guevara M, Bataller R, Jiménez W, Arroyo V, Rodés J: Increased carbon monoxide production in patients with cirrhosis with and without spontaneous bacterial peritonitis. Hepatology. 2003, 38 (2): 452-9. 10.1053/jhep.2003.50304.CrossRefPubMed
34.
go back to reference Cunnington AJ, Hormbrey P: Breath analysis to detect recent exposure to carbon monoxide. Postgrad Med J. 2002, 78 (918): 233-7. 10.1136/pmj.78.918.233.CrossRefPubMedPubMedCentral Cunnington AJ, Hormbrey P: Breath analysis to detect recent exposure to carbon monoxide. Postgrad Med J. 2002, 78 (918): 233-7. 10.1136/pmj.78.918.233.CrossRefPubMedPubMedCentral
35.
go back to reference Laranjeira R, Pillon S, Dunn J: Environmental tobacco smoke exposure among nonsmoking waiters: measurement of expired carbon monoxide levels. Sao Paulo Med J. 2000, 118 (4): 89-92. 10.1590/S1516-31802000000400003.CrossRefPubMed Laranjeira R, Pillon S, Dunn J: Environmental tobacco smoke exposure among nonsmoking waiters: measurement of expired carbon monoxide levels. Sao Paulo Med J. 2000, 118 (4): 89-92. 10.1590/S1516-31802000000400003.CrossRefPubMed
36.
go back to reference Scharte M, Bone HG, Van Aken H, Meyer J: Increased carbon monoxide in exhaled air of critically ill patients. Biochem Biophys Res Commun. 2000, 267 (1): 423-6. 10.1006/bbrc.1999.1936.CrossRefPubMed Scharte M, Bone HG, Van Aken H, Meyer J: Increased carbon monoxide in exhaled air of critically ill patients. Biochem Biophys Res Commun. 2000, 267 (1): 423-6. 10.1006/bbrc.1999.1936.CrossRefPubMed
Metadata
Title
Effects of acute hypoventilation and hyperventilation on exhaled carbon monoxide measurement in healthy volunteers
Authors
Franco Cavaliere
Carmen Volpe
Riccardo Gargaruti
Andrea Poscia
Michele Di Donato
Giovanni Grieco
Umberto Moscato
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2009
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/1471-2466-9-51

Other articles of this Issue 1/2009

BMC Pulmonary Medicine 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine