Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Effects of Δ40p53, an isoform of p53 lacking the N-terminus, on transactivation capacity of the tumor suppressor protein p53

Authors: Hind Hafsi, Daniela Santos-Silva, Stéphanie Courtois-Cox, Pierre Hainaut

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

The p53 protein is expressed as multiple isoforms that differ in their N- and C-terminus due to alternative splicing, promoter or codon initiation usage. Δ40p53 lacks the first 39 residues containing the main transcriptional activation domain, resulting from initiation of translation at AUG +40 in fully spliced p53 mRNA or in a specific variant mRNA retaining intron 2. Overexpression of Δ40p53 antagonizes wild-type p53 in vitro. However, animal models of Δ40p53 in mouse or Zebrafish have shown complex phenotypes suggestive of p53-dependent growth suppressive effects.

Methods

We have co-transfected expression vectors for p53 and Δ40p53 in p53-null cell lines Saos-2 and H1299 to show that Δ40p53 forms mixed oligomers with p53 that bind to DNA and modulate the transcription of a generic p53-dependent reporter gene.

Results

In H1299 cells, co-expression of the two proteins induced a decrease in transcription with amplitude that depended upon the predicted composition of the hetero-tetramer. In Saos-2, a paradoxical effect was observed, with a small increase in activity for hetero-tetramers predicted to contain 1 or 2 monomers of Δ40p53 and a decrease at higher Δ40p53/p53 ratios. In this cell line, co-transfection of Δ40p53 prevented Hdm2-mediated degradation of p53.

Conclusion

Δ40p53 modulates transcriptional activity by interfering with the binding of Hdm2 to hetero-tetramers containing both Δ40p53 and p53. These results provide a basis for growth suppressive effects in animal models co-expressing roughly similar levels of p53 and Δ40p53.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hainaut P, Wiman KG: 30 years and a long way into p53 research. Lancet Oncol. 2009, 10: 913-919. 10.1016/S1470-2045(09)70198-6.CrossRefPubMed Hainaut P, Wiman KG: 30 years and a long way into p53 research. Lancet Oncol. 2009, 10: 913-919. 10.1016/S1470-2045(09)70198-6.CrossRefPubMed
2.
go back to reference Marine JC, Lozano G: Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 2010, 17: 93-102. 10.1038/cdd.2009.68.CrossRefPubMed Marine JC, Lozano G: Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 2010, 17: 93-102. 10.1038/cdd.2009.68.CrossRefPubMed
3.
go back to reference Hollstein M, Hainaut P: Massively regulated genes: the example of TP53. J Pathol. 2010, 220: 164-173.PubMed Hollstein M, Hainaut P: Massively regulated genes: the example of TP53. J Pathol. 2010, 220: 164-173.PubMed
4.
go back to reference Hafsi H, Hainaut P: Redox Control and Interplay Between p53 Isoforms: Roles in the Regulation of Basal p53 Levels, Cell Fate, and Senescence. Antioxid Redox Signal. 2011, 15: 1655-1667. 10.1089/ars.2010.3771.CrossRefPubMed Hafsi H, Hainaut P: Redox Control and Interplay Between p53 Isoforms: Roles in the Regulation of Basal p53 Levels, Cell Fate, and Senescence. Antioxid Redox Signal. 2011, 15: 1655-1667. 10.1089/ars.2010.3771.CrossRefPubMed
5.
go back to reference Vousden KH, Prives C: Blinded by the Light: The Growing Complexity of p53. Cell. 2009, 137: 413-431. 10.1016/j.cell.2009.04.037.CrossRefPubMed Vousden KH, Prives C: Blinded by the Light: The Growing Complexity of p53. Cell. 2009, 137: 413-431. 10.1016/j.cell.2009.04.037.CrossRefPubMed
6.
go back to reference Oren M: Decision making by p53: life, death and cancer. Cell Death Differ. 2003, 10: 431-442. 10.1038/sj.cdd.4401183.CrossRefPubMed Oren M: Decision making by p53: life, death and cancer. Cell Death Differ. 2003, 10: 431-442. 10.1038/sj.cdd.4401183.CrossRefPubMed
7.
go back to reference Marcel V, Dichtel-Danjoy ML, Sagne C, Hafsi H, Ma D, Ortiz-Cuaran S, Olivier M, Hall J, Mollereau B, Hainaut P, Bourdon JC: Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ. 2011, 18: 1815-1824. 10.1038/cdd.2011.120.CrossRefPubMedPubMedCentral Marcel V, Dichtel-Danjoy ML, Sagne C, Hafsi H, Ma D, Ortiz-Cuaran S, Olivier M, Hall J, Mollereau B, Hainaut P, Bourdon JC: Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ. 2011, 18: 1815-1824. 10.1038/cdd.2011.120.CrossRefPubMedPubMedCentral
9.
go back to reference Courtois S, Verhaegh G, North S, Luciani MG, Lassus P, Hibner U, Oren M, Hainaut P: DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene. 2002, 21: 6722-6728.CrossRefPubMed Courtois S, Verhaegh G, North S, Luciani MG, Lassus P, Hibner U, Oren M, Hainaut P: DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene. 2002, 21: 6722-6728.CrossRefPubMed
10.
go back to reference Yin Y, Stephen CW, Luciani MG, Fahraeus R: p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol. 2002, 4: 462-467. 10.1038/ncb801.CrossRefPubMed Yin Y, Stephen CW, Luciani MG, Fahraeus R: p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol. 2002, 4: 462-467. 10.1038/ncb801.CrossRefPubMed
11.
go back to reference Ghosh A, Stewart D, Matlashewski G: Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol. 2004, 24: 7987-7997. 10.1128/MCB.24.18.7987-7997.2004.CrossRefPubMedPubMedCentral Ghosh A, Stewart D, Matlashewski G: Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol. 2004, 24: 7987-7997. 10.1128/MCB.24.18.7987-7997.2004.CrossRefPubMedPubMedCentral
12.
go back to reference Ray PS, Grover R, Das S: Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep. 2006, 7: 404-410.PubMedPubMedCentral Ray PS, Grover R, Das S: Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep. 2006, 7: 404-410.PubMedPubMedCentral
13.
go back to reference Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T, Sutherland A, Thorner M, Scrable H: Modulation of mammalian life span by the short isoform of p53. Genes Dev. 2004, 18: 306-319. 10.1101/gad.1162404.CrossRefPubMedPubMedCentral Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T, Sutherland A, Thorner M, Scrable H: Modulation of mammalian life span by the short isoform of p53. Genes Dev. 2004, 18: 306-319. 10.1101/gad.1162404.CrossRefPubMedPubMedCentral
14.
go back to reference Pehar M, O’Riordan KJ, Burns-Cusato M, Andrzejewski ME, del Alcazar CG, Burger C, Scrable H, Puglielli L: Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death. Aging Cell. 2010, 9: 174-190. 10.1111/j.1474-9726.2010.00547.x.CrossRefPubMedPubMedCentral Pehar M, O’Riordan KJ, Burns-Cusato M, Andrzejewski ME, del Alcazar CG, Burger C, Scrable H, Puglielli L: Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death. Aging Cell. 2010, 9: 174-190. 10.1111/j.1474-9726.2010.00547.x.CrossRefPubMedPubMedCentral
15.
go back to reference Davidson WR, Kari C, Ren Q, Daroczi B, Dicker AP, Rodeck U: Differential regulation of p53 function by the N-terminal DeltaNp53 and Delta113p53 isoforms in zebrafish embryos. BMC Dev Biol. 2010, 10: 102-10.1186/1471-213X-10-102.CrossRefPubMedPubMedCentral Davidson WR, Kari C, Ren Q, Daroczi B, Dicker AP, Rodeck U: Differential regulation of p53 function by the N-terminal DeltaNp53 and Delta113p53 isoforms in zebrafish embryos. BMC Dev Biol. 2010, 10: 102-10.1186/1471-213X-10-102.CrossRefPubMedPubMedCentral
16.
go back to reference Band V, Zajchowski D, Swisshelm K, Trask D, Kulesa V, Cohen C, Connolly J, Sager R: Tumor progression in four mammary epithelial cell lines derived from the same patient. Cancer Res. 1990, 50: 7351-7357.PubMed Band V, Zajchowski D, Swisshelm K, Trask D, Kulesa V, Cohen C, Connolly J, Sager R: Tumor progression in four mammary epithelial cell lines derived from the same patient. Cancer Res. 1990, 50: 7351-7357.PubMed
17.
go back to reference Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE: Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res. 1981, 41: 1751-1756.PubMed Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE: Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res. 1981, 41: 1751-1756.PubMed
18.
go back to reference Marcel V, Vijayakumar V, Fernandez-Cuesta L, Hafsi H, Sagne C, Hautefeuille A, Olivier M, Hainaut P: p53 regulates the transcription of its Delta 133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene. 2010, 29: 2691-2700. 10.1038/onc.2010.26.CrossRefPubMed Marcel V, Vijayakumar V, Fernandez-Cuesta L, Hafsi H, Sagne C, Hautefeuille A, Olivier M, Hainaut P: p53 regulates the transcription of its Delta 133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene. 2010, 29: 2691-2700. 10.1038/onc.2010.26.CrossRefPubMed
19.
go back to reference Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B: Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992, 358: 80-83. 10.1038/358080a0.CrossRefPubMed Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B: Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992, 358: 80-83. 10.1038/358080a0.CrossRefPubMed
20.
go back to reference Verhaegh GW, Richard MJ, Hainaut P: Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper. Mol Cell Biol. 1997, 17: 5699-5706.CrossRefPubMedPubMedCentral Verhaegh GW, Richard MJ, Hainaut P: Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper. Mol Cell Biol. 1997, 17: 5699-5706.CrossRefPubMedPubMedCentral
21.
go back to reference Chan WM, Siu WY, Lau A, Poon RY: How many mutant p53 molecules are needed to inactivate a tetramer?. Mol Cell Biol. 2004, 24: 3536-3551. 10.1128/MCB.24.8.3536-3551.2004.CrossRefPubMedPubMedCentral Chan WM, Siu WY, Lau A, Poon RY: How many mutant p53 molecules are needed to inactivate a tetramer?. Mol Cell Biol. 2004, 24: 3536-3551. 10.1128/MCB.24.8.3536-3551.2004.CrossRefPubMedPubMedCentral
22.
go back to reference Kubbutat MH, Jones SN, Vousden KH: Regulation of p53 stability by Mdm2. Nature. 1997, 387: 299-303. 10.1038/387299a0.CrossRefPubMed Kubbutat MH, Jones SN, Vousden KH: Regulation of p53 stability by Mdm2. Nature. 1997, 387: 299-303. 10.1038/387299a0.CrossRefPubMed
23.
go back to reference Ungewitter E, Scrable H: Delta40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes Dev. 2010, 24: 2408-2419. 10.1101/gad.1987810.CrossRefPubMedPubMedCentral Ungewitter E, Scrable H: Delta40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes Dev. 2010, 24: 2408-2419. 10.1101/gad.1987810.CrossRefPubMedPubMedCentral
24.
go back to reference Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ, Bowman ED, Mathe EA, Schetter AJ, Pine SR: p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol. 2009, 11: 1135-1142. 10.1038/ncb1928.CrossRefPubMedPubMedCentral Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ, Bowman ED, Mathe EA, Schetter AJ, Pine SR: p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol. 2009, 11: 1135-1142. 10.1038/ncb1928.CrossRefPubMedPubMedCentral
Metadata
Title
Effects of Δ40p53, an isoform of p53 lacking the N-terminus, on transactivation capacity of the tumor suppressor protein p53
Authors
Hind Hafsi
Daniela Santos-Silva
Stéphanie Courtois-Cox
Pierre Hainaut
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-134

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine